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Abstract: The use of digital twins for the development of Autonomous Maritime Surface Vessels
(AMSVs) has enormous potential to resolve the increasing need for water-based navigation and
safety at the sea. Aiming at the problem of lack of broad and integrated digital twin implementations
with live data along with the absence of a digital twin-driven framework for AMSV design and
development, an application framework for the development of a fully autonomous vessel using an
integrated digital twin in a 3D simulation environment has been presented. Our framework has 4
layers which ensure that simulation and real-world vessel and the environment are as close as possible.
Åboat, an in-house, experimental research platform for maritime automation and autonomous surface
vessel applications, equipped with two trolling electric motors, cameras, LiDARs, IMU and GPS has
been used as the case study to provide a proof of concept. Åboat, its sensors, and the environment
have been replicated in a commercial, 3D simulation environment, AILiveSim. Using the proposed
application framework, we develop obstacle detection and path planning systems based on machine
learning which leverage live data from a 3D simulation environment to mirror the complex dynamics
of the real world. Exploiting the proposed application framework, the rewards across training
episodes of a Deep Reinforcement Learning model are evaluated for live simulated data in AILiveSim.

Keywords: maritime autonomy; autonomous ship; safety; digital twin; deep reinforcement learning;
collision avoidance; situational awareness

1. Introduction

The increasing need for water-based navigation has created a strong demand for
autonomous maritime surface vessels (AMSVs). In particular, research in the fields of au-
tonomous navigation and collision avoidance has started to become increasingly relevant
for maritime transport. Several projects develop and explore the viability of autonomous
vessels, such as Roboat [1], the MUNIN project [2] and the YARA Birkeland project [3]. The
definition of AMSV varies from project to project. In this work, we follow the definition
given by the International Maritime Organisation (IMO). IMO defines an autonomous
vessel as a vessel which, to a varying degree, can operate independently without human in-
teraction. The degrees of autonomy are classified into four categories. Degree one includes
vessels with automated processes and decision support along with human intervention.
Degree two includes remotely operated vessels with seafarers on board. Degree three
includes remote-controlled vessels without seafarers on board. Lastly, degree four refers to
a fully autonomous vessel. The operating system of a fully autonomous vessel is capable of
making decisions without any human intervention [4].

The key motivator for unmanned operations is to reduce human error, avoid accidents
and tackle the predicted shortage of human resources. In 2020 alone, a total of 2632 acci-
dents causing 36 deaths and 618 injuries were reported by the European Maritime Safety
Agency and 43% of these were caused by navigational events such as collisions, grounding,
and contact [5]. Formal investigation revealed that human factors and operational issues
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were major causal factors behind these accidents. Thus, the development of AMSVs can
aid in providing a countermeasure against such navigational events [6].

Artificial intelligence (AI), machine learning (ML), Internet-of-Things and big data
have played a huge role in directing research efforts toward the design and development
of AMSVs [6]. While many recent studies [1,3,6] have focused on developing collision
avoidance systems for autonomous vessels, the scarcity of data and resources, along with
the difficulty of conducting multiple and risky experiments, limit their potential. Within this
context, digital twin vessels have started gaining popularity over the last decade [7].
The idea of digital twins originated in the aerospace industry to replicate complex physical
systems. These replicas (i.e., digital twins) were used for system integration and personnel
training before the deployment of systems [8].

More recently, the use of digital twins has been increasing owing to the advances in
simulation methods for engineering. Formally, a digital twin is a representation of a real-life
object or system (such as a car, vessel or part of the equipment) in a digital format. Digital
twins provide a possibility for interaction between the physical and the digital world.
The typical application areas vary between manufacturing, robotics and the autonomous
vehicle industry. In order to achieve intelligent machines, application frameworks such as
Pipe Machining Production Line are being designed to visualize the system workflows [7].
However, most existing digital twins lack universality and cannot be easily integrated
across different settings. They are either in the preliminary stages of development or target
a specific problem area [9,10]. Although prior literature indicates that the concept is already
being applied narrowly to specialized areas in the maritime industry, no clear method
exists for creating broader interdisciplinary digital twins [11]. In this work, we present an
end-to-end system for AMSVs using digital twin along with a pipeline for deployment
based on obstacle detection and Deep Reinforcement Learning (DRL). Additionally, we
present an application framework for the development of an AMSV using an integrated
digital twin in a 3D simulation environment.

The rest of the paper is structured as follows. Firstly, Section 2 describes the related
work in the field of AMSVs and digital twins. Next, Section 3 describes the application
framework of the digital twin-driven AMSV system. Section 4 presents the experiments
using digital twins for data collection and model training. Lastly, Section 5 concludes
this paper.

2. Related Works

Autonomous vessel navigation aims to increase safety and efficiency at the seas.
AMSVs have two main capabilities: situational awareness and autonomous path planning.
Situational awareness refers to the ability to perceive the environment. That is achieved
through sensors such as cameras, LiDARs, IMU, GPU and RADAR. Autonomous path
planning includes global and local route planning and optimization. Multi-sensor situa-
tional awareness and control have been thoroughly researched in the field of autonomous
cars [12]. On the contrary, autonomous vessels are still an emerging area of research and
development with a lot of untapped and unexplored potential.
The autonomous vessel research has received some attention in Northern Europe, specifi-
cally in Finland and Norway [13]. More recently, Japan, China, Korea and Singapore have
also taken initiatives in this area [14]. Several ongoing industrial projects focus on the
design and development of AMSVs. The MUNIN project [2] focuses on an autonomous
cargo ship and autonomous vessel control. It introduces an autonomous ship controller
(ASC), a Shore Control Centre (SCC) and an Advanced Sensor System (ASS). The AAWA
project [15] provides a system of four modules- Situational Awareness (SA), Collision
Avoidance (CA), Route Planning (RP) and Ship State Definition (SSD).

AI/ML approaches for autonomous vessel navigation have been the primary focus of
academic research. While some papers focus on classical algorithms [16,17], more recently
the interest has shifted towards DRL. In [14,18], the authors present a decision-making
system for ASMVs based on DRL using the Rizhao port as a case study. The work in [19]
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presents a DRL approach based on the Proximal Policy Optimization algorithm (PPO)
for collision avoidance. In [20], the authors design a new reward function which takes
the waiting time at the corner of the path as the optimization goal to minimize the total
travel time of autonomous vessels. However, these works use traditional 2D simulation-
based conditions that neglect the complex nature of the real world. While more recent
works have incorporated 3D simulations in their experiments [21], they do not present an
end-to-end AMSV system. In addition, most of these works use prerecorded data, which
limits their accuracy and efficacy. Existing research works face the challenge of incomplete
or oversimplified perception of the environment, which limits their applicability to real-
life scenarios.

It is necessary to create an exact replica of the vessel for more accurate experimental
evaluations in addition to 3D simulations. This replica, called a digital twin, simulates
the behaviours of its physical counterpart. Digital twin vessel literature indicates that this
concept is being applied to highly focused areas such as structural fatigue estimation [22],
manufacturing systems [7], condition monitoring [23] and personnel training [24,25]. In [11],
digital twins are categorized into three constituents: asset representation, behavioural
models, and measured data [26,27]. Asset representation is a 3D model usually consisting
of CAD files complemented with metadata. Behavior models bridge the gap between digital
and physical representations using physics or statistics. The measured data category refers
to the injection of live (online) or prerecorded (offline) data into the simulation environment.
However, these implementations lack the incorporation of live data, AI/ML training and
evaluation and 3D modelling in a single system. Moreover, they lack a comprehensive
implementation framework to bridge the gap between the real and the simulated vessel.
Therefore, we present an end-to-end application framework for a digital twin AMSV which
is cohesively tied to the real vessel in a 3D, replicated simulation environment.

3. Application Framework of Digital Twin-Driven AMSV System

An innovative application framework for a digital twin-driven AMSV system is shown
in Figure 1. The application framework consists of four layers: physical layer, digital twin
layer, data layer and application layer. The physical layer and digital twin layer are cognates
concerning sensor configuration, control structure and dynamics of the environment. This
replication provides a unique opportunity to collect data from the digital twin layer and
augment it with offline data collected from the physical layer. The training and evaluation
of machine learning models are carried out in the digital twin layer before deploying them
on the physical layer. After the initial verification, the models are moved to real-world
testing. Next, we discuss the function of these layers in detail.

3.1. Physical Layer

A high-level overview of the physical layer can be seen in Figure 2. The physical
layer consists of the environment and the vessel. The environment refers to the vessel’s
surroundings including other vessels, sea marks etc. For this paper, we consider the area
of Turku, Finland. Our Åboat vessel is built on the platform of a 375fc FoldCat Inflatable
Fishing Boat with a bow and stern trolling electric motors of type MotorGuide Xi5 55SW54-
GPS. Each motor can be controlled by setting its angle (from −180 to 180 degrees) and
thrust (0–100 percent of maximum) values. The motor rotation speed is around 4 seconds
for a complete 360-degree turn which is approximately 90 deg/s. Detailed characteristics
and technical specifications of the Åboat are listed in Table 1.

The Åboat sensors are interfaced with an Nvidia Jetson™ AGX Xavier™ Carrier
Board [28]. It serves as the main processor on the vessel which communicates with a PC
on the shore over 4G. The shore PC has a GeForce GTX 1080 for handling high compute
loads from high-dimensional sensors (camera and LiDAR). The application of AI/ML
techniques on the data from these sensors incorporates situational awareness into the
Åboat. The Åboat sensors include four 2MP cameras which are a part of SurveilsQUAD—A
synchronized multi-camera system developed by Sony. The system is designed specifically
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for NVIDIA ® Jetson AGX Xavier containing a baseboard that interfaces with the Xavier
and camera boards. The cameras provide high-resolution RGB images of the environment.
A mid-range LiDAR has been used to provide distance and depth information. A GNSS
has been used to determine the position of the vessel while an IMU calculates the speed
and heading. Additionally, this layer has the control unit which manoeuvres the vessel. It
translates the heading angle to two motor angles to follow the desired path. This part of
the physical layer can be mapped to the path planning module of the application layer.

Figure 1. Application framework for the digital twin-driven AMSV system. The framework consists
of four layers to create a cohesive and integrated digital twin system that accelerates model training
and deployment for AMSVs.

Figure 2. High-level Overview of the physical layer. The sensors provide information about the
environment to incorporate situational awareness in the vessel.
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Table 1. Technical specification of the Åboat.

Items Characteristics

Dimension (L ×W × H) 3.75 m × 1.37 m × 0.44 m
Hull Weight ∼34 kg

Load Capacity 2 Adults or 295 kg
Tube Diameter 0.42 m

Onboard Sensors LiDAR, IMU, 4 Cameras, GPS
Motors 2 MotorGuide Xi5 55SW54-GPS
Thrust 25 kg

3.2. Digital Twin Layer

In this work, we focus on the incorporation of a digital twin layer in traditional AMSV
systems. In order to create an integrated and effective digital twin layer, it is necessary
to involve both elements of the physical layer: the vessel and the environment. To the
best of our knowledge, while most works replicate the vessel to provide a physical or
functional representation for training AI/ML algorithms, they discard useful information
by neglecting the physical environment. Therefore, similar to the physical layer, our
proposed digital twin layer consists of two elements- the digital twin vessel and the
replicated digital environment.

3.2.1. Digital Twin of Åboat

The digital twin of the Åboat is a 3D model in a simulation tool, AILiveSim [29].
The vessel architecture and sensor configuration have been replicated as illustrated in
Figure 3. The sensors of the digital twin have been configured to reflect those in the
physical layer. For example, the resolution, frames per second (FPS) and field-of-view
(FOV) angle have been adjusted to match the Full HDR cameras. Similarly, the width and
height of the scan area, rotations per second, number of samples taken in horizontal and
vertical directions, laser wavelength and length of the scan rays of the LiDAR also match
the configurations in the physical layer.

(a) (b) (c)

Figure 3. Åboat in real-world and AILiveSim simulation. (a) Åboat; (b) Side view of Åboat; (c) Åboat
in AILiveSim.

3.2.2. Replicated Digital Environment

The complexities and dynamics of the real-world environment must be taken into
consideration at every stage of the design process. These complexities, including the
stochastic nature of the environment, are often overlooked in research works focusing on
developing AI/ML systems for AMSVs. Our work highlights the importance of incorpo-
rating the real-life environment in simulation. For this paper, our primary focus has been
around duplicating the waterway route in Turku, Finland. The 3D geometric, physical and
kinematic models of the environment as well as the Åboat have been encapsulated into
the digital twin in AILiveSim by the software vendor. The GUI provides an integrated
and intelligent environment for the efficient training and testing of algorithms for AMSVs
with live data from the tool. It is important to note that the distributions of simulated and
real-life data are the same. Moreover, with the addition of noise, the simulated data mirror
their real-life counterpart.
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3.3. Data Layer

The data layer is responsible for data management. Data management includes, but is
not limited to, data storage, data processing, data annotation, data encoding, data analysis
and data fusion. This layer consists of data from sensors in the physical layer as well as the
digital twin layer. We collect sensor data from the digital twin layer, annotate them and
fuse them with real-life data to train our models in the application layer. The data layer
can provide the integration and interoperability of the physical and digital twin layers by
merging these two sets of data.

3.4. Application Layer

The application layer consists of applications to implement the autonomous functions
of an AMSV. In order to achieve autonomous operations, it is essential to move towards
the destination while avoiding possible obstacles along the way. Therefore, the application
layer can be divided into two main modules: obstacle detection and path planning.

3.4.1. Obstacle Detection

The obstacle detection module detects and localizes obstacles. It uses cameras to detect
obstacles (object detection) and LiDAR for distance calculation. We use YOLO (You Only
Look Once) [30] to detect the obstacles in RGB images streamed by the cameras. The output
of this algorithm is in the form of bounding boxes around the obstacles. Moreover, each
bounding box is categorized into two categories: dynamic obstacle (vessels) and static
obstacle (buoys and rocks). This algorithm provides high inference speed along with good
detection accuracy [31,32]. After detecting the bounding boxes around the obstacles, LiDAR
is utilized for distance estimation. LiDAR and cameras complement each other and provide
more accurate results than just using a single sensor [15]. A comparison of the two sensors
is shown in Table 2.

Table 2. Comparison of Camera and LiDAR for Maritime Situational.

Visual HD Cameras LiDAR

Spatial Accuracy Accurate Accurate
Field of view Limited Limited

Distance measurement No Accurate
Object identification Accurate Limited

Availability, any weather No Limited
Computational load of

analysis No No

Marine robustness Yes No Data

3.4.2. Path Planning

The path planning module finds a collision-free path to the destination. For navigation
purposes, the path to the goal is represented as a series of waypoints. These waypoints
serve as intermediate goals. Path planning is done in two stages: global planning and
local planning. The global planner calculates static waypoints to the destination using
the available information about the environment. However, the AMSV can encounter
unforeseen obstacles along its way. This is where the local planner is used. When an
obstacle has been detected within the safety radius of the AMSV, the local planner takes
over the control and guides the vessel until the collision threat disappears. The local
planner uses DRL to achieve this. DRL aims to learn intelligent behaviors through trial and
errors by interacting with the environment. DRL has greatly enhanced navigation in related
fields. Therefore, we focus on this approach instead of classical ones. Each interaction
with the environment provides information to the algorithm which can be used to identify
the suitable course of action. Once the vessel is aware of its speed, location, heading and
obstacles in its surroundings, this information is used to train a DRL agent.
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3.4.3. Problem Formulation

We use the digital twin to train the DRL algorithm. It provides a safer and more robust
way of training and evaluating the agent. The following must be defined in a DRL problem:
agent, action, observation and reward. In our case, the agent is the vessel which would
take actions in our simulation environment. The agent observes the environment. This
observation is an input for the DRL algorithm which provides an action as an output. Based
on the action, the agent gets a reward.

3.4.4. Observation Space and Action Space

The vessel receives an observation vector from the environment (based on live data in
simulation) which includes its distance from the destination, the next waypoint and the
obstacle (if detected) as well as the angle to the obstacle, waypoint and destination. These
values have been normalized to facilitate training and avoid neural network saturation.
These distances have been marked in Figure 4.

(a)

(b)

Figure 4. Distance of Åboat from the obstacles, waypoints and destination. (a) Distance from
destination and waypoints; (b) Distance from obstacles.

The distance to the destination dd has been normalized between 0 and 1 by dividing it
by the total distance to the destination dt as follows:

dg =
dd
dt

, (1)

Similarly, the distance to the next waypoint dw is normalized by dividing it by the
total distance between the previous waypoint di and the next one di+1 as follows

dw p =
dw

di+1 − di
, (2)
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For the obstacle, it is not possible to normalize the distance as shown above. Therefore,
we consider the safety radius of the vessel. The safety radius Rs is the minimum distance
at which the local planner is engaged. We normalize the distance to obstacle do as follows:

dobs =

{
do
Rs

do ≤ Rs

−1 do > Rs
(3)

Note that dobs is set to -1 when the object is outside the safety radius of the vessel to
indicate that a penalty would not be assigned with respect to this obstacle unless it enters
the safety radius. The angles to the obstacle, waypoint and destination are calculated using
3D vector calculus. For normalisation, we consider their cosines as follows:

cos∠(~P1, ~P2) =
~P1 · ~P2

|P1||P2|
(4)

The action space consists of an angle which corresponds to the angle at which the
vessel is turned. In order to simplify the problem, the vessel’s speed is fixed during our
experiments. While the vessel can take a 360◦ turn, in practice a full range is not needed.
Therefore, we restrict the action space between −45◦ and 45◦. Note that we consider a
continuous action space.

3.4.5. Reward Function

The reward function guides the vessel to avoid collisions and reach the goal. It
considers several factors. Based upon the distance to the destination dg, the distance to the
next waypoint dw and the distance to the obstacle dobs, the reward function R is defined by
the following equation:

R = 100.dg + 50.dw + Ro (5)

Ro =

{
20dobs do ≤ Rs
0 do > Rs

(6)

3.4.6. DRL Algorithm

Continuous control tasks such as the navigation considered in this paper are ap-
proached through actor-critic based DRL methods. An actor (policy) identifies the course
of action, while a critic evaluates how good the action was by calculating Q-values. In this
work, we use a state-of-the-art DRL algorithm, Soft Actor-Critic (SAC) [33]. SAC is an
algorithm that aims to maximize the reward (the standard objective in RL problems) along
with the entropy. Entropy is a measure of the randomness of the policy. By encouraging
a higher entropy, we encourage the agent to explore different states, which makes the
algorithm more robust. In SAC, deep neural networks are used to parameterize the actor
and critic functions. The actor is a Gaussian policy whose mean and diagonal covariance
are produced by a neural network. The critic consists of double Q-networks to reduce
the variance in Q values. We refer the reader to the original paper for more details on
the algorithm.

4. Experiments and Results

In this section, we present experiments using the digital twin for data collection and
model training. First, we discuss the experiments and results for training obstacle detection
algorithms with the addition of simulated data. Then, we present the model training and
evaluation results for the DRL algorithm for live simulated data in AILiveSim.

4.1. Obstacle Detection

For obstacle detection, YOLO was trained on the combination of a publicly available
dataset, ABOShips [34], along with simulated data collected from AILiveSim, SimuShips,
which is available from [35]. The dataset contains simulated images under different weather,
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visibility, occlusion and lighting conditions, as shown in Figure 5. Table 3 provides the
details of data distribution within the training and test set.

Figure 5. Images from SimuShips dataset

Table 3. Dataset for training the object detection model. We combine real images from Turku River
from ABOShips with simulated ones.

Our Dataset
SimuShip ABOShips Combined Dataset

Total Images 9471 9880 19,351
Images in Training Set 7576 8073 15,479

Images in Test Set 1895 1807 3871

We compared model performance on real-life data with and without the augmentation
of simulated data. Model A is the YOLO model trained on ABOShips only. Model B is the
same model trained on the combined dataset. We use recall as the evaluation metric for the
models. In simple words, ’recall’ tells us about how many obstacles our model was able to
capture as compared to all the obstacles present in the data. Since overlooking obstacles
in the maritime domain is of the most critical nature, having a higher recall leads to safer
navigation. The augmentation of real-life data with our dataset during training led to a
2.9% increase in recall, as indicated by the results in Table 4.

Table 4. Effect of simulated data addition on object detection. The model’s recall improved to 0.577
from 0.561, leading to a reduction in false positive predictions).

Class Number of Occurrences Recall
Model A Model B

All 8362 0.561 0.577
Dynamic Obstacle 6776 0.653 0.667

Static Obstacle 1586 0.468 0.486

4.2. Path Planning

In order to train and evaluate the path planning module, we used the Turku scenario
in AILiveSim. First, we placed multiple waypoints to simulate the trajectory of the global
path planner. Then, we introduced an obstacle in the middle of the path. The experimental
setup is shown in Figure 6.
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Figure 6. DRL model training setup in AILiveSim. The pink cylinders represent the global static
waypoints while the rock is an obstacle amidst the planned trajectory. Note that the static waypoints
are not recomputed when an obstacle is encountered.

In the training phase, we trained the DRL agent for 6000 episodes with a maximum of
400 steps in an episode. Live data from the simulation were used for training. Noise was
added to the data to keep the data distribution close to real-life. During the training phase,
we stored transitions (state, reward, next state, and action) in a replay buffer and sampled
128 samples at each step to train the agent. We updated the target networks every 25 steps.
The rewards across training episodes are shown in Figure 7. The figure shows the SAC
agent’s progress during training. The agent learnt to follow waypoints and avoid obstacles
which led to an increase in the average reward accumulated across episodes as indicated
by the running averages. Our vessel learnt to avoid collision. The trajectories taken by
the vessel after 500, 5000 and 50,000 steps of training have been visualized in Figure 8.
The agent learns to avoid collisions and follow waypoints to get to the destination.

Figure 7. Running reward across training episodes for the SAC Agent.
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Figure 8. Trajectory Analysis for the SAC Agent.

5. Conclusions

In this paper, we presented an end-to-end application framework for AMSVs, which
leverages integrated digital twins. This system has been applied and tested for our in-
house development platform, Åboat, to perform autonomous obstacle detection and path
planning. Through the use of a digital twin in a 3D replicated simulation environment, we
showcased the possibility of collecting data from the simulation. Moreover, our integrated
3D digital twin enabled the creation of multiple scenarios for developing systems for
AMSVs. Overall, we provided a proof-of-concept that digital twins are an agile and safe
method for the design and development of AMSVs.

Our work opens possibilities in multiple directions. First, the digital twin can be
enriched with additional information, such as sea charts and estimates around the wave
disturbances, to optimize the path planning models. Second, data visualization appli-
cations can be added to the application layer. Third, field experiments and surveys can
be conducted with digital twins to include more relevant information and increase the
adoption of digital twins in the industry.

Exploiting the proposed application framework, the rewards across training episodes
of a Deep Reinforcement Learning model were evaluated for live simulated data in AILiveSim.

At the current stage, our work only includes sensor data. In the future, we plan to
extend the data sources as well as add more modules to the application layer. We also plan
to explore more efficient methods for AMSVs using the developed framework.
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