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Abstract: Deep learning methods have excellent prospects for application in wave forecasting re-
search. This study employed the convolutional LSTM (ConvLSTM) algorithm to predict the South
China Sea (SCS) significant wave height (SWH). Three prediction models were established to investi-
gate the influences of setting different parameters and using multiple training data on the forecasting
effects. Compared with the SWH data from the China–France Ocean Satellite (CFOSAT), the SWH of
WAVEWATCH III (WWIII) from the pacific islands ocean observing system are accurate enough to be
used as training data for the ConvLSTM-based SWH prediction model. Model A was preliminarily
established by only using the SWH from WWIII as the training data, and 20 sensitivity experiments
were carried out to investigate the influences of different parameter settings on the forecasting effect
of Model A. The experimental results showed that Model A has the best forecasting effect when using
three years of training data and three hourly input data. With the same parameter settings as the
best prediction performance Model A, Model B and C were also established by using more different
training data. Model B used the wind shear velocity and SWH as training and input data. When
making a 24-h SWH forecast, compared with Model A, the root mean square error (RMSE) of Model
B is decreased by 17.6%, the correlation coefficient (CC) is increased by 2.90%, and the mean absolute
percentage error (MAPE) is reduced by 12.2%. Model C used the SWH, wind shear velocity, wind and
wave direction as training and input data. When making a 24-h SWH forecast, compared with Model
A, the RMSE of Model C decreased by 19.0%, the CC increased by 2.65%, and the MAPE decreased
by 14.8%. As the performance of the ConvLSTM-based prediction model mainly rely on the SWH
training data. All the ConvLSTM-based prediction models show a greater RMSE in the nearshore
area than that in the deep area of SCS and also show a greater RMSE during the period of typhoon
transit than that without typhoon. Considering the wind shear velocity, wind, and wave direction
also used as training data will improve the performance of SWH prediction.

Keywords: South China Sea; convolutional LSTM; significant wave height prediction; wind shear
velocity; wind direction

1. Introduction

The South China Sea (SCS) is a large semi-enclosed marginal sea and the third-largest
continental marginal sea in the world (after the Coral Sea and the Arabian Sea) [1]. With
abundant mineral, oil and gas, and fishery resources, the SCS has a considerable variation
in water depth [2], including deep-sea and shallow nearshore areas. The climate of the
SCS is dominated by the southwest monsoon in summer and the northeast monsoon in
winter due to the East Asian monsoon system [3]. The topographic characteristics of the
SCS and the monsoon system significantly influence the wave characteristics of the SCS.
Accurate wave forecasting can effectively improve the safety of marine activities in the SCS,
such as fishing, exploration, power generation, and shipping, and the efficiency of marine
operation, as well as reduce marine accidents [4–6].
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Significant wave height (SWH) is one of the most critical elements of wave forecasting.
There are two main categories of traditional wave forecasting methods. The first ones
are the emerged semi-analytical and semi-empirical methods, such as the Sverdroup–
Munk–Bretscheider (SMB) method [7] and the Pierson–Neumann–James (PNJ) method [8].
Although these empirical methods are fast and accurate, they are not theoretically rigorous
enough to describe the conditions of wave influence in detail. They are only applicable to a
limited case [9]. The second type of method of wave forecasting is based on numerical wave
models, which are the most widely used methods of wave forecasting now. The principle
of numerical wave models is to obtain wave height, period, and other information by
solving the wave spectrum equations for physical processes in the ocean. The most mature
models are the third-generation wave models, such as wave model (WAM) [10], simulating
waves nearshore (SWAN) [11,12], and WAVEWATCH III (WWIII) [13,14]. However, their
theoretical and computational complexity consumes many computational resources and
time [15,16].

In recent years, with the development of soft-computing methods (SCM), artificial
neural networks, fuzzy computing, machine learning, and other SCM have been widely
used in wave forecasting. For example, three studies [9,17,18] applied artificial neural
network (ANN) models in wave height prediction. Compared with autoregressive models,
ANN methods have the advantages of flexibility and adaptability [19]. However, ANN is
not extensively business oriented because of its limited predictive capability [20]. In order
to overcome these problems, extreme learning machines (ELM) [21–24], support vector
machines (SVM) [25,26], adaptive network-based fuzzy inference systems (ANFIS) [27],
Bayesian networks (BN) [28,29], and rough set theory (RST) [30] methods were also applied
to the forecasting of SWH.

The recurrent neural network (RNN) and its variant method, the long short-term
memory (LSTM) network [31], have unique advantages in solving prediction problems.
Gao et al. [20] developed a wave height prediction model based on the LSTM neural
network for the Bohai Sea gauging stations. They demonstrated that the LSTM model
gave significantly better results than feedforward neural networks (FNN) and support
vector regression (SVR) models. Many combined LSTM and other methods were applied
in recent studies in SWH. For example, Ni and Ma [32] combined principal component
analysis (PCA) with LSTM to predict wave height and compared the results with linear
regression (LR), regression tree (TR), SVM, and Gaussian process regression (GPR), and
the results performed much better in terms of performance metrics and time consumption.
Fan et al. [19] combined SWAN with LSTM and found that the SWAN-LSTM model
outperformed ELM and SVM in prediction. Pirhooshyaran and Snyder [33] combined
LSTM neural networks with Bayesian hyperparametric optimization and elastic network
methods. Sequence-to-sequence neural networks were developed for the first time, and the
prediction results of SWH were superior in validation.

The previous LSTM network model for SWH prediction was limited to the single-point
prediction of spatial elements. To address the problem of prediction of spatio-temporal
sequences in the proximity forecasting of precipitation, Shi et al. [34] developed a convolu-
tional LSTM (ConvLSTM) algorithm. The ConvLSTM algorithm is a predictive model of
variables constructed by establishing relationships between input and predictor variables
with a sufficient amount of training data. Experiments have shown that the ConvLSTM
network can better capture the spatio-temporal correlation of elements and consistently
outperforms other algorithms, such as fully connected LSTM (FC-LSTM). Previous studies
have demonstrated the feasibility of employing the ConvLSTM algorithm for SWH pre-
diction. For example, Choi et al. [35] predicted SWH from continuous ocean images based
on a two-way ConvLSTM regression model, and the model predictions yielded meager
error rates in terms of mean absolute error (MAE) and mean absolute percentage error
(MAPE). However, the limitation of this study was caused by the difficulty of collecting
continuous ocean images and the short length of the estimated time. Zhou et al. [36]
performed intelligent wave forecasting in the South and East China Seas based on the
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ConvLSTM algorithm. However, the training and input data used in such studies were
mainly limited to previous SWH data, and other environmental and physical factors that
may influence SWH variation were disregarded.

The SWH is mainly influenced by wind direction, wind speed, sea surface temperature,
and atmospheric pressure [9,37], among which wind speed and direction are the most
critical factors affecting the variation of SWH [38–40]. Fan et al. [19] and Hu et al. [41]
considered the role of multiple input elements for SWH to design prediction models, but
their studies were limited to single-point forecasts at the measurement sites. Therefore,
multi-factor data such as the historical SWH, wind speed, and wind direction were used as
training and input data of the ConvLSTM neural network model in this study. A variety of
network models were designed to predict SWH in the SCS. The optimal control parameters
were determined by training and testing neural network models with different model
parameters. On this basis, the influence of different input factors on SWH prediction
was studied.

The remainder of this paper is organized as follows. In Section “Data and methods”,
we describe the data and preprocessing used in this study, the methodology employed for
the study, and how the predictive model of SWH in the SCS was constructed. In Section
“Results and discussion”, we describe the results of the prediction models using three
different input data and discuss the differences between the three models. Finally, Section
“Conclusions” provides our conclusions.

2. Data and Methods
2.1. Data and Pre-Processing
2.1.1. Data

The SWH data and wave direction data used in this study are the best time series
WAVEWATCH III (WWIII) global wave model data from the official website of the Pacific
Islands Ocean Observing System (PacIOOS). A global-scale WWIII model was implemented
at the University of Hawaii through a partnership with the National Oceanic and Atmo-
spheric Administration/National Centers for Environmental Prediction (NOAA/NCEP)
and the National Weather Service Honolulu Forecast Office (NWS Honolulu) [42]. The
SWH and wave direction (θ) data have a temporal resolution of 1 h and a spatial resolution
of 1/2◦ × 1/2◦. The spatial range of the data used in this study is 99◦~126◦ E, 0◦~26◦ N,
and the time range is from January 2016 to October 2021, where the data from January 2016
to December 2020 were used as the training dataset and the data from January to October
2021 were used as the testing dataset.

The wind data used in this study were obtained from the fifth generation (ERA5)
ECMWF reanalysis for the global climate and weather data. The ECMWF-ERA5 data is
an atmospheric reanalysis product based on the 2016 version of the Integrated Forecast
System (IFS) that combines model data with observations from around the world to form
a globally complete and consistent dataset. The ERA5 data replaces its predecessor, the
ERA-Interim reanalysis, and provides data products from 1979 onward that are in real-time
updated [43]. The ERA5 data used in this study are the eastward component (u) and the
northward component (v) of the 10 m wind, and the data have a temporal resolution of 1 h
and a spatial resolution of 1/4◦ × 1/4◦. The spatial range of the data used in this study is
99◦~126◦ E, 0◦~26◦ N, and the time range is from January 2016 to October 2021, where the
data from January 2016 to December 2020 were used as the training dataset and the data
from January to October 2021 were used as the testing dataset.

Typhoon and tropical cyclone data were also used in this study due to their frequent
occurrence in the SCS [5]. To evaluate the performance of the SWH prediction model during
extreme weather events, the path data and transit time data of typhoons and tropical storms
that were generated in or were transiting through the South China Sea in April, September,
and October 2021 were selected. The typhoon data were obtained from the China Central
Weather Bureau Typhoon Network [44], and the attribute information of typhoons and
tropical storms are shown in Table 1.
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Table 1. Typhoons and tropical storms generated in or passing through the SCS in April, September
and October 2021.

Number Name Maximum
Intensity

Maximum Wind
Speed/m·s−1

Start Date/YY-MM-DD
HH

End
Date/YY-MM-DD HH

2102 Surigae Super typhoon 68 2021-04-14 02 2021-04-24 17

2113 Conson Severe tropical
storm 30 2021-09-06 14 2021-09-12 17

2114 Chanthu Super typhoon 68 2021-09-07 08 2021-09-18 05
2115 Dianmu Tropical storm 18 2021-09-22 17 2021-09-24 08
2117 Lionrock Tropical Storm 20 2021-10-06 08 2021-10-10 17
2118 Kompasu Typhoon 35 2021-10-08 02 2021-10-14 17

To assess the quality of WWIII data and the accuracy of the predicted SWH, we used
the SWIM (surface waves investigation and monitoring instrument) data products from
CFOSAT (Chinese–French Oceanic satellite). The French AVISO+ (archiving, validation,
and interpretation of satellite oceanographic data) Cnes Data Center provided the SWIM
L2P SWH box off nadir NRT products, which had a delivery delay of 4 h for the period
from 25 April 2019, to the present [45]. Li et al. [46] demonstrated that CFOSAT could
provide high-precision SWH by comparing it with the SWH data from the National Data
Buoy Center (NDBC) buoys and the Jason-3 altimeter SWH data. Therefore, we selected
the CFOSAT SWIM data passed through SCS in 2020 and October 2021 to evaluate the data
quality of SWH from WWIII and the wave prediction model capabilities.

2.1.2. Preprocessing

In order to accurately predict the SWH, the controlling factors for SWH generation
need to be determined. The previous SWH is one of the most critical factors. In order to
unify the resolution of the data and improve the quality of the data, the wave data were
interpolated to the exact spatial resolution as the wind field data. Wind speed and wind
direction are also important physical factors affecting the SWH. Wind speed (U10) and wind
direction (Φ) at 10 m were calculated from the eastward component (u) and northward
component (v) of the 10 m wind from ECMWF-ERA5. Zamani et al. [47] used wind shear
velocity (U*) instead of U10 for modeling, and U* was able to improve the predictions in
extreme events. The formula for U* is shown in Equation (1).

U∗= U10
√

CD (1)

where CD is the wind resistance coefficient as shown in Equation (2) [48].

CD =

{
1.2875 × 10−3, U10 < 7.5 m·s−1

(0 .8 + 0.065 × U10) × 10−3, U10 ≥ 7.5 m·s−1 (2)

The wind and wave direction also have an important effect on the wave growth rate
and need to be considered when training the SWH prediction model. The wind has the
greatest effect on wave generation if the wind and wave directions are the same. Therefore,
this study uses cos (Φ − θ) [9] to quantify this effect, where Φ is the wind direction, and θ
is the wave direction.

2.2. ConvLSTM Algorithm

ConvLSTM was first applied to the proximity forecasting of precipitation [34], which
addresses the deficiency of LSTM in losing spatial correlation and spatial features of
spatial data. ConvLSTM extracts feature from a series of images rather than from a single
image. A model that processes sequential images needs to be able to extract spatial and
temporal information from the images, as it should adapt to the changes in the sequential
data over time. Thus, ConvLSTM uses convolution operations to generate a good spatial
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representation of each frame, using LSTM to encode the temporal variations in the sequence.
The LSTM is a class of recurrent neural networks that can process sequential data and was
introduced to solve the gradient disappearance problem encountered by recurrent neural
networks when processing long sequences [31]. The LSTM incorporates memory units
that contain information about the input seen by the LSTM units and is conditioned using
several fully connected gates. Because the main purpose of processing image sequences is
to discover changes in spatial and temporal dimensions, ConvLSTM uses convolutional
gates in the LSTM to encode spatio-temporal information.

Equations (3)–(7) and Figure 1 describe the architecture of the ConvLSTM. The σ is
the sigmoid function. The “∗” denotes the convolution operation and the “◦” denotes the
Hadamard product. it is the input gate, ft is the forgetting gate, ot is the output gate, Ct is
the current state, Ht is the final output, and W, b represent the weight and bias coefficients,
respectively, which are three-dimensional (3D) tensors. The ConvLSTM layer is a recursive
layer, similar to the LSTM, except that the internal matrix multiplication is exchanged with
the convolution operation. The data flow through the ConvLSTM unit keeps the input
dimension as 3D and not just a one-dimensional vector. Thus, the ConvLSTM layer uses
the same weight sharing as a CNN and treats the input data as serial data, which allows
the model to process time-series data similar to an RNN.

it= σ (W xi ∗ Xt+Whi ∗ Ht−1+Wci Ct−1+bi) (3)

ft= σ (W x f ∗ Xt+Wh f ∗ Ht−1+Wc f Ct−1+b f ) (4)

Ct= f t Ct−1+it tanh(W xc ∗ Xt+Whc ∗ Ht−1+bc) (5)

ot= σ (W xo ∗ Xt+Who ∗ Ht−1+Wco Ct+bo) (6)

Ht= ot tanh(C t) (7) 
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Figure 1. ConvLSTM cell architecture [35]. Ct is the current state, Ct−1 is the state of the previous
moment, ot is the output gate, it is the input gate, ft is the forgetting gate, ht−1 is the final output of
the previous moment.

2.3. Constructing the SWH Prediction Model

Based on the ConvLSTM model for proximity precipitation forecasting by Shi et al. [34],
a ConvLSTM model for SWH prediction in the SCS was developed in this study, and the
overall structure of the model is shown in Figure 2. The model has five hidden layers for
each step, including four ConvLSTM layers and one Conv2D layer as the final output layer.
The process of the SWH forecast was to input several previous time data from each training
set sample into the model of Figure 2 to obtain the SWH of the target time. The first SWH of
WW3 and wind of ERA5 were initially 2D data; in the ConvLSTM algorithm, the traditional
LSTM multiplication operation is transformed into convolution operation; it can directly
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operate on 2D data. In the final output, the SWH forecast can be directly output from the
2D map.
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Figure 2. The overall structure of the SWH prediction model in the SCS.

In this study, three different SWH prediction models for the SCS were established
using SWH, U*, Φ, and θ as the training and input data, respectively. Model A was built
as a univariate SWH prediction model using only SWH as training and input data. The
effect of two parameters, training dataset size and input data time span, on the forecast-
ing effect of Model A was explored through 20 sets of sensitivity experiments. In these
20 experiments, the input data time span was chosen to be 2, 3, 4, and 5 h, and the training
dataset size was opted to be 1, 2, 3, 4, and 5 years, respectively. The time span and training
dataset size of the optimal input data were determined by analyzing and evaluating the
error indices of twenty sets of experiments. In addition, wind speed and wind direction are
also important physical factors affecting SWH. In order to further improve the accuracy
of the prediction model, multi-variable input data were used to forecast SWH based on
the Model A parameter settings. Model B was designed using SWH and U* as input data,
and Model C was constructed using SWH, U*, Φ, and θ as input data. The three models
developed in this study are as follows:

Model A:
HT+N

p = f (H T
w, HT−1

w , HT−2
w ) (8)

Model B:
HT+N

p = f (H T
w, HT−1

w , HT−2
w , UT

∗ , UT−1
∗ , UT−2

∗ ) (9)

Model C:
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HT+N
p = f (H T

w, HT−1
w , HT−2

w , UT
∗ cos (Φ T − θT), UT−1

∗ cos (Φ T − 1 − θT), UT−2
∗ cos (Φ T − 2 − θT)) (10)

where T is a certain moment, T + N is the moment when the SWH needs to be predicted,
Hp denotes the SWH predicted by the model, Hw denotes the SWH from WWIII.

2.4. Model Quality Assessment Methods

To quantify the accuracy of the SWH prediction model, model quality was assessed
using root mean square error (RMSE), correlation coefficient (CC), and mean absolute
percentage error (MAPE), with expressions as shown in Equations (11) to (13).

RMSE =

√
1
M∑M

i=1 (H p − Hw)2 (11)

CC =
1
M ∑M

i=1((Hp − Hp)(Hw − Hw))√
1
M ∑M

i=1(Hp − Hp)2·
√

1
M ∑M

i=1(Hw − Hw)2
(12)

MAPE =
1
M∑M

i=1

∣∣Hp − Hw
∣∣

Hw
× 100% (13)

where M is the total number of cases, Hp represents the predicted SWH, Hw represents the
SWH from WWIII, Hw represents the average of WWIII, and Hp represents the average
of the predicted SWH. Since the CFOSAT data have spatial and temporal discontinuities,
therefore, in the training and test sets of the SWH prediction model, the SWH of WWIII,
which was validated by CFOSAT data, was used in this study to calculate the RMSE, MAPE,
and CC of the predicted data.

To evaluate the discrepancy in the prediction performance of different models, in
Equation (14), the assessment skill used by Ji et al. [49] with corresponding changes based
on this study was used to assess the numerical differences in the error indices among
the models.

Skill a b
index =

| E m a
index − E m b

index |
E m a

index
× 100% (14)

where E m a
index and E m b

index denote the values of the error indices of model a and model b,
respectively, and “index” denotes the different error indices of the models, including RMSE,
CC, and MAPE.

3. Results and Discussion
3.1. Validation of SWH from WWIII

The SWH from WWIII from PacIOOS was evaluated by the SWH from satellite.
Li et al. [46] demonstrated that CFOSAT can provide high-precision SWH. Thus, the study
used CFOSAT SWIM SWH to calculate the SWH from WWIII for CC and RMSE (Figure 3b).
Altogether, 170 CFOSAT tracks of SWH data in 2020 (Figure 3a) were collected in the study
to evaluate the SWH data of the training set in 2020. Compared with the CFOSAT SWIM
SWH, the CC of SWH from WWIII is 0.9586 and the RMSE is 0.3658 m in 2020 (Figure 3b).
Therefore, the precision of the SWH from WWIII is within a certain extent that is acceptable
and can be used as the training data for the SWH prediction model.
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Figure 3. CFOSAT SWIM SWH was for verification of the SWH precision for the WWIII in 2020.

3.2. Model A Sensitivity Experiments

Model A was built using only SWH as training and input data for the SWH prediction
model in the SCS. In the process of establishing Model A, because the training dataset
size and the input data time span were critical parameters affecting the performance of
the forecast model, the effects of these two parameters on the forecasting effectiveness of
Model A were explored through 20 sensitivity experiments. The time range of the training
set chosen for the experiments was from 2016 to 2020, and the time range of the validation
set was from January to October 2021. The RMSE and CC were used in these experiments
to assess the performance differences between different experimental models. Figure 4
shows the RMSE and CC results of SWH forecasting at 3-, 6-, 12-, and 24-h for the twenty
sets of experiments, respectively.

For a fixed input data time span, each row in Figure 4 shows the relationship between
the experimental model’s RMSE, CC, and the training dataset size. As the training dataset
size increases, the experimental model has the characteristics that the RMSE decreases
at first and increases after, and CC ascends and then diminishes. At a specific training
dataset size, each column in Figure 4 shows the relationship between the RMSE, CC, and
the experimental model’s input data time span. As the input data time span increases, the
RMSE of the experimental model first decreases and then increases, and CC first ascends
and then diminishes.

With a constant training dataset size, the model with a time span of 3 h had the smallest
RMSE and the highest CC in the 3- (Figure 4a,b), 12- (Figure 4e,f), and 24-h (Figure 4g,h)
SWH forecasting; the model with a time span of 3 or 4 h had the smallest RMSE and
the largest CC in the 6-h (Figure 4c,d) SWH forecasting. When the input data time span
was 2 h, the forecasting accuracy was low due to the small amount of wave data. As the
time span rises, the CC of the model gradually increases, and RMSE decreases by degrees.
However, when the input data time span was too large, the precision of model did not
further improve due to the data’s redundancy. For the experiments with a determined time
span of input data, the experimental model with a training dataset size of 3 years had the
smallest RMSE and the highest CC for SWH forecasting of 3- (Figure 4a,b), 6- (Figure 4c,d),
and 24-h (Figure 4g,h); for SWH forecasting of 12-h (Figure 4e,f), the experimental model
with a training dataset size of 3 or 4 years had the lowest RMSE and the largest CC. As
training dataset size increases, the CC of the model gradually advances, and the RMSE
decreases by degrees. However, after the training dataset size was greater than 3 years, the
increase in model accuracy was not apparent, but the model consumed significantly more
computer resources.
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3-, 6-, 12- and 24-h, compared with other experimental models, the model at this moment
predicted SWH with not only the smallest RMSE but also the largest CC when the input
data time span was 3 h and the training dataset size was 3 years. The RMSE of the model
were 0.108 m, 0.176 m, 0.282 m, and 0.421 m, and CC were 0.980, 0.944, 0.881, and 0.794,
respectively. These parameters were the optimal prediction model parameters. Therefore,
the same parameter settings were adopted in Model B and C.

3.3. Model Comparison and Analysis

Model A, B, and C were used to predict SWH at 3-, 6-, 12-, 24-, and 36-h in the SCS. In
order to compare the performance of the models, the error statistics of the three models
were calculated, and the root mean square error (RMSE), correlation coefficient (CC), and
mean absolute percentage error (MAPE) were calculated, respectively. Figure 5 shows
the error indices variation curves for the three models for 3-, 6-, 12-, 24-, and 36-h SWH
forecasting on the test set. The blue dashed line, orange dashed line, and red dashed line
represent Model A, B, and C, respectively. As shown in the figure, the RMSE (Figure 5a) and
MAPE (Figure 5c) of the prediction model gradually increase and CC (Figure 5b) gradually
decreases as the forecasting time increases from 3-h to 36-h. This was consistent with the
theory and the expected result. Meanwhile, as shown in Figure 5, for the 3-h SWH forecast,
the RMSE and MAPE of Model A, B, and C were fewer and the CC between the predicted
SWH and the SWH from WWIII was large. For a fixed forecast time, the RMSE and MAPE
of Model B were less than those of Model A, and the CC of Model B was larger than that
of Model A. This was because the accuracy of the models depends not only on the wave
parameters but also on the previous wind speed. Model C outperforms Model B for the
3-, 6-, and 12-h SWH forecasts, but for the 24-h SWH forecast, the differences in RMSE,
MAPE, and CC between Model C and Model B were very small. Particularly, the RMSE of
Model C was rather slightly larger than Model B for the 36-h forecast. The result means
that for lengthy forecasts (36 h or more), wind and wave directions had a very weak impact
on forecast performance. It may even cause a reduction in forecast accuracy due to data
redundancy. In addition, as shown in Figure 5b, the CC of Model B and Model C were
greater than 0.8 for the 24-h SWH forecast (0.817 and 0.815, respectively), and the forecast
results were considered to be significantly correlated with the true values at this time.
Therefore, for our study, we focused on the SWH forecast results over a 24-h time period.
The comprehensive assessment showed that for SWH prediction within 24 h, Model C
outperforms other models in terms of integrated predictive capability.
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In order to further quantify the impact of multi-element training and input data on
model performance, evaluations of the changes in RMSE, CC, and MAPE from Model
A to Model B to Model C were performed. The statistical analysis of the Skill A B

index and
Skill A C

index was completed in Table 2 based on the error indices of each model in Figure 5 and
Equation (14). According to the results in Table 2, for the 3-h SWH forecast, both Skill A B

index
and Skill A C

index were relatively small and gradually increased with the increase in forecasting
time. Both Skill A B

index and Skill A C
index were larger for the 6- and 12-h SWH forecast. However,

the discrepancies between Skill A B
index and Skill A C

index were not significant for the 24-h SWH
forecast. When the forecast time was relatively longer (6- and 12-h), the results of Model A
were less accurate compared with the results of Model B and C. When the forecast time
was too long (24-h) or too short (3-h), the input of multiple elements did not significantly
improve the forecast performance. This was because the correlation between wave height
and previous wave/wind characteristics became lower at longer forecast times [37]. The
Skill A C

index was greater than Skill A B
index with respect to a fixed forecasting time.

Table 2. Error indices improvement (Skill) of Model B and Model C relative to Model A.

Forecast Time Skill 3-h 6-h 12-h 24-h

RMSE
Skill A B

RMSE (%) 15.7 15.9 16.7 17.6

Skill A C
RMSE (%) 19.4 18.8 19.9 19.0

CC
Skill A B

CC (%) 0.82 1.80 2.72 2.90

Skill A C
CC (%) 1.02 2.54 3.63 2.65

MAPE
Skill A B

MAPE (%) 3.40 7.19 8.46 12.2

Skill A C
MAPE (%) 3.84 10.5 13.2 14.8

3.4. Spatial Distribution and Statistical Analysis of Model Errors

To evaluate the spatio-temporal distribution characteristics of the model errors of
SWH forecasts in the SCS, Figure 6 shows the spatial distribution results of the monthly
mean RMSE of Model A, B, and C in the 24-h SWH forecast from January to October 2021.
The RMSE and spatial locations of all three SCS SWH forecast models were significantly
correlated, with smaller RMSE in the deep-sea region away from the coast yet larger RMSE
in the shallow-water region along the coast. This was because wind–wave relationships
in the nearshore shallow water area are uncertain due to irregular shoreline shapes and
seafloor conditions, while the interaction of ocean hydrodynamics and coastal morphology
leads to complex relationships between wind and waves [47]. In addition, the RMSE
of the prediction models was relatively larger in the eastern and southeastern parts of
the SCS, which might be due to multiple reasons. SWH from WWIII was used as the
training data, and the error of the prediction results was affected by the accuracy of the
original data. Meanwhile, the frequent typhoon events in the sea near the Luzon Strait [5,6]
cause irregular and drastic changes in SWH in the nearby ocean. It is difficult for the
prediction model to obtain information on the spatial and temporal characteristics of SWH.
In addition, many islands are in the eastern and southeastern parts of the SCS, resulting
in spatial incoherence of wave data. The lack of data information may also be the reason
for this phenomenon. Moreover, the monthly mean RMSE of the SWH prediction model
had monthly variations. The prediction model had the smallest RMSE for May–August
2021, followed by the results for January–March 2021, and the worst forecasting for April,
September, and October 2021 with the largest RMSE.
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Figure 6. Spatial distribution of monthly mean RMSE of Model A, B, and C in the 24-h SWH
forecasting results. (a–j) January to October 2021, respectively.

In order to quantitatively evaluate the magnitude of the monthly mean RMSE of
Model A, B, and C in the 24-h SCS SWH forecast, the results of the spatial distribution of
RMSE in Figure 6 were statistically analyzed, and boxplots of RMSE statistics were plotted
(Figure 7). As shown in Figure 7, each subplot’s blue, red, and orange boxes indicate the
RMSE statistics of Model A, B, and C. From Model A to Model B to Model C, the median
and third quartile of the models were decreasing, and it can be observed that in most
months, the median and third quartile of Model C were the minimum. Model C had the
best forecasting ability. Meanwhile, the RMSE of the prediction model had the most outliers
in April and September 2021 (Figure 7d,i), indicating that the RMSE of the model had more
exception value in these two months.
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3.5. Model Performance in Extreme Weather

Figures 6 and 7 show that the prediction model had maximum values and more outliers
for the RMSE results in April, September, and October 2021. Based on the information on
generated or transiting typhoons and tropical storms for April, September, and October
2021 in the SCS waters in Table 1, the spatial distribution characteristics of the RMSE
of the prediction model under extreme weather conditions were analyzed. For April,
September, and October 2021, the spatial distribution of the RMSE of the prediction model
was calculated by dividing each month into two periods with typhoon transit and no
typhoon transit, respectively. Figure 8 shows the spatial distribution of RMSE in the 24-h
SWH forecast for the three months mentioned above. The left and right plots in each subplot
indicate the presence and absence of typhoon transit, respectively, where the solid line in
the left plot indicates the typhoon path in that month. The solid black line in Figure 8a
is the path of Typhoon 2102 “Surigae”. The solid red, black and blue lines in Figure 8b
are the paths of Typhoon 2113 “Conson”, Typhoon 2114 “Chanthu” and Typhoon 2115
“Dianmu”, respectively. The solid red and black lines in Figure 8c are the paths of Typhoon
2117 “Lionrock” and Typhoon 2118 “Kompasu”, respectively.

As shown in Figure 8, there is a close spatial correlation between the spatial distribution
of RMSE during the occurrence of typhoons and the path of typhoons in each month, and
the RMSE of the prediction models is small during the periods when there is no typhoon
transit. This is consistent with the findings in Figure 8 that wind resistance coefficients in
extreme conditions were very different from those in weak wind conditions, which may
alter the relationship between wind and waves and, thus, reduce the accuracy of predicting
extreme events [50]. Meanwhile, the RMSE changes between the three models with and
without typhoon transit were compared separately. In the period with typhoon transit, the
RMSE of Model B and C, constructed by adding wind field data to the input data, decreased
significantly compared to Model A’s. The RMSE changes in Model B and C compared to
those in Model A in the period without typhoon transit were insignificant.
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In order to quantitatively analyze this feature, according to Equation (14), the Skill A B
RMSE

and Skill A C
RMSE of typhoon transit or no typhoon transit were statistically analyzed in

Figure 9. The left and right histograms in each subplot denote the presence and absence
of typhoon transit, respectively, and the blue and red histograms indicate Skill A B

RMSE, and
Skill A C

RMSE, respectively. As shown in Figure 9, the Skill A B
RMSE and Skill A C

RMSE for each month
of the typhoon transit period in April, September, and October 2021, with extreme weather
occurrences, were greater than that for the period without typhoon transit. It indicates
that the quality of the prediction models and the wind field were more correlated in the
period with extreme weather occurrences. At the same time, the Skill A C

RMSE was bigger than
the Skill A B

RMSE.
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In order to quantify this feature more coherently, the Skill A B
RMSE and Skill A C

RMSE for
typhoon transit or no typhoon transit in April, September, and October 2021 were calculated
in Table 3. As shown in Table 3, the best performance for Model C was constructed using
SWH, wind shear velocity, wind direction, and wave direction data.

Table 3. Mean of Skill A B
RMSE and Skill A C

RMSE for typhoon transit or no typhoon transit in April,
September, and October 2021.

Periods Skill A B
RMSE (%) Skill A C

RMSE (%)

Typhoon transit 21.7 27.5
No typhoon transit 14.1 19.3

For validation of the accuracy of Model C in the 24-h SWH forecasting and further
comparison of the accuracy characteristics of the model during typhoon transit and no
typhoon transit, we obtained CFOSAT SWIM SWH data products provided by AVISO+. As
shown in Figure 8, typhoons had the largest impact in the SCS in October 2021. Therefore,
we selected 22 tracks of CFOSAT SWIM SWH data that passed through SCS in October
2021, including 8 tracks during the typhoon (Figure 10a) and 14 tracks during no typhoon
transit period (Figure 10b).
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Figure 10. CFOSAT tracks typhoon transit and no typhoon transit of SCS in October 2021.

The SWH from WWIII and Model C SWH were interpolated to the coordinates corre-
sponding to the tracks data by the nearest neighbor method. The quality of the original
SWH from WWIII data during typhoon and no typhoon were analyzed first (Figure 11a,b).
Subsequently, we analyzed the accuracy characteristics of Model C in the 24-h SWH fore-
casting during typhoon transit and no typhoon transit period by correlation and error
analysis (Figure 11c,d). During typhoon transit, the CC of SWH from WWIII relative to
CFOSAT SWIM SWH was 0.8894 and the RMSE was 0.6555 m (Figure 11a); during no
typhoon transit, the CC of SWH from WWIII relative to CFOSAT SWIM SWH was 0.9643
and the RMSE was 0.2657 m (Figure 11b). In the 24-h SWH forecasting, the CC of Model C
SWH relative to CFOSAT SWIM SWH was 0.7895 and RMSE was 0.9393 m during typhoon
transit (Figure 11c); during no typhoon transit, the CC of Model C SWH relative to CFOSAT
SWIM SWH was 0.8719 and RMSE was 0.4993 m (Figure 11d).

In summary, the prediction precision of Model C during typhoon transit was not
as accurate as that during no typhoon transit for the 24-h SWH forecasting. There were
probably two reasons. One was that the accuracy of SWH from WWIII during typhoon
transit is comparatively less, and the input data influenced the accuracy of Model C
forecasting SWH. Another reason was that during the no typhoon transit period, it was
more difficult for Model C to encompass the characteristic patterns of the wave and wind
fields during the drastic changes, which then contributed to the decrease of the predicted
SWH accuracy.
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Figure 11. SWH accuracy of WWIII and Model C in comparison to CFOSAT SWIM SWH.
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(c) Correlation between Model C SWH and CFOSAT SWIM SWH during typhoon transit; (d) Correla-
tion between Model C SWH and CFOSAT SWIM SWH during no typhoon transit.

4. Conclusions

In this study, in order to explore the role of discrepancy input elements in the ConvL-
STM algorithm-based SWH prediction in the South China Sea, three different prediction
models were developed using SWH, wind shear velocity (U*), wind direction (Φ), and wave
direction (θ) as input data. Model A was constructed using single-element (SWH) training
and input data. The two important parameters of input data time span and training dataset
size were determined by sensitivity experiments. To further improve the performance of
the SWH forecasting model, Model B and C were constructed using multi-element training
and input data. Model B used SWH and U* data to predict SWH, and Model C added wind
and wave direction data to the input data of Model B. Subsequently, the spatial distribution
characteristics and differences of the forecast results of the three models were analyzed, and
the forecast characteristics and discrepancies of the three models under extreme climate
were discussed.

The main innovation of this paper was to consider the influence of various physical
factors on the prediction model in the prediction of 2-dimensional SWH field. The effect
of wind forcing on SWH was quantified using wind shear velocity instead of wind speed,
especially the use of cos (Φ − θ) to quantify the influence of the difference between wind
and wave directions for the SWH. Moreover, the relationship between the prediction model
performance and the typhoon tracks was explored.

The most significant findings of this study are as follows: It is feasible to apply the
ConvLSTM algorithm to the forecast of SWH in the South China Sea, which can provide an
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efficient and high-precision forecast of SWH. When using only the SWH data as input data
to predict the SWH in the South China Sea, the optimal training dataset size for the model
was 3 years, and the optimal input data time step was 3 h. Model C, in which the SWH, U*,
and cos (Φ − θ) were conducted as input data, outperformed other models. For the 3-h
SWH forecasting, the correlation between the forecasting results and the wind field was
not significant. For the 6- and 12-h SWH forecast, the Skill A C

RMSE gradually increased when
U* and cos (Φ − θ) were added to the input data. However, the discrepancies between
Skill A B

index and Skill A C
index were not significant for the 24-h SWH forecast.

The RMSE of the SWH prediction models had spatial distribution characteristics, and
the RMSE of the models was smaller in the deep-water region far from the shore. However,
the RMSE of the models was larger in the shallow water region along the coast. The RMSE
of the SWH prediction models and the extreme climate were spatially and temporally
correlated, and the RMSE of the models was larger in the vicinity of the typhoon path
during the period of typhoon occurrence. In addition, Skill A C

RMSE was 27.5% for the period
of typhoon transit and 19.3% for the period of no typhoon transit, which implies that the
correlation between SWH and the previous U*, Φ, and θ was greater during the period of
typhoon transit. As the training data show larger error during the period of typhoon transit
than that without typhoon, Model C also showed a similar performance in forecasting error
as SWH from WWIII.

There were several potential points for improvement in this study. When using multi-
element training and input data, the optimal input data time span and training dataset
size for Model B and C probably differ from the parameter values that were identified in
Model A. This would necessitate further discussion in subsequent work. In addition, the
achievement of this study was limited to the SWH prediction, and more diverse physical
elements can be added as training and input data in the subsequent work to achieve multi-
element prediction, such as simultaneous prediction of wave direction and average wave
period, etc.
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