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Abstract: Synthetic aperture radar (SAR) is a sensor that is proven to have great potential in observ-
ing atmospheric and oceanic phenomena at high-spatial resolutions (∼10 m). The statistics of SAR
backscattering that describe the image characteristics are essential to help interpret the properties of the
geophysical processes. In this study, we took advantage of a hand-labeled database of ten commonly
observed geophysical processes created based on the Sentinel-1 wave mode vignettes to document the
SAR backscattering statistics. The probability density function (PDF), normalized variance, skewness,
and kurtosis were investigated among the ten labeled categories. We found that the NRCS PDFs
differ between types, implying the influences of these large-scale features on the radar backscattering
distribution. The statistical parameters exhibited distinct variations among classes at the two incidence
angles of 23.5◦ and 36.5◦. In particular, the normalized variance of low wind area at 23.5◦ exceeded
other phenomena by an order of magnitude. This lays the basis for directly identifying the SAR images
of low wind areas in terms of this parameter. Sea ice and rain cells at 36.5◦ span within a similar range
of kurtosis values, much higher than the other groups. While sea ice could be excluded using a latitude
threshold, the rain cells are readily detected. The global percentage map of directly identified rain cells
is consistent with the deep-learning results but with higher efficiency. The influence of these large-scale
atmospheric and oceanic features on radar backscattering statistics must be considered in the future
wave retrieval algorithm for improved accuracy.

Keywords: Sentinel-1 wave mode; labeled ten geophysical phenomena; normalized radar cross-section
statistics

1. Introduction

The atmosphere and ocean composed of numerous processes at different scales (from
thousands of kilometers to meters) are two significant systems regulating the Earth’s
weather and climate. Comprehensive measurements are essential to help understand the
physics of these processes. In-situ observations, despite their high accuracy, are mostly
limited to fixed locations, and are, thus, not suitable for extended spatial coverage. By com-
parison, spaceborne remote sensing is advantageous in observing atmospheric and oceanic
phenomena given its wide coverage across the globe [1]. Among the various satellite sen-
sors, spaceborne synthetic aperture radar (SAR) is now one of the most advanced sensors
used to observe sea surface features at high spatial resolution (∼10 m). In addition to the
commonly observed ocean waves, the phenomena at the km-scale, such as the atmospheric
wind streaks, cells, fronts, rivers, etc., are also frequently visible on SAR images [2–9].
In addition to that, SAR is able to acquire observations under all weather conditions during
the day and night, making it significant to examine the various geophysical phenomena.

SAR is an active microwave radar and its signal is often characterized by the normal-
ized radar cross-section (NRCS and σ0 used interchangeably hereinafter). The radar return
represents the incident energy backscattered to the sensor by the Bragg waves associated
with the wind-generated short waves at comparable scales with the radar waves [10].
In reality, long ocean waves are always present on the sea surface, further modulating the
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Bragg waves. Such superimpositions of long and Bragg waves lead to the complicated
SAR imaging mechanism that includes real aperture radar (RAR) modulation and velocity
bunching [11]. The former is composed of tilt modulation (related to the local incidence
angle change by the surface slope) and hydrodynamic modulation (long and short wave
interaction). The latter is unique to a SAR system, induced by the orbital velocity of the
long waves. The modulation acts as a redistribution of the surface backscatter, resulting in
a variety of NRCS probability density functions (PDFs). Many models have been proposed
to describe the NRCS statistics, including Rayleigh, K, Weibull, log-normal and general-
ized Gamma distribution, among others [12–16]. The shape parameters are found to vary
with the wind speed [17], implying the variety of NRCS distribution under different sea
state conditions.

Statistical parameters derived from the moments of SAR NRCS have also been investi-
gated to represent the image properties. The mean and standard deviations, corresponding
to the first and second orders of NRCS statistics, are the two mostly explored variables.
The average NRCS is usually used to estimate the local wind speed over SAR illuminated
scene in terms of the empirical geophysical model function (GMF). A GMF relates the NRCS
magnitude to the radar configuration (frequency and incidence angle) as well as the surface
wind vectors (speed and direction) [18]. Given the differing levels of radar backscatter,
each radar band has its specific GMFs. Among these, the C-band model (CMOD) family is
possibly the most popular, originally designated for the C-band scatterometer and later
applied to SAR applications as well [19]. Since a SAR has only one antenna and cannot
independently resolve the wind direction, an external wind direction is often needed from
either collocated observations or model outputs. With the external wind direction, SAR-
derived wind speeds have been validated with high accuracy [18,20,21]. Independent wind
retrieval has been proposed based on the fully polarimetric SAR measurements [22] and/or
introducing the Doppler information in addition to the NRCS [23]. The combination of
mean and std, namely, the normalized variance (Nvar) has contributed to the direct esti-
mate of SWH rather than from the inversed wave spectra. Nvar characterizes the relative
contrast of radar return over a SAR scene. This parameter is closely related to the local
wind conditions as well, exhibiting a monotonic increase [24]. By comparison, the higher
order moments variates, such as skewness and kurtosis are less explored. Skewness reflects
the asymmetry degree of the NRCS PDF of its mean value. Kurtosis measures the tail
length of the NRCS PDF, in other words, the existence of larger radar returns within a SAR
scene. Evidence has been found for the departure of kurtosis versus skewness relation from
the Rayleigh distribution, implying the contribution from non-Bragg scattering to the radar
return [24].

SAR has been shown to have great potential in the examination of many geophysical
processes, including both oceanic and atmospheric features [4,7,25]. These phenomena are
imaged due to their modulations on the sea surface roughness. For instance, rain cells are
often visible on SAR images as circular features with bright outer edges associated with the
squall lines. The inner core appears bright or dark depending on the radar frequencies and
the rain rate [26]. For C-band SAR, NRCS is found to increase relative to the rain rate for a
given sea state and decrease with the sea state [27]. The bright backscattering from rain cells
renders the wind retrieval toward a larger wind speed. Another feature captured by SAR
images, the low wind area, also has a significant influence on the wind speed inversion, but to
the lower end of the realistic conditions [18]. The low wind area, depicted as a dark patch on
SAR imagery, is difficult to discern from the crude oil spill of a similar pattern. These widely
observed features are mostly investigated in terms of the averaged NRCS, while their impacts
on the NRCS distribution or other statistical parameters have not been addressed in detail.
In this study, we took advantage of the recently hand-labeled SAR database of ten common
geophysical phenomena on SAR images to explore the NRCS statistics, including the NRCS
PDF, Nvar, skewness, and kurtosis. The SAR data set is visually selected from the Sentinel-1
wave mode vignettes, composed of two incidence angles (23.5◦ and 36.5◦) [25]. The statistical
variables were examined for each phenomenon category and compared between the two
incidence angles. Applications of Nvar and skewness to distinguish the low wind area
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and rain cells are also reported. This paper is organized as follows. Section 2 describes the
database and calculation of the statistical variables. The results are presented in Section 3,
followed by the Summary in Section 4.

2. Data and Method
2.1. TenGeoP-SARwv Data Set

Sentinel-1 (S-1) is a satellite constellation composed of two identical SAR sensors (S-1A
and S-1B), launched in April 2014 and April 2016, respectively. It is designed to operate at
four exclusive imaging modes: extra wide swath (EW), interferometric wide swath (IW),
strip map (SM), and wave mode (WV) [28]. Among these, EW and IW primarily focus on
the coastal regions in pursuit of extended spatial coverage (400 km for EW and 250 km
for IW). To date, SM is seldom activated, only as an experimental mode to sporadically
collect acquisitions across the globe. WV is the default mode over the open ocean, acquiring
small SAR vignettes of 20 km by 20 km at a spatial resolution of 5 m. WV employs a novel
’leapfrog’ acquisition pattern that alternately obtains vignettes every 100 km along the
satellite track at two incidence angles: 23.5◦ for WV1 and 36.5◦ for WV2. The two images
at the same incidence angle are 200 km apart. This radar configuration allows examining
the SAR imaging sensitivity of the sea surface in terms of incidence angles. Thanks to
the powerful sensor hardware, WV is able to continuously collect images across the open
ocean, accumulating about 60,000 vignettes per satellite per month. This vast SAR data
set is invaluable to atmospheric and oceanographic studies in many aspects. For instance,
the push role of ocean waves to sea ice in the Antarctic Ocean has been investigated using
S-1 WV acquisitions [29]. A global map of the oil slicks and their sources are examined
based on a detailed inventory of more than 560,000 S-1 images [30].

With the drastically increasing volume of S-1 acquisitions, human selections of SAR
images of particular features are time-consuming and impractical to extend such studies
at the global scale. Automatic data screening has become the primary task to proceed
with. Given the significant progress achieved in computer science, the deep learning neural
network is now feasible to classify big data. In essence, the neural network is a supervised
learning and classification model, which requires a labeled data set as input. To this end,
a dedicated S-1 WV database (consisting of 10 commonly observed atmospheric and oceanic
phenomena) was established by hand-labeling more than 13,000 images in 2016 [25]. This
data set is named TenGeoP-SARwv, representing ten geophysical phenomena frequently
visible by S-1 wave mode. It is publicly available at sea scientific open data publication
(SEANOE) via http://www.seanoe.org/data/00456/56796/ (accessed on 10 July 2022). Ten
kinds of signatures are included and their short symbols are listed in Table 1 for simplicity
in the subsequent analyses. For details on labeling criteria, refer to [25]. Note that only the
prevalent signature is tagged on SAR imagery, despite the co-existence of multiple features
in some cases. The labeled phenomenon must be homogeneous with clear contrast relative
to the background, such as the rain cell and oceanic front just to name a few. Since this study
focuses on documenting the statistical parameters among various geophysical phenomena,
this data set could not be directly used because all SAR images were recalibrated to sea
surface roughness and downsampled to a coarser spatial resolution. Instead, we made use
of the original SAR NRCS imagery along with the image tag for each SAR vignette.

All the TenGeoP–SARwv images were obtained at vertically transmitted and vertically
received (VV) polarizations and at two incidence angles. Spatial locations of WV1 and WV2
are, respectively, presented in Figure 1a,b to illustrate their global distributions. As shown,
the labeled SAR vignettes cover most of the open oceans for both WV1 and WV2. One
exception is observed off the European continent in the North Atlantic Ocean, where fewer
WV vignettes were collected due to the priority of IW imaging mode for coastal studies.
No WV data were acquired proximate to the Arctic Ocean for a similar reason, resulting in
the fact that all sea ice cases were scattered around the Antarctic. The number of labeled
SAR images per class at the two incidence angles is given at the bottom panel of Figure 1,
correspondingly, which presents the uneven distribution of data counts among classes.
For WV1, pure ocean swell (denoted by ‘F’) was the most popular class with more than
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4000 cases in comparison to the iceberg (‘L’) of the least count. This was expected since WV1
at 23.5◦ was more favorable to capture the surface waves due to the strong tilt modulation
imaging mechanism. The wind streaks (‘G’) and micro-convective cells (‘H’) had 350 and
180 images, less than other classes. It is worth noting that the visibility of one geophysical
phenomenon in SAR images relied much on its modulations to the sea surface roughness.
As such, the imprint of wind streaks or cells was more easily submerged by the higher
backscattered radar signals at WV1, particularly when the phenomenon modulations were
weak. This is contrary to the performance of WV2 at 36.5◦, which was more sensitive to
the sea surface roughness changes. Such sensitivity led to more counts of wind streaks
and cells as well as other atmospheric features manifested by WV2, compared to the pure
ocean swell, as in Figure 1d. The number of pure ocean swells was less than 500 vignettes,
due to the fact that one or more geophysical signatures often co-existed on most of these
WV2 images. TenGeoP–SARwv took the prevalent feature as the tag and multiple labeling
were not implemented at this stage. In other words, the pure ocean swell was usually
overlapped with another kind of phenomenon but was less dominant. Despite the data
count not being uniformly distributed across classes, the number of labeled images was
readily sufficient for the deep learning classification, as demonstrated in [31].

Table 1. Ten labeled phenomena and their short symbols in this study.

Phenomenon Symbol Phenomenon Symbol

Pure ocean swell F Wind streaks G

Micro-convective cells H Rain cells I

Biological slicks J Sea ice K

Iceberg L Low wind area M

Atmospheric front N Oceanic front O

Figure 1. Global distribution of the TenGeoP–SARwv data set for all classes at (a) WV1 and (b) WV2.
Individual data counts of labeled SAR images for each class at (c) WV1 and (d) WV2. Symbols
corresponding to each class are referred to in Table 1.

2.2. Parameter Calculation

For S-1 WV, there are usually 5000 by 5000 px along the radar range and azimuth
directions over one SAR vignette. The mean and standard deviations of NRCS are the
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two parameters mostly used to describe the image statistics. From a statistical point of
view, they represent the first- and second-order moments of the radar return, respectively.
The combination of these two variables, known as the normalized variance (Nvar), is
defined by

Nvar =
σ2

µ2 (1)

where σ denotes the standard deviation of NRCS and µ is the mean. Figure 2a presents
the Nvar distribution calculated at the original pixel spacing for both WV1 and WV2. It
is clear that the Nvar PDF was distinct between these two incidence angles, with WV1
spanning a wider extent than WV2. WV1 Nvar was quasi-uniformly distributed in the
range of [1.4, 2.0] with a mean of 1.81, while WV2 Nvar was tightly concentrated around 1.2.
Such a difference implies that the NRCS variability extent (relative to the mean) was more
consistent for WV2 than WV1. Yet, it should be noted that σ (over one imagery) varied with
the spatial resolution. When the pixel resolution became coarser (increasing the number
of averaged pixels), the Nvar constantly decreased for both WV1 and WV2. This Nvar
variation with the number of averaged pixels is illustrated in Figure 2b. The change was in
a logarithmic order as depicted by the regression curves. Since we tend to document the
influences of the large-scale features on these NRSC statistical parameters, all SAR images
were processed by an averaging box that moved every 10 px. This resulted in a 10th value
roughly of the Nvar at the original resolution. This downsampling procedure is adopted in
the subsequent analyses unless otherwise stated.

Figure 2. (a) PDF of Nvar at the original pixel resolution. (b) Variation of Nvar relative to the number
of averaged pixels. The scatter was calculated based on a SAR case example; the curves are the
regression lines with the mathematical format annotated in the plot.

The higher-order moments of radar returns are also very useful to describe the NRCS
characteristics in addition to the mean and standard deviations. The NRCS PDF is expected
to follow a Rayleigh distribution based on theories; however, in reality, very few SAR
images show this distribution. It is partially attributed to the contribution of non-Bragg
scattering associated with the surface wave breaking [24]. There is a need to describe the
higher-order NRCS features, and skewness and kurtosis are practical to such an end. They
are defined as

skewness =
m3c

σ3 (2)

and
kurtosis =

m4c

σ4 (3)

where mic is the ith-order centered moment and σ is the standard deviation. In terms of the
statistics theory, skewness measures the degree of asymmetry of the NRCS PDF relative to
its mean value. The NRCS PDF roughly tends to exhibit a long tail on the right side of the
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mean value, corresponding to a positive skewness. SAR cases of negative skewness also
exist, particularly at larger incidence angles. Kurtosis is widely employed to describe the
tailedness of a PDF. In other words, a higher kurtosis corresponds to a greater chance of
outliers. Both skewness and kurtosis are simplified yet useful measures of the PDF shape,
without direct examination of the PDF itself per se.

3. Results and Discussions

In this section, the behaviors of the three statistical parameters are presented and
discussed, along with their global distributions. Applications using the selected parameters
(to directly distinguish the class of rain cells and low wind areas) are also demonstrated,
respectively.

3.1. Statistics of TenGeoP–SARwv

Most of the previous studies examined the NRCS PDFs by taking all of the image
features as an ensemble without distinguishing the geophysical phenomena [14,32,33].
NRCS PDFs were distinct between different categories for both WV1 and WV2, as presented
in Figure 3. Taking the pure ocean swell as a reference, given that it was the most basic
feature on the ocean surface, some phenomena were nearly consistent with this reference
while others showed deviations. For WV1 in Figure 3a, the ten phenomena could be divided
into four groups. Among these, the wind streaks, icebergs, and atmospheric fronts showed
similar NRCS distributions compared to the pure ocean swell. Their PDFs covered a wide
range of NRCS values from 0.1 to 0.6 in linear units. Oceanic front and rain cells belonged
to a similar group whose mean NRCS was slightly lower, around 0.15. In comparison
to the swell group, the low backscattering of these two features accounted for a larger
portion. This was expected since the low to medium winds were actually favorable for
SAR imaging of the oceanic front and rain cells while high winds tended to blur these
two phenomena [31]. The third group consisted of micro-convective cells, biological
slicks, and sea ice with their NRCS PDFs shifting toward the smaller values. These three
signatures are often visible as dark patterns on SAR images, which are mostly captured
under relatively low wind conditions. The downdraft associated with the micro-convective
cells suppresses the sea surface roughness, causing low backscattering compared to the
updraft with enhanced surface roughness. For a similar reason, biological slicks of reduced
roughness also exhibit dark features than the surroundings. The fourth group, the low
wind area plotted in the inner axis, was quite different from the other nine phenomena,
whose NRCS PDF showed a monotonic decrease. As defined in [25], the low wind area
covered an extended region of the low radar return, resulting in a drastically high PDF at a
small NRCS.

Figure 3. NRCS PDFs of the ten labeled classes for (a) WV1 and (b) WV2.

Figure 3b shows the average NRCS PDF of the labeled classes for WV2. These
ten classes of WV2 can only be divided into three groups. Six classes, including micro-
convective cells, sea ice, icebergs, atmospheric front, oceanic front, and rain cells, resemble
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the NRCS PDF of the pure ocean swell, with variant PDF widths. In particular, the NRCS
PDFs of the oceanic front and rain cells were much narrower than the others, consistent
with the behavior of WV1. The wind streaks showed larger mean NRCS and wider distri-
butions, possibly due to the higher sensitivity of radar backscattering at 36.5◦ to the surface
roughness modulation by the wind streaks. The other two classes of biological slicks and
low wind areas had similar NRCS PDFs, with lower mean values of around 0.08 in linear
units. It should be pointed out that discrepancy indeed existed between WV1 and WV2
as shown in Figure 3a,b, which might have resulted from the differing surface scattering
mechanisms at these two incidence angles. For WV1 at 23.5◦, specular scattering still made
a significant contribution to the total radar return, while Bragg scattering was prevalent at
WV2. The weaker sensitivity of radar backscattering to the change of surface roughness at
WV1 was also a factor influencing the image representation of these large-scale features.
These reasons might result in a distinct NRCS PDF for a given class.

Though NRCS PDFs specify the range of backscattering values over a SAR scene, they
are not straightforward enough to compare among a vast SAR image data set. Instead,
the statistical parameters (as defined above) are more convenient for demonstrating the
resemblance and differences between classes. Figure 4 shows the box plots of Nvar for both
WV1 and WV2 as well as their global map. Note that Nvar values presented here were
calculated based on the downsampled SAR images rather than at the original resolutions,
leading to much smaller Nvar values than those shown in Figure 2a. WV1 Nvar was
distributed within the range of [0.1, 0.4] for most of the classes. The low wind area at WV1
annotated in the inner axes exhibited the largest extent and its Nvar value was dramatically
higher than the other classes. Such a feature made it feasible to be directly used for
discerning the low wind area, which will be demonstrated later in the next subsection.
In general, the Nvar was more loosely distributed at WV1 than at WV2, implying the
various degree of modulation depths to the radar return by these large-scale phenomena
at smaller incidence angles. For WV2, the Nvar of wind streaks, micro-convective cells,
biological slicks, and the oceanic front were all tightly distributed, while the sea ice spanned
a wider extent. Yet, the ten classes for WV2 were all within a similar range, making it
difficult to distinguish one particular phenomenon, similar to how the low wind area
at WV1 does. The global pattern of Nvar in the bottom panel of Figure 4 is similar
between WV1 and WV2, with a larger magnitude at WV1. As shown, Nvar in the tropics is
relatively higher than in the extratropics. Across the boundary between the trade winds
and westerlies, Nvar reaches the minimum values. Southward of the 60◦ S, where the sea
ice cases are located, the largest Nvar at WV2 was observed, corresponding to the higher
box plot in Figure 4b. The maximum Nvar at WV2 was found in the coastal regions of the
main continents, possibly induced by the low wind area.

The box plot of skewness is plotted in Figure 5 for WV1 and WV2, along with their
global map. For WV1, 99.47% of the SAR cases showed positive skewness, while the nega-
tively skewed SAR images were mostly distributed among sea ice and icebergs. In terms of
the skewness magnitude, the sea ice and low wind area exceeded other classes. Their third
quartile reached up to 3.0, while the others were mostly below 1.5, as in Figure 5a. For WV2,
the positively skewed cases accounted for 97.18%, slightly lower than that of WV1. All ten
classes included cases of negative skewness. Sea ice, rain cells, and the iceberg spanned a
wider range than the other classes with a much higher third quartile. These three classes
consisted of a greater variety of skewness, possibly due to the diverse impacts of these
geophysical processes on the NRCS PDF. The skewness of the other categories showed
relatively tighter distributions within a narrower extent, in other words, their influence on
the NRCS PDF resembled each other. No class stood out compared to the Nvar of the low
wind area for WV1, meaning that this parameter is not suitable for directly distinguishing
one particular phenomenon at WV2. The global map of the skewness shown in the bottom
panel of Figure 5 depicts similar patterns to the Nvar in Figure 4. Higher skewness is
observed in the trade winds and polar regions around the Antarctic, typical of locations of
the rain cells and sea ice.
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Figure 4. (Top) box plot of Nvar for the ten labeled classes at (a) WV1 and (b) WV2. (Bottom) global
map of the labeled Nvar at (c) WV1 and (d) WV2.

Figure 5. The same as in Figure 4 but for the skewness.

Kurtosis, similar to skewness, describes the shape of a PDF by characterizing the
tailedness of the NRCS distribution. Higher kurtosis corresponds to a greater proportion of
outliers relative to its mean NRCS. Figure 6 gives the box plot of kurtosis for each class as
well as the global map. For WV1 in Figure 6a, the kurtosis of most of the classes (except sea
ice and low wind area) was lower than the value of 10. The third quartile was generally
below 5 and the first quartile was around 2, suggesting a tight distribution of kurtosis.
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Such a feature implies that the extremely high backscattering accounts for a very small
portion of these classes. By contrast, kurtosis of the sea ice and low wind area covered
a wider range and exceeded other classes. Bright NRCS not only existed on these SAR
images but showed variant signatures from one case to another. Kurtosis of sea ice at WV2
was comparable to that of WV1, spanning a wider range and outnumbering other classes.
A notable difference between WV1 and WV2 is that the kurtosis of rain cells and icebergs
stand out; the low wind area exhibited similar features to the pure ocean swell. WV2 at
36.5◦ is more sensitive to the iceberg visible as bright targets on a SAR scene, inducing
such extremely high kurtosis even compared to the class of sea ice and rain cells. This high
kurtosis of iceberg makes it distinguishable from the rain cells given that the sea ice could
be excluded using the latitude threshold. The global map of kurtosis shown in the bottom
panel of Figure 6 resembles the spatial patterns of both Nvar and skewness. Kurtosis was
generally high south of the 60◦ S due to the sea ice class and over the trade winds due to
the rain cells.

Figure 6. The same as in Figure 4 but for the kurtosis.

3.2. Detection of Rain Cells and Low Wind Area

The three statistical parameters presented above characterize the shapes of NRCS PDFs
over the ten labeled geophysical phenomena. The similarities and dissimilarities among
these ten classes lay the basis for directly using one variable to distinguish a particular
phenomenon. For instance, the Nvar of the low wind area at WV1 exhibited much higher
values compared to the other class, which could be readily used to filter out these cases.
In addition, the kurtosis of rain cells was also notable given the sea ice and iceberg classes
could be excluded by a latitude threshold. Such an application is demonstrated in the
following based on these two variables for rain cells and low wind area detection.

Figure 7a illustrates a SAR image example of rain cells acquired by S-1A WV2. The col-
located European Center for Medium-range Weather Forecast (ECMWF) wind speed was
4.3 m·s−1, under low wind conditions, suitable to image the rain cells. Two areas of interest
marked by the rectangles in colors were selected, one includes the homogeneous signature
of ocean waves and the other is over clear rain cells. The circular feature encircles a bright
patch, induced by the enhanced sea surface roughness associated with the rain droplets.
Note that the dark pattern in the north of the bright feature is possibly due to the damped
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waves by the rain. The NRCS PDF shown in Figure 7b is distinct between the ocean waves
and the rain cells. The curve of the rain cells area had a higher and longer tail at larger
backscattering than the ocean waves. This resulted in a large kurtosis over the entire
SAR scene, despite the relatively low kurtosis over the two individual areas of interest.
Based on this, a simple criterion of kurtosis lying within the range of [15, 55] is employed
to filter out the rain cell cases at WV2. The global percentage map of the detected rain
cells using this criterion is presented in Figure 7c. As expected, the rain bands beside the
equator had a relatively greater chance of capturing the rain cells above 15%, consistent
with the results reported in [31]. It is also worth noting that high wind conditions did not
favor the detection of SAR cases with rain cells. This corresponds to the low detection
percentage in the extratropics of the Southern Hemisphere, where the winds are constantly
high throughout the year.

Figure 7. (a) A SAR NRCS image labeled as rain cells acquired by WV2; (b) the NRCS PDFs over
the area of interest marked by the rectangles in colors as well as the entire SAR image (black curve).
The three statistical parameters are accordingly annotated in the plots. (c) The global percentage map
of the detected rain cells based on the kurtosis criteria for WV2.

Given the distinct feature of Nvar for the low wind area class at WV1 shown in
Figure 4a, it is worthwhile to explore the potential of using Nvar to directly screen these
cases for the dedicated applications. Figure 8 presents a case of the low wind area and the
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global percentage map detected using Nvar criteria. The low wind area is often visible as
an extended dark patch on the SAR image as in Figure 8a. Such a feature is often similar to
the crude oil spill and could be readily discerned with the help of extra information [34].
In this case, low winds co-existed with clear ocean wave signatures in the bottom-left corner
of the SAR image. The NRCS PDFs in Figure 8b evidence the low backscattering over
the low wind area marked by the blue rectangle in Figure 8a. The high contrast of radar
return between ocean waves and low winds caused a relatively higher standard deviation,
further yielding the larger Nvar as annotated. To directly recognize the SAR cases with
low wind area features, a simple Nvar threshold was employed of Nvar, larger than 0.8.
The percentage map at a bin of 2◦ by 2◦ on the global scale is shown in Figure 8c. Low winds
are mostly distributed in the coastal regions, such as southeast Asia and the east coast of
America. Its occurrence on the North Indian Ocean is also notable with a percentage higher
than 5%, which might correspond to the low wind conditions during the dry seasons. In the
extratropics of the Southern Hemisphere, the winds are consistently high, leading to rare
detection of low winds below 0.5%. These filtered low-wind cases could be readily used
for further analyses without the need for complicated classification models.

Figure 8. (a) A SAR NRCS image of a low wind area at WV1; (b) the NRCS PDFs over the area of
interest marked by the rectangles in colors as well as the entire SAR image (black curve). The three
statistical parameters are accordingly annotated in the plots. (c) Global percentage map of the detected
low wind area using the Nvar-based criteria for WV1.
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To demonstrate the practicality of the above-proposed filtering criteria for rain cells
and low-wind area detection, these criteria were systematically applied to the S-1A WV
images acquired between January 2015 and December 2017. In total, there were about
1.5 million SAR vignettes accumulated at two incidence angles. Note that the low wind
area detection was carried out for WV1 at the 23.5◦ incidence, while the rain cells for WV2
were at a 36.5◦ incidence. Figure 9 presents the individual percentage map of the detected
rain cells and low wind area at a bin of 2◦ for both latitude and longitude. One can clearly
see that the spatial patterns of both percentage maps were essentially similar to those of the
maps produced based on the curated data set in Figures 7 and 8. Rain cells in the top panel
were primarily located in the rain bands of the tropics with rare detection in the southern
extratropics. Yet it should be pointed out the detected percentage using the whole SAR
database was smaller than that of the labeled data set. This is due to the fact that the labeling
process tried to equalize the number of SAR images among the ten categories, leading
to the overestimation of the detected percentage. SAR images of rain cells were roughly
overestimated by 5% based on the whole SAR data set. In other words, the hand-labeled
data set was not introduced to certain degree biases in the detected proportion. Most of the
low wind areas were also observed in the tropical Indian Ocean and off Southeast Asia.

Figure 9. Global percentage map of detected SAR images with (a) rain cells and (b) low wind area
based on the above-defined detection criteria using S-1A WV acquisitions from January 2015 to
December 2017.

4. Summary

SAR is recognized as one of the most potential sensors for observations of atmospheric
and oceanic phenomena at the global scale given its high spatial resolution and consistent
data sampling. Thanks to the dramatic progress in satellite hardware, continuous SAR
acquisitions over the open ocean are now feasible, accumulating a huge SAR database to
explore. Ten commonly observed atmospheric and oceanic phenomena have been selected
to construct a hand-labeled data set in [25]. Based on this, statistics of the normalized
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variance, skewness, and kurtosis of these SAR vignettes are analyzed in this paper. Some of
the classes are distinct, for instance, the low wind area shows a much larger Nvar at WV1
and the kurtosis of rain cells exceeds the others. Global patterns of these three statistical
parameters are similar, with high values in the tropics as well as around the Antarctic
where the sea ice is distributed. Direct screening of low winds and rain cells based on
one single parameter is also demonstrated and analyzed with consistent spatial patterns
as shown in the previous studies. Such a test makes it possible to extract these cases
from the vast SAR database using the proposed criteria, which is expected to simplify the
selection process of these two particular phenomena. Results obtained in this study shall
particularly facilitate dedicated efforts on regional or global analyses of low winds and
rain cells. In addition, the impact of these large-scale features on NRCS PDFs is evident,
possibly yielding an influence on the wave retrieval from SAR measurements. Yet the
current SAR wave retrieval algorithm has not taken this aspect into account, which should
be addressed in the future to improve retrieval accuracy.
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