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Abstract: The understanding of the occurrence of extreme waves is crucial to simulate the growth
of waves in coastal regions. Laboratory experiments were performed to study the spatial evolution
of the statistics of group-focused waves that have a relatively broad-banded spectra propagating
from intermediate water depth to shallow regions. Breaking waves with different spectral types,
i.e., spectral bandwidths and wave nonlinearities, were generated in a wave flume using the disper-
sive focusing technique. The non-Gaussian behavior of the considered wave trains was demonstrated
by the means of the skewness and kurtosis parameters estimated from a time series and was com-
pared with the second-order theory. The skewness and kurtosis parameters were found to have
an increasing trend during the focusing process. During both the downstream wave breaking
and defocusing process, the wave train dispersed again and became less steep. As a result, both
skewness and kurtosis almost returned to their initial values. This behavior is clearer for narrower
wave train spectra. Additionally, the learning algorithm multilayer perceptron (MLP) was used to
predict the spatial evolution of kurtosis. The predicted results are in satisfactory agreement with
experimental findings.
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1. Introduction

Extreme waves represent a serious problem in coastal engineering. An accurate
description of the statistics of free surface elevation can improve our understanding of
the propagation of large, steep waves in shallow regions and, consequently, enhance
safety in coastal areas. Bitner [1] was a pioneer in the investigation of the statistics of
irregular waves propagating toward a decreasing depth via field experiments. There are
several mechanisms that can lead to the formation of extreme waves and, subsequently, to
different shapes in the probability of the occurrence of wave heights. These mechanisms
are extensively discussed in [2], while the topic of our paper is restricted to one of the
well-known mechanisms of extreme wave generation, which is dispersive focusing [3-6].
The identification of a wave train, as a freak wave train, is made according to a criterion,
and the one given by [7], who proposed the amplification index, Al = Hyax/Hs > 2, is
adopted in the present study. The parameter H; represents the significant wave height and
Hyyax is the maximum wave height, both calculated from the time series.

Using full-scale data is the best approach to investigating the statistics related to
extreme waves, but the availability of such data is limited, and these data cannot be
used to study the direct effect of changing a specific parameter. Numerical models often
complement and expand laboratory or field studies. Despite the recent advances in the
computational power in CFD models (e.g., Open-source OpenFOAM), simpler models
with more computationally efficient solvers, such as FUNWAVE 2.0 used in [8,9] (based
on Boussinesq approximations), are better suited to gather data from various sea states
propagating in various topographies. Thus, controlled physical tests will complement
findings related to the context of extreme wave formation and might also form a good basis
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for testing numerical models. Wave characteristics in wave flumes have been extensively
studied [10-14]. However, wave properties of extreme waves in shallow waters still require
further verification, since the propagation of steep travelling wave trains include complex
physical processes, such as energy transfer, nonlinear wave-wave interactions and wave
breaking [15,16]. In a Gaussian sea state, the statistics of the free surface elevation can
be described by its mean and variance. When waves propagate in shallow water regions
and coastal areas, the sea state becomes non-Gaussian and nonlinearities are stronger.
Consequently, higher-order moments can be used in order to characterize nonlinear effects.
Third- and fourth-order moments, i.e., skewness A3 and kurtosis A4, are used to measure
the deviation from the Gaussian process [17]. Quantitatively, A3 characterizes the vertical
asymmetry of the wave profile, and A4 reflects the peakedness and the increase in the crest
to trough amplitude.

The two form parameters, skewness and kurtosis, were investigated in several studies
in the case of irregular waves [17-20]. Kashima et al. [20] studied the spatial evolution
of these two parameters in the case of JONSWAP random waves propagating from deep
water to shallow water regions. They showed that there is no link between the skewness
and kurtosis in deep water. However, [21] found that kurtosis depends on the square
of skewness (i.e., Ay = 3+ 3)&%). Bitner-Gregersen and Gramstad [22] proposed a spatial
relationship (a second-order polynomial) between the kurtosis and skewness in the case of
unidirectional JONSWAP deep-water random waves simulated using the Higher-Order
Spectral Method (HOSM). In shallow regions, [20] demonstrated experimentally that there
is a clear link between the two parameters regardless of the incident wave conditions.
When the JONSWAP wave propagates in shallow water regions, both parameters increase
and reach their maximum magnitude just prior to breaking. These results are consistent
with field observations made by [1]. Recently, a similar experimental study was carried out
in [23]. the authors studied the spatial evolution of the two form parameters in the case
of long-crested JONSWAP random waves propagating over a shoal. They found that the
surface elevation has a local minimum of skewness some distance into the down slope of
the lee side of the shoal. However, a local maximum was found some distance inside the
shallower side of the shoal. The authors also demonstrated that the locations of the maxima
of skewness and kurtosis seemingly coincide. Moreover, experimental [24] and numerical
studies [25,26] have investigated the spatial evolution of the skewness and kurtosis in the
case of constant wave steepness (CWS) wave trains( [24]) and obtained qualitatively similar
results to those found in [20,23].

Skewness and kurtosis are of great importance for navigation and coastal applications.
The prediction of these parameters can be obtained numerically [27,28]. However, most of
the existing wave models are used in the open seas (i.e., deep-water locations) and exhibit
a low resolution in the nearshore zone. Considering the rapid advancement in the wave
forecasting field, machine learning (ML) comes into play to offer a wealth of techniques to
extract information from data that can then be translated into knowledge [29-31]. Among
various machine learning algorithms, the Multilayer perceptron (MLP) algorithm [32,33] is
selected in this study for kurtosis forecasting. MLP is a supervised learning algorithm that
provides powerful information processing based on nonlinear regression by optimizing
the squared error. The spatial evolution of the kurtosis parameter is a nonlinear problem;
thus, linear regression is not suitable for this application, and it is for that reason that MLP
was selected. Input datasets of the MLP included wave nonlinearity, abscissa along the
flume and experimental kurtosis values. The framework is based on the Python library
Scikit-Learn version 0.21.3.

2. Materials and Methods

Details of the experiments are presented in [15]. However, for the completeness of this
study, a brief introduction of the generation of breaking wave trains and surface elevation
measurements is provided below. The experiments were conducted in a two-dimensional
wave flume at the Laboratory of M2C, Caen. The wave flume was 20 m long, 0.8 m wide,
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Wave absorber

and filled with tap water to a depth of fiy = 0.3 m. A piston type wavemaker was located at
one end of the flume to generate the wave trains, and an absorber beach was placed at the
opposite end to help damp the incident waves. Temporal variation in surface elevations
at desired locations along the wave flume was recorded by wave gauges, along with a
high-speed camera. Two wave gauges were arranged to measure the free surface elevations
at fifty pre-setting locations along the wave flume. The first wave gauge WGI was located
4 m away from the wavemaker in order to measure the input wave parameters. The
sampling rate for the wave gauges was 50 Hz. In our experiments, only one wave group
was generated in each test, and the duration of the data acquisition was 35 s. Temporal
surface elevation measurements were used to examine the maximum wave height Hy,, the
significant wave height H;, the spectral bandwidth v, the skewness A3 and the kurtosis A4
along the flat and the sloping beach, which had an angle of & = 1/25 (Figure 1).

0.2
Last station First station

WG2 'G2-WGl
Wavemake:

Sloping beach

Figure 1. Experimental set-up. WG1 and WG2 are, respectively, wave gauge 1 and wave gauge 2.
x = 0 is defined as the mean position of the wavemaker.

Preliminary tests were made in order to investigate the repeatability. Surface elevation
measurements at the same location were conducted. Before breaking, differences were less
than 2% (in order of error of the measurements). However, tests are less repeatable once
the wave train breaks due to the entrapped compressed air present during the breaking
process. Consequently, we are confident that our experiments are sufficiently repeatable.

The wave trains were generated by imposing an input wave spectrum at the wave-
maker. The energy distribution in the frequency domain is defined by the JONSWAP
(y = 3.3 and vy = 7) and the Pierson-Moskowitz spectra with peak frequency varying
between f, = 0.66 Hz and f, = 0.75 Hz, which means that kyhy ranges between 0.8 and
0.93. This implies that the wave trains start propagating in intermediate water depths
(kphg > 0.5). The steepness parameter Sy = kg Zfil a;, the same as the local wave steepness
adopted in [15], and a modified version of the Benjamin-Feir Index (BFI) (Equation (1)),
which measures the ratio of the wave steepness to the spectral bandwidth in a finite water
depth [34], are used to characterize wave trains.

kS
BFI = \/i”TO )

Here, k, is the wavenumber related to the pic frequency f, and calculated using the
linear finite water depth relation; YN , 4, is the surface elevation at the focusing location
according to linear wave theory; ks is the spectrally weighted wavenumber calculated at
x =4 m from the wavemaker; and v is the spectral bandwidth, which is calculated using the
definition given by [35] limited to wave groups with narrow-banded random sea-states:

monp
v = P 1 2)
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Here, m; is the ith spectral moment, calculated as follows:

mi= [ onf)s(rias ®

min

where S(f) is the frequency spectrum. Longuet-Higgins [35] recommended imposing low
and high cut-off frequencies in the case of broad-banded wave trains to calculate the "
spectral moment. In this study, f,;, = 0.3 Hz and f..x = 3 Hz are, respectively, the lower
and the upper cut-off frequencies. Figure 2 shows the spatial evolution of the spectral
broadening of the studied wave trains, which is mainly related to the increasing trend of
the spectral energy in high-frequency components, demonstrated in [15]. Generally, the
initial spectral bandwidth is higher than 0.25 Hz; therefore, wave trains are considered
as relatively broad-banded waves. Most of the generated wave trains in this study have
more than one breaker, and so breaking locations (x;) are presented as intervals. Table 1
presents some key parameters of the generated wave trains, which are categorized via their
spectrum type, their nonlinearity Sy and their BFI parameter. Twelve selected tests with
different spectra and steepness, taken from [15], are studied. Segments of the measured
free surface elevation of WTJ3 at six different locations along the wave flume are shown in

Figure 3.
5 JONSWAP (7= &
WTI1

JONSWAP (v = 3.3)

WTI33

5 10 15 5 10 15 5 10 15
x[m] x[m] x[m]

Figure 2. The spatial evolution of the spectral broadening v.

Skewness, A3 (Equation (4)), is a statistical parameter that is contributed to primar-
ily by the second-order nonlinear interactions between bound waves, and kurtosis, A4
(Equation (5)), is a statistical parameter that includes a dynamic component due to the
third-order interactions between wave components. The latter parameter indicates whether
the probability density of a surface elevation’s peak is higher or lower than that of a typical
Gaussian distribution [25]. The kurtosis increase may indicate the formation of extreme
waves [26]. In other words, kurtosis measures the weight of the peak relative to the rest
of the distribution. In the case of a Gaussian sea state, A3 = 0 and A4 = 0 are normally
expected. However, for a non-Gaussian sea state, A3 > 0 is related to sharper crests and
troughs, whereas A3 < 0 is related to wider crests and troughs. Moreover, A4 > 0 is related to
an increased probability of the occurrence of extreme waves. In this paper, excess kurtosis
(Equation (5)) is used instead of kurtosis [36].

Yy (i — ¢)3
N, =) @

A3 = N2
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In Equations (4) and (5), N is the number of samples used in the calculation. The
number of samples should be carefully chosen because this may have an impact on the
magnitude of the calculated skewness and kurtosis. No null values of #(t) are included

in the calculation of skewness and kurtosis; i.e., only the part of the measurement whose
value is greater than one-fiftieth is included. The mean value of sea surface is 77; ~ 0.

©)

Table 1. Wave train key parameters. vy is the peak enhancement factor. It is the ratio of the maximum
spectral energy to the maximum of the corresponding Pierson-Moskowitz spectrum. The lower value
v = 3.3 corresponds to the standard JONSWAP formulation, and y = 7 provides a narrower spectrum.

. Breaking
Wave Train Spectrum So BFI hoky Location [m]
WTP1 Pierson—-Moskowitz 0.19 2.27 0.8 [12.69,13.28]
WTP2 Pierson—-Moskowitz 0.23 2.61 0.8 [12.18,12.67]
WTP3 Pierson-Moskowitz 0.28 3.05 0.8 [11.09,11.82]
WTP4 Pierson—-Moskowitz 0.29 3.15 0.8 [11.02,11.89]
WTJ1 JONSWAP (y = 3.3) 0.16 2.54 0.93 [12.9,13.7]
WTJ2 JONSWAP (y = 3.3) 0.25 3.57 0.93 [12.13,12.81]
WTJ3 JONSWAP (y = 3.3) 0.26 3.55 0.93 [12.07,12.76]
WTJ4 JONSWAP (y = 3.3) 0.36 4.57 0.93 [11,11.96]
WTJ11 JONSWAP (y =7) 0.11 1.86 0.93 13.5
WTJ22 JONSWAP (y =7) 0.23 3.23 0.93 [12.07,12.69]
WTJ33 JONSWAP (y =7) 0.27 3.32 0.93 [11.95,12.49]
WTJ44 JONSWAP (y =7) 0.35 4.33 0.93 [10.71,11.86]
= x=4m : '
£
5o ——ww/vv\AAA/\/\/\/\/VV\/\/\/\/\,JW»v—
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Figure 3. Segments of the surface elevations for the case WT]3 measured at different locations along
the wave flume. x = 9.5 m is the toe of the slope.

3. Results and Discussions

In this section, the skewness and kurtosis coefficients are experimentally estimated at
different wave stations along the flume. Figures 46 show the spatial evolution of the two
shape parameters. The two vertical solid lines added in these figures represent the breaking
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zone limits, and the horizontal dashed line depicts the thresholds of a Gaussian sea state.
Generally, both kurtosis and skewness deviate substantially from the Gaussian predicted
values. These deviations can be attributed to the presence of bound waves, which do not fit
in with the linear dispersion relationship [18].

X [m]

Figure 4. The spatial evolution of A4, A3 and Hyux/H;s for the four studied Pierson-Moskowitz
wave trains.

5 10 15 5 10 15 5 10 15
x[m] x[m] x[m]

Figure 5. The spatial evolution of A4, A3 and Hyux/Hs for the four studied JONSWAP (y = 3.3)
wave trains.
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WTJ11

WTJ22

WTJ33

WTJ44

5 10

x [m]
Figure 6. The spatial evolution of A4, A3 and Hux/Hs for the four studied JONSWAP (y = 7)
wave trains.

When the wave train propagated on the flat bottom (4 m < x < 9.5 m), skewness
A3 ~ 0.25 remained approximately constant, indicating a slight crest-through asymmetry
for all the Pierson-Moskowitz and JONSWAP wave trains. However, kurtosis gradually
increased and reached ~3 for both the JONSWAP and the Pierson-Moskowitz wave trains.
This result is qualitatively consistent with earlier studies [23].

When the wave train reached the slope (9.5 m < x < x}), kurtosis increased rapidly, and
skewness increased slightly until reaching the surf zone, where most of the high-frequency
waves finish breaking. The evolution of maxima of kurtosis is shown to depend on wave
nonlinearity, Sg. In other words, the wave trains with small nonlinearities become more
nonlinear during the shoaling process than those with higher nonlinearities, which break
in deeper regions before undergoing notable shoaling.

The maxima of skewness and kurtosis were reached just prior to breaking (x ~ x3).
Tian et al. [24] made the same conclusions in the case of constant steepness in wave trains
propagating in deep water conditions. Just prior to breaking, the maximum kurtosis value
reached was around A4 =7, which is greater than to that found in previous studies, such
as in [19,20,37]. This might be explained by the sampling variability effect (See [38]). The
duration of each experiment in our study is 35 s, whereas it is 20 min of continuous random
JONSWAP waves in [20]. As mentioned in [24], when only one wave train is generated
in each experiment, quantitative results found concerning skewness and kurtosis do not
concern field measurements of continuous wave groups.

In Tian et al. [24], the maximum skewness found was less than 1. The maximum
skewness obtained in our study indicates a stronger crest-trough asymmetry (A3 > 1). This
can be explained by the shoaling phenomenon, since all the wave trains generated break on
the slope. As mentioned in [20], the increase in A3 and A4 is mainly due to the second-order
nonlinear interactions associated with wave shoaling and shallow water effects.

After the breaking (x > xp), the wave train dispersed again and becomes less steep, and
both skewness and kurtosis converged to zero. Similar conclusions were made by [1], who
found that the maximum values of A3 and A4 can be obtained in the vicinity of the plunging
breaker location. This may be explained by the fact that the breaking process is accompanied
by an important energy dissipation, especially in high-frequency components [15]. The
breaking process eliminated the strong crest-trough asymmetries, and, as a result, skewness
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approached zero. Near the coast (x > 13 m), the wave train nonlinearity increased again
when the shoaling of the low-frequency waves became more significant. This is clearly
illustrated in Figures 4-6, where skewness is slightly greater than 0.

Figure 7 shows the initial and maximum values of v, Az and A4 as a function of the
BFI parameter. Surface elevation measured at the first wave station (WG1 in Figure 1)
was used to calculate the initial BFI value. However, local BFI values were calculated
where the maximum spectral bandwidth, skewness and kurtosis were achieved. Generally,
we found that the local BFI values were lower than the initial ones, and this is related to
the spectrum broadening along the wave train propagation. The initial and maximum
spectral bandwidth v remained approximately constant with the increase in the Benjamin—
Feir Index, which is in accordance with the results found in [24]. Additionally, no clear
correlations between the BFI and the maximum values A3 and A4 could be identified.

() ’m 8@ oo
06 e Pl e 6
1 [ ]
- o o % ) s
04 & £ 05 ® & Q@ P ‘. °
08% okﬂfﬁﬂgmﬂﬂ 2 ®
0.2 O A5
NEiE Y
0 -1
0o 1 3 4 5 0 1 2 3 4 5 0o 1 2 3 4 5
BFI BFI BFI

Figure 7. Dependence of spectral bandwidth, skewness and kurtosis on BFI parameter. Open
symbols: (a) the initial spectral bandwidth v, (b) the initial skewness A3, (c) the initial kur-
tosis A4. Solid symbols: (a) the maximum spectral bandwidth, (b) the maximum skewness,

(c) the maximum skewness.

Figure 8 shows the relationship between skewness and kurtosis in intermediate and
shallow water depth before and after the toe of the slope. The solid black line (Equation (6))
depicts the second-order nonlinear theory first developed by [39], reflecting the water
depth change proposed by [40]. The solid blue line(Equation (7)) represents an adjusted
formula introduced by the data observed in the sloping bottom. We mention here that
a narrow-banded wave approximation is adopted in the second-order theory, and this
theoretical model shows that the kurtosis parameter increases when skewness increases.

4 2
A = (Gh) ©®)
4 2
A =2+ (Gh) ™

The experimental data on the flat and on the sloping bottom have a qualitatively
similar tendency. For the data on the flat bottom, i.e., kyip > 0.8, the results are in quali-
tative agreement with the theoretical model of [40]. For the data on the sloping bottom,
i.e., kyhg < 0.8, kurtosis is underestimated by the theoretical model. As expected, most of the
skewness and kurtosis values of the experimental data are underpredicted along the flume
if only the second-order theory is considered. Mori et al. [18] found a better agreement
between experimental data and theory when the free wave effect was included [41]. It
is important to note that the formulations in [18] were obtained using numerical simula-
tions in the case of Gaussian deep-water waves, which explains the differences in field
measurements, as pointed out by [22].

Figure 9 shows the relationship between the maximum wave height H,;,x /Hs, skew-
ness A3 and kurtosis A4, on the flat and on the sloping bottom. The solid black curve
depicts the H;;,x / Hs empirical formulae proposed by [41], and the dashed line represents
the threshold of freak waves, i.e., Hyax/Hs = 2. The ratio Hy;ux /Hs is nearly flat between 1
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Pierson-Moskowitz

and 2.5 according to the incident wave steepness, although kurtosis and skewness rapidly
increased under the effects of the second-order nonlinear interactions due to the shoal-
ing phenomenon. Consequently, the dependence between H,x/Hs and the two form
parameters is weak in shallow water locations.

JONSWAP (y=3.3) JONSWAP (y=7)

Equation (6) Equation (6) Equation (6)

Equation (7) Equation (7) Equation (7)

g| @ flatbottom g| @ flatbottom g| @ flatbottom
®  sloping bottom ®  sloping bottom ®  sloping bottom

Figure 8. Relationship between skewness and kurtosis from intermediate to shallow water regions
before and after the toe of the slope. The solid black line represents the second-order nonlinear theory
with respect to water depth change [40]. The solid blue line depicts an adjusted formula introduced
by the data found in the sloping bottom.

0
-1.5 -1 8 10
3
O WTJI(f) O wri(
®  WTJI(s) ®  WTJi(s)
5 WTJ2(f) WTJ2(f)
2
T ®  WTJ2(s) ®  WTJX(s)
\r‘u O WTJ3(f) O WTJ3(f)
IE WTJ3(s) WTJ3(s)
1 D WTJ4(f) O WTJ4(f)
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3 3
Q  WTJ11(f) QO WTJI1(f)
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:r:E WTJ33(s) IE - WTJ33(s)
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Figure 9. Relationship between the maximum wave height Hy;5x /Hs, skewness 3 and kurtosis A4 on
the flat and on the sloping bottom. Empty circles represent the flat bottom data (f) and filled circles
exhibit the sloping bottom data (s). The solid black curve depicts the Hy;qx /Hs empirical formulae
proposed by [41].

Lastly, we tested the MLP algorithm in order to predict the spatial evolution of the
kurtosis parameter. Figure 10 shows that the kurtosis predictions are satisfactory, and the
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accuracy score is around 0.88 for the Pierson-Moskowitz wave trains, 0.9 for JONSWAP
(v =3.3) and 0.8 for JONSWAP (y =7). To gain a better understanding, more data (i.e., higher
and lower nonlinearities) should be investigated. Aside from the intense data requirement,
sensitivity tests on hyperparameters, such as the stepsize (x) and the exponential decay
rates for momentum estimates (1, 82), should be performed in order to achieve a more
accurate MLP model.

Pierson-Moskowitz JONSWAP (v = 3.3) JONSWAP (y=7)
€

Figure 10. Experimental (open circles) versus predicted (red continuous line) values of kurtosis.

4. Conclusions and Perspectives

The presence of extreme wave events can contribute to the significant deviations
in the Gaussian sea state model and the Rayleigh statistics. The present study aimed
to investigate the spatial evolution of maximum wave heights, skewness and kurtosis.
Using the dispersive focusing technique, group focused waves derived from three different
spectra (Pierson-Moskowitz, JONSWAP (y = 3.3 and y = 7)) and with the different breaking
intensities were generated in the laboratory flume.

Generally, the skewness and the kurtosis for the JONSWAP and the Pierson-Moskowitz
wave trains are qualitatively quite similar. Above the flat bottom (4 m < x < 9.5 m), we
found that skewness remained approximately constant; however, kurtosis increased gradu-
ally during the wave train propagation over the range of conducted tests. Moreover, the
skewness and kurtosis magnitudes along this portion of the flume depended on the wave
steepness. This is illustrated in Figures 4-6, where the skewness values are slightly higher
in the case of strong nonlinearities, Syp. Nevertheless, there was a quick transition from
intermediate to shallow water depth. Kurtosis depended on the evolution of skewness
regardless of the incident wave steepness, (Sp). It is shown that the second-order theory,
suggested by [40] (Equation (6)), fits well with the data measured along the flat bottom.
When the shoaling process started, the formula clearly underestimated kurtosis, and a
modified version was proposed (Equation (7)). Generally, the scatter of the data was
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large, and this can be partially explained by important wave-wave interactions, which
are not taken into account in the second-order theory. Furthermore, we found that the
ratio Hy;x/Hs was constant, although the two form parameters increased rapidly in shallow
regions. Therefore, the link between Hy,,4x/Hs and the two form parameters was very weak
in shallow water regions in the case of our experiments.

Due to the randomness of the Pierson-Moskowitz and the JONSWAP spectra, wave
statistics will depend on which portion of a record is used in the analysis. In other words,
the length of a wave recorded in the investigated wave train is very important. An inherent
disadvantage of this study is the problem of sampling variability. This kind of problem
can be addressed by increasing the duration of temporal measurements in order to provide
accurate form parameters and to quantify the effects of the sampling variability.

A machine learning MLP algorithm was used in order to predict the spatial evolution of
kurtosis. We found that this MLP algorithm was able to identify patterns and to reproduce
the spatial evolution of kurtosis in a satisfactory manner. This study shows that the MLP
algorithm is a promising tool for improving wave forecasting in field measurements and
that it can accelerate kurtosis spatial evolution forecasting while retaining good predictive
accuracy. In the near future, we plan to perform new tests involving lower and higher
wave steepness in order to extend simulations to wider wave train spectra and to improve
the prediction of the spatial evolution of extreme wave statistics using the MLP machine
learning algorithm.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/jmse10101475/s1.

Author Contributions: Conceptualization, I.A.; methodology, I.A.; investigation, I.A.; resources, LA;
data curation, I.A.; writing—original draft preparation, I.A. and R.M.; writing—review and editing,
LA. and N.A; visualization, I.A.; supervision, N.A.; project administration, N.A.; funding acquisition,
N.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The free surface elevations files of the twelve wave trains are available
in the Supplementary Materials.

Acknowledgments: The authors wish to express their gratitude to Sonia Baatout for her thorough
re-reading of this article. The authors would like also to express their gratitude to the referees who
helped us to improve our manuscript quality.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Bitner, E.M. Non-linear effects of the statistical model of shallow-water wind waves. Appl. Ocean Res. 1980, 2, 63-73. [CrossRef]

2. Kharif, C.; Pelinovsky, E. Physical mechanisms of the rogue wave phenomenon. Eur. ]. Mech. B Fluids 2003, 22, 603—-635. [CrossRef]

3. Gao,];Ma, X;; Zang, ].; Dong, G.; Ma, X.; Zhu, Y.; Zhou, L. Numerical investigation of harbor oscillations induced by focused
transient wave groups. Coast. Eng. 2020, 158, 103670. [CrossRef]

4. Gao, ].; Chen, H,; Zang, J.; Chen, L.; Wang, G.; Zhu, Y. Numerical investigations of gap resonance excited by focused transient
wave groups. Ocean Eng. 2020, 212, 107628. [CrossRef]

5. Whittaker, C.N.; Fitzgerald, C.].; Raby, A.C.; Taylor, PH.; Borthwick, A.G.L. Extreme coastal responses using focused wave
groups: Overtopping and horizontal forces exerted on an inclined seawall. Coast. Eng. 2018, 140, 292-305. [CrossRef]

6. Henning, J.; Schmittner, C.E. Experimental variation of focusing wave groups for the investigation of their predictability. In
Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, HI, USA, 31
May-5 June 2009; Volume 43468, pp. 641-651. [CrossRef]

7.  Dean, R.G. Freak waves: A possible explanation. In Water Wave Kinematics; Torum, A., Gudmestat, O.T., Eds.; Springer: Dordrecht,
The Netherlands, 1990; Volume 178. [CrossRef]

8. Gao,].;Ma, X; Dong, G.; Chen, H.; Liu, Q.; Zang, ]. Investigation on the effects of Bragg reflection on harbor oscillations. Coast.
Eng. 2021, 170, 103977. [CrossRef]


https://www.mdpi.com/article/10.3390/jmse10101475/s1
https://www.mdpi.com/article/10.3390/jmse10101475/s1
http://doi.org/10.1016/0141-1187(80)90031-0
http://doi.org/10.1016/j.euromechflu.2003.09.002
http://doi.org/10.1016/j.coastaleng.2020.103670
http://doi.org/10.1016/j.oceaneng.2020.107628
http://doi.org/10.1016/j.coastaleng.2018.08.004
http://doi.org/10.1115/OMAE2009-80128
http://doi.org/10.1007/978-94-009-0531-3_39
http://doi.org/10.1016/j.coastaleng.2021.103977

J. Mar. Sci. Eng. 2022, 10, 1475 12 0f13

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Gao, J.L.; Chen, H.Z.; Mei, L.L,; Liu, Z,; Liu, Q. Statistical analyses of wave height distribution for multidirectional irregular
waves over a sloping bottom. China Ocean Eng. 2021, 35, 504-517. [CrossRef]

Steve, E.; Guza, R.T. Observations of bispectra of shoaling surface gravity waves. J. Fluid Mech. 1985, 161, 425-448. [CrossRef]
Ma, Y.; Dong, G.; Ma, X. Experimental study of statistics of random waves propagating over a bar. Coast. Eng. Proc. 2014, 1, 34.
[CrossRef]

Huang, W.; Dong, S. Statistical properties of group height and group length in combined sea states. Coast. Eng. 2021, 166, 103897.
[CrossRef]

Trulsen, K.; Zeng, H.; Gramstad, O. Laboratory evidence of freak waves provoked by non-uniform bathymetry. Phys. Fluids A
2012, 24, 097101. [CrossRef]

Petrova, P.; Gueded, S.C. Maximum wave crest and height statistics of irregular and abnormal waves in an offshore basin. Appl.
Ocean Res. 2008, 30, 144-152. [CrossRef]

Abroug, I.; Abcha, N.; Dutykh, D.; Jarno, A.; Marin, F. Experimental and numerical study of the propagation of focused wave
groups in the nearshore zone. Phys. Lett. A 2020, 6, 126144. [CrossRef]

Abroug, I.; Abcha, N.; Jarno, A.; Marin, F. Laboratory study of non-linear wave-wave interactions of extreme focused waves in
the nearshore zone. Nat. Hazard Earth Syst. 2020, 20, 3279-3291. [CrossRef]

Zhang, J.; Benoit, M.; Kimmoun, O.; Chabchoub, A.; Hsu, H.C. Statistics of extreme waves in coastal waters: Large scale
experiments and advanced numerical simulations. Fluids 2019, 4, 99. [CrossRef]

Mori, N.; Onorato, M.; Janssen, P.A.E.M.; Osborne, A.R.; Serio, M. On the extreme statistics of long-crested deep-water waves:
Theory and experiments. J. Geophys. Res. 2007, 112. [CrossRef]

Shemer, L.; Sergeeva, A. An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded
random wavefield. ]. Geophys. Res. 2009, 114. [CrossRef]

Kashima, H.; Hirayama, K.; Mori, N. Estimation of freak wave occurrence from deep to shallow water regions. Coast. Eng. Proc.
2014, 1, 36. [CrossRef]

Vinje, T.; Haver, S. On the non-Gaussian structure of ocean waves. In Proceedings of the 7th International Conference on the
Behaviour of Offshore Structures, Cambridge, MA, USA, 12-15 July 1994; Pergamon Press: Oxford, UK, 1994; Volume 5, p. 435.
Bitner-Gregersen, E.M.; Gramstad, O. Comparison of temporal and spatial statistics of nonlinear waves. In Proceedings of the
ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, Glasgow, UK, 9-14 June 2019; p. 3.
Trulsen, K.; Raustel, A.; Jorde, S.; Baeverfjord, R. Extreme wave statistics of long-crested irregular waves over a shoal. J. Fluid
Mech. 2019, 882, R2. [CrossRef]

Tian, Z.; Perlin, M.; Choi, W. Frequency spectra evolution of two-dimensional focusing wave groups in finite depth water. J. Fluid
Mech. 2011, 688, 169-194. [CrossRef]

Zeng, H.; Trulsen, K. Evolution of skewness and kurtosis of weakly nonlinear unidirectional waves over a sloping bottom. Nat.
Hazards Earth Syst. 2012, 12, 631-638. [CrossRef]

Mori, N.; Onorato, M.; Janssen, P.A.E.M. On the estimation of the kurtosis in directional sea states for freak wave forecasting. J.
Phys. Oceanogr. 2011, 41, 1484-1497. [CrossRef]

Toffoli, A.; Onorato, M.; Bitner-gregersen, E.; Osborne, A.R.; Babanin, A.V. Surface gravity waves from direct numerical
simulations of the Euler equations: A comparison with second-order theory. Ocean Eng. 2008, 35, 367-379. [CrossRef]

Toffoli, A.; Benoit, M.; Onorato, M.; Bitner-gregersen, E. The effect of third-order nonlinearity on statistical properties of random
directional waves in finite depth. Nonlinear Process. Geophys. 2009, 16, 131-139. [CrossRef]

Giinaydin, K. The estimation of monthly mean significant wave heights by using artificial neural network and regression methods.
Ocean Eng. 2008, 35, 1406-1415. [CrossRef]

Malekmohamadi, I.; Bazargan-Lari, M.R.; Kerachian, R.; Nikoo, M.R.; Fallahnia, M. Evaluating the efficacy of SVMs, BNs, ANNs
and ANFIS in wave height prediction. Ocean Eng. 2011, 38, 487-497. [CrossRef]

James, S.C.; Zhang, Y.; O’'Donncha, F. A machine learning framework to forecast wave conditions. Coast. Eng. 2018, 137, 1-10.
[CrossRef]

White, H.; Gallant, A.R.; Hornik, K.; Stinchcombe, M.; Wooldridge, J. Artificial Neural Networks: Approximation and Learning Theory;
Basil Blackwell: Oxford, UK, 1992. [CrossRef]

Rynkiewicz, ]. General bound of overfitting for MLP regression models. Neurocomputing 2012, 90, 106-110. [CrossRef]

Dutykh, D. Evolution of random wave fields in the water of finite depth. Procedia IUTAM 2014, 11, 34-43. [CrossRef]
Longuet-Higgins, M.S. Statistical properties of wave groups in a random sea state. Phil. Trans. R. Soc. Lond. A 1984, 312, 219-250.
[CrossRef]

Janssen, P.A.E.M. On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J. Fluid Mech.
2009, 637, 1-44. [CrossRef]

Onorato, M.; Cavaleri, L.; Fouques, S.; Gramstad, O.; Janssen, P.A.E.M.; Monbaliu, J.; Osborne, A.R.; Pakozdi, C.; Serio, M.;
Stansberg, C.T.; et al. Statistical properties of mechanically generated surface gravity waves: A laboratory experiment in a
three-dimensional wave basin. J. Fluid Mech. 2009, 627, 235-257. [CrossRef]

Bitner-Gregersen, E.M.; Gramstad, O.; Magnusson, A.K.; Malila, M.P. Extreme wave events and sampling variability. Ocean Dyn.
2020, 71, 81-95. [CrossRef]


http://doi.org/10.1007/s13344-021-0046-8
http://doi.org/10.1017/S0022112085003007
http://doi.org/10.9753/icce.v34.waves.30
http://doi.org/10.1016/j.coastaleng.2021.103897
http://doi.org/10.1063/1.4748346
http://doi.org/10.1016/j.apor.2008.08.004
http://doi.org/10.1016/j.physleta.2019.126144
http://doi.org/10.5194/nhess-20-3279-2020
http://doi.org/10.3390/fluids4020099
http://doi.org/10.1029/2006JC004024
http://doi.org/10.1029/2008JC005077
http://doi.org/10.9753/icce.v34.waves.36
http://doi.org/10.1017/jfm.2019.861
http://doi.org/10.1017/jfm.2011.371
http://doi.org/10.5194/nhess-12-631-2012
http://doi.org/10.1175/2011JPO4542.1
http://doi.org/10.1016/j.oceaneng.2007.10.004
http://doi.org/10.5194/npg-16-131-2009
http://doi.org/10.1016/j.oceaneng.2008.07.008
http://doi.org/10.1016/j.oceaneng.2010.11.020
http://doi.org/10.1016/j.coastaleng.2018.03.004
http://doi.org/10.1016/j.coastaleng.2018.03.004
http://doi.org/10.1016/j.neucom.2011.11.028
http://doi.org/10.1016/j.piutam.2014.01.046
http://doi.org/10.1098/rsta.1984.0061
http://doi.org/10.1017/S0022112009008131
http://doi.org/10.1017/S002211200900603X
http://doi.org/10.1007/s10236-020-01422-z

J. Mar. Sci. Eng. 2022, 10, 1475 13 0f 13

39. Longuet-Higgins, M.S. The effect of non-linearities on statistical distributions in the theory of sea waves. J. Fluid Mech. 1963,
17, 459. [CrossRef]

40. Mori, N.; Kobayashi, N. Nonlinear distribution of nearshore free surface and velocity. In Proceedings of the 26th International
Conference of Coastal Engineering, Copenhagen, Denmark, 22-26 June 1998; Volume 1, pp. 189-202. [CrossRef]

41. Janssen, P.A.E.M. Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 2003, 33, 2001-2018. [CrossRef]


http://doi.org/10.1017/S0022112063001452
http://doi.org/10.9753/icce.v26.%25p
http://doi.org/10.1175/1520-0485(2003)33&lt;863:NFIAFW&gt;2.0.CO;2

	Introduction 
	Materials and Methods 
	Results and Discussions 
	Conclusions and Perspectives 
	References

