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Abstract: With the increasing application and study of lightweight and high strength fiber reinforced
polymer composites in ocean industry, the structural failure problem of composite pressure hulls
has attracted great attention from many researchers in China and globally. Analysis of the structural
failure mechanisms is foundational to the design of deep-sea composite pressure hulls, since nowa-
days the design rules of pressurized vessels is mostly formulated according to their failure modes.
Hence, this paper aims to review the research on the structural failure of composite pressure hulls in
deep sea settings. First of all, the applied research status on composite material in marine equipment
is analyzed, including inspection modalities for composite pressure hulls. The review then focuses
on the three main failure modes, namely overall buckling, material failure and snap buckling of
the deep-sea composite pressure hulls. The study identifies further problems of composite pressure
hulls to be solved through the application of the deep sea equipment research, aiming to provide a
reference for the study of mechanical behavior, ultimate strength computation, and design of thick
composite pressure hulls for deep sea equipment.
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1. Introduction

In recent years, the research frontier of equipment technology has developed rapidly
in the deep sea field. Various types of high-tech deep-sea equipment have been widely used
in marine scientific research, resource exploration, military security and other fields. The
composite pressure hull of a submersible is the main provider of buoyancy, and its weight
accounts for about 1/4~1/2 of the total weight of the underwater vehicle. Perhaps the most
critical consideration for the pressure hull of a submersible is the weight to displacement
ratio. The structural material of a pressure hull is one of the main factors that determines
its weight-displacement ratio and structural bearing capacity, which is also related to the
progressiveness and reliability of submersibles. High strength steel is the most widely used
material in general submersibles, and in recent years, titanium alloys with higher specific
strength have been gradually adopted. However, deep submersibles have higher material
requirements for specific strength and stiffness. Considering all the factors, fiber reinforced
polymer (FRP) has greater advantages. In addition to high specific strength and specific
stiffness characteristics, composite materials also have a comprehensive range of properties
such as the excellent designability, seawater corrosion resistance, acoustic stealth and fa-
tigue resistance. Therefore, composite materials are ideal structural materials for deep sea
pressure hulls, and have been widely studied by scholars [1–5]. They have been used in
deep-sea submersibles worldwide, such as Autonomous Underwater Vehicles (AUV) [6,7],
Underwater Glider (UG) [8–11] and Human Occupied Vehicle (HOV) [12–14]; see Figure 1.
Composite materials also have great potential in marine equipment, such as composite
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pipelines [15,16], composite pressure vessels for submarine external stowage [17,18]. Com-
posite materials have advantages in improving vibration damping, vibration decoupling
and anechoic characteristics [19,20], especially the Glass Fiber Reinforced Polymer (GFRP),
which has the characteristics of reducing magnetic and electrical signals [21,22].
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However, due to the particularity of the deep sea environment and the complexity 
of the composite material, composite pressure hulls will have more complex damage 
mechanisms than the traditional metal counterparts. For a long time, the mechanical be-
havior and structural safety of composites in the marine environment have been of wide 
concern and deeply studied by researchers worldwide. The traditional buckling research 
system for composite pressure hulls is relatively mature, but it is more suitable for shal-
low water where the overall buckling resistance design of thin-walled composite pres-
sure structures is dominant. With the increase of the diving depth of the submersibles 
and the thickness of the composite pressure hull, the structural failure of the pressure 
hull may change from the overall buckling to gradual material failure. As a result, the 
design concept of the structure has to be changed. In addition, the large thickness com-
posite pressure hull used in the very deep sea also has its unique failure mode, snap 
buckling. This problem appeared in the application of deep sea pressure pipelines in the 
1980s, and has received more attention and research since then. Therefore, the research 
on the structural failure mechanism of the large-scale and thick composite pressure hull 
is an important scientific issue, which needs to be considered not only at the preliminary 
design stage, but also during the whole service cycle of composite pressure hulls. This 
paper reviews the structural failure of composite pressure hulls mainly from three as-
pects, including the overall buckling, materials failure and snap buckling. Based on the 
research status in China and elsewhere, further problems to be solved for structural fail-
ure of composite pressure shells for deep sea application are discussed, which may pro-
vide a reference for the study of the mechanical behavior of the composite pressure hull 
with large scale and thickness, as well as the design and application of actual deep sea 
equipment.  
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However, due to the particularity of the deep sea environment and the complexity
of the composite material, composite pressure hulls will have more complex damage
mechanisms than the traditional metal counterparts. For a long time, the mechanical
behavior and structural safety of composites in the marine environment have been of wide
concern and deeply studied by researchers worldwide. The traditional buckling research
system for composite pressure hulls is relatively mature, but it is more suitable for shallow
water where the overall buckling resistance design of thin-walled composite pressure
structures is dominant. With the increase of the diving depth of the submersibles and the
thickness of the composite pressure hull, the structural failure of the pressure hull may
change from the overall buckling to gradual material failure. As a result, the design concept
of the structure has to be changed. In addition, the large thickness composite pressure
hull used in the very deep sea also has its unique failure mode, snap buckling. This
problem appeared in the application of deep sea pressure pipelines in the 1980s, and has
received more attention and research since then. Therefore, the research on the structural
failure mechanism of the large-scale and thick composite pressure hull is an important
scientific issue, which needs to be considered not only at the preliminary design stage,
but also during the whole service cycle of composite pressure hulls. This paper reviews
the structural failure of composite pressure hulls mainly from three aspects, including the
overall buckling, materials failure and snap buckling. Based on the research status in China
and elsewhere, further problems to be solved for structural failure of composite pressure
shells for deep sea application are discussed, which may provide a reference for the study
of the mechanical behavior of the composite pressure hull with large scale and thickness,
as well as the design and application of actual deep sea equipment.

2. Overall Buckling Failure

At present, cylindrical constructions are the main forms studied in composite pres-
sure hulls, which can be divided into three categories: unstiffened (simple), stiffened and
sandwich shells [23,24]. In shallow water, stiffeners are often adopted to enhance circum-
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ferential flexural rigidity of a cylindrical shell, and hence increase buckling strength as well
as achieving an efficient design. Smith [25] also proposed composite sandwich construction
as an alternative form instead of a stiffened cylindrical pressure hull. Because of the thick
but low density core and the relatively thin but stiff skins, the composite sandwich shell
has a much higher specific stiffness and specific strength, so it can well meet both the
overall yield failure and buckling failure criteria of the pressure hull, as well as reducing
the heat conduction along the shell thickness, improving the structural strength when the
temperature rises, and even providing a stealth function for marine equipment.

Similar to the metal pressure shells, thin-walled or long composite shells mainly
produce buckling failure under hydrostatic pressure, and buckling becomes the main failure
mechanism. The theoretical and experimental research on buckling failure of composite
pressure shells under hydrostatic pressure has been very active in recent years, and most
of the research relates to cylindrical shells or circular tubes. Ross and Little [26] tested
and analyzed the failure mode of 44 composite circular tubes under hydrostatic external
pressure, which were made from a mixture of three carbon and two E-glass fiber layers.
Three failure modes were observed including the elastic buckling, inelastic buckling and
axisymmetric ‘yield’ failure. Pavlopoulou and Roy [27] took E-glass fiber as raw material
and used three different manufacturing processes, namely laminated prepreg, filament
wound and braided process to prepare composite circular tube models. Then, all the
composite tubes prepared by different processes were tested to failure under hydrostatic
pressure. Typical overall buckling failure modes are shown in Figure 2. Zhang, Li and
others [28] carried out experiments on three composite cylindrical shells with different
stacking sequences under hydrostatic pressure; overall buckling failure occurred in all
three specimens, and from the experiment they found that from buckling to final failure,
the process was very short.

Based on these failure modes observed in the experiments, the current research on
buckling failure of composite pressure shells is mainly divided into two categories, that are
the elastic buckling and nonlinear buckling.

2.1. Elastic Buckling

Elastic buckling, also known as linear buckling, is based on linear assumptions. The
purpose of linear buckling analysis is to determine critical buckling load, which has been
widely used in engineering. Moreover, the results of linear buckling analysis are the basis
of nonlinear buckling. Therefore, researchers have carried out many studies on elastic
buckling, theoretically and numerically, respectively.

In the theoretical approach, the buckling formula has been established to solve the
linear buckling load of composite cylindrical shells, which provides a scientific, reasonable
and efficient approach for studying the buckling failure mechanism of composite shells.
The buckling problem of the cylindrical shell under hydrostatic pressure (combining
lateral and axial pressure) can be solved analytically, when the both ends are simply
supported. In the work of Messager et al. [29], Carvelli et al. [30], Hur et al. [31], Hernandez
Moreno et al. [32], and Moon et al. [33], there were analytical calculation results of the
critical buckling load of the composite cylindrical shell under external pressure. Paul and
Vasudevan [34] reviewed the latest research status of stress analysis, buckling and post
buckling responses of composite shells under mechanical and thermal loads, focusing on
the buckling and post buckling responses of cylindrical shells and conical shells under
mechanical and thermal loads and their behaviors under buckling and post buckling
conditions. The review showed that hydrostatic pressure, axial pressure and thermal
environment had significant effects on the buckling behavior of laminated composite shells.
Kardomateas [35] proposed the benchmark solution of the buckling problem of orthotropic
cylindrical shells based on the three-dimensional elastic theory, and pointed out that the
classical laminated shell theory is generally highly non conservative in predicting the
critical load of thick-walled composite shells. Kasagi and Sridharan [36] proposed an
analysis method of laminated composite thick shells based on three-dimensional nonlinear
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elastic mechanics, which provides an accurate and effective calculation method for the
analysis of thick-walled composite pressure shells under hydrostatic pressure. At the
same time, based on p-type finite element, they analyzed the buckling and post buckling
responses of laminated thick shells under hydrostatic pressure by axisymmetric solid
element calculation processes, and especially studied the interlaminar stress assessment of
thick shells in the range after buckling. Gohari and Golshan [37] used numerical simulation
and analytical methods to analyze the first layer failure of thick-walled GFRP cylindrical
shells under external pressure, and studied the critical external pressure to avoid the
failure of laminated shells by applying various phenomenon failure criteria. Liu and
Xu [38], respectively, used the first-order shear deformation theory and Reddy’s higher-
order shear theory to solve linear and geometrically nonlinear instability loads of composite
cylindrical shells considering the influence of lateral shear deformation; they obtained
the influence curves of geometric parameters, number of layers, layer angle, radius-to-
thickness ratio of the shell on the critical load of instability, and revealed the influence
mechanism of key shell parameters on buckling failure of the composite pressure shell.
Lopatin and Morozov [39] further considered the torsional stiffness of the end flange of
the composite cylindrical shell, used Fourier decomposition and Galerkin methods to
analytically solve the buckling problem of the composite cylindrical shell with rigid end
plate under hydrostatic pressure, and derived the calculation formula of the critical buckling
load of the orthotropic cylindrical shell under hydrostatic pressure. By comparison with
the results of finite element analysis, the correctness of the analytical solution was verified,
and the computational efficiency of the analytical solution in the optimization design of
the buckling resistance of composite pressure shell is verified by typical examples. Li and
Guedes Soares et al. [40] presented buckling solutions for composite laminated cylindrical
shells in the underwater environment, and the influences of the geometrical imperfections
generated from the process were considered by correcting the stiffness coefficients of the
proposed analytical mode, which were validated by finite element analysis.

In numerical research, the finite element method is undoubtedly the most popular
method to deal with various buckling and post buckling behaviors of different stiffened
shell structures. Numerical simulation and extensive parameter analysis can provide a
reference for structural design and optimization. In particular, the finite element method
can be used to understand important local effects that are difficult to measure in experi-
ments [41]. Using commercial finite element software packages such as ABAQUS, ADINA,
ANSYS, DYNA and NASTRAN, the buckling behavior of composite pressure shells can
be well simulated and solved. Joung et al. [42] designed an Unmanned Underwater Vehi-
cle using the CFRP/GFRP, and used the ANSYS, MSC and other finite element software
to establish the external pressure test model of composite cylindrical shell structure to
verify the test results. Ng, Yousefpour and others [43] used E-glass fiber fabric/epoxy
resin composite material to prepare an AUV model prototype, carried out real pressure
tests at sea, and compared the findings with the numerical analysis results. Kim and
Chao [44] studied the effectiveness of the finite element method for buckling analysis of
wound composite cylinders under external static pressure, and proposed two methods
for analyzing the buckling characteristics of thick-walled wound composite cylindrical
shells under hydrostatic pressure: one is to use the equivalent performance of composite
materials and the other is to use the layer analysis method. They verified the correctness
of the finite element analysis by the hydrostatic pressure test, and difference between the
finite element calculation results and the test results is about 1~5%. Pandey [45] used FEM
to study the buckling characteristics of the medium-thick-walled wound reinforced carbon
fiber/epoxy composite pressure shell under external pressure, and compared it with the
buckling characteristics of the unreinforced composite pressure shell. The results showed
that the failure pressure of the reinforced composite cylindrical shell was much higher than
the unreinforced one, and the buckling pressure of the cylindrical shell with the winding
angle of [±60◦/90◦] was the largest. Jung et al. [46] selected several groups of different
winding angles, such as [±30◦/90◦]FW, [±45◦/90◦]FW and [±60◦/90◦]FW, to conduct finite
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element analysis and comparative analysis of buckling criteria for the buckling character-
istics of wound composite cylindrical shells under external hydrostatic pressure. It was
found that the buckling pressure calculated by the ASME 2007 formula had the highest
safety factor compared with the test value, and the finite element results were in good
agreement with the test value.
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Figure 2. Composite tubes manufactured with different processes and typical failure modes under
hydrostatic pressure [27]. (a) Composite tubes manufactured with Prepreg layup process; (b) Typical
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The above researches were mainly aimed at the simple composite shell without re-
inforcement under hydrostatic pressure. However, in recent years, composite shell with
a thin-walled metal liner has been concerned by some researchers. This structural form
has been widely used in the fields of aerospace, petrochemical and mobile vehicles due
to its light weight, high strength and characteristics of leakage before explosion. How-
ever, due to the different load environment, this structural failure research is not sufficient
in the underwater area. Cai et al. [47] carried out the hydrostatic failure test of carbon
fiber composite cylindrical shell with aluminum liner. The total thickness-to-diameter
ratio of the hybrid shell was 0.0322, with a 3 mm thick composite layer and a 0.75mm
aluminum liner, respectively. The shell was crushed just after an overall buckling of the
shell in the hydrostatic pressure test, as shown in Figure 3. It is indicated that using the
liner may have some reinforcement effect compared to the pure composite shell. Sumana
et al. [48] conducted an experimental and numerical comparative study on the buckling
of composite cylindrical shells with aluminum liner under external pressure, and found
that the cylindrical shells with winding angle of 0◦/90◦ have higher buckling strength and
lower buckling deformation than those with winding angle of 60◦/30◦, ±45◦ and ±55◦.
Zuo, Zhang and others [49] carried out a comparative study on steel and steel–composite
cylinders under external pressure; three nominally identical steel-composite cylinders and
three nominally identical steel ones were tested under uniform external pressure. The total
thickness-to-diameter ratio of the steel-composite and steel cylinders was 0.017 and 0.0094.
Overall buckling failure occurred in all six specimens, and ultimate load capacity results
showed that the steel cylinders could be considerably strengthened by wrapping composite
materials.
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Stiffeners are one of the ways to improve the buckling resistance of composite cylin-
drical shells. However, if the stiffeners themselves are not strong enough, the stiffened
composite pressure shell will produce overall buckling failure. When the composite shell is
reinforced by the ring-stiffening, the discontinuity of the structure at the interface between
the shell and the stiffeners will cause large local shear and bending stresses. Due to the
weak interlaminar performance of the fiber composite structure, the composite shell is
destroyed at a lower strength level, and the main failure mechanism is attributed to the
shear force. The report of Hom and Couch [24] studied the problems caused by the buckling
resistance design of the ring-stiffened cylindrical pressure shell structure of an underwater
vehicle. The research pointed out that when the GRP cylinder was strengthened by the
ring frame, the shear crack appeared at the junction of the frame and the shell due to the
local bending and shear stress caused by the ring frame, as shown in Figure 4a, resulting
in the failure of the pressure shell at a lower strength level. The structure is improved by
setting arc transition between the frame and the shell, and the buckling pressure of the
shell is increased by 32%. To study the behavior of externally pressurized elliptical steel
cylinders stiffened with helical composite stripes, Zuo, Zhang and others [50] carried out a
hydrostatic experiment on three nominally identical elliptical steel–composite cylinders
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together with elliptical steel ones. Test results indicated that the collapse mode of the hybrid
structure was similar to the typical characteristic of a shell of revolution under uniform
external pressure.
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2.2. Nonlinear Buckling

In practice, instability is a typical nonlinear behavior. Nonlinear buckling can oc-
cur on structures without defects, mainly due to large deformation caused by structural
buckling, resulting in geometric nonlinearity. In addition, some material nonlinearities
and/or boundary nonlinearities may be experienced, so it is generally recommended to
perform nonlinear effect simulation step by step. Krasovsky, Marchenko and others [51]
conducted geometric nonlinear finite element modeling and research on buckling analysis
of stiffened cylindrical shells under axial compression and external local loads. Pan, Lu and
others [52–54] studied the nonlinear buckling behavior of composite cylindrical pressure
shells, and analyzed the buckling behavior of composite cylindrical shells with different rib
forms under hydrostatic pressure.

Actually, the composite pressure shells are not always ideal perfect shells, and defects
may occur in the process of manufacturing, storage, transportation, installation and use. It
is generally considered that an initial geometric defect is the main reason for the reduction
of the buckling load of the shell. The geometric defect can be an overall shape defect,
such as the elliptization of the circular shell and the deviation of the shell axis from the
straight line, or a local geometric defect, that is, the deviation from the nominal geometric
value, called as the thickness change. For the composite shell, in addition to the geometric
defects, the defects generated in the manufacturing process of the material should also
be considered, such as delamination defects unique to the composite, the pores in the
composite, the fiber misalignment and the deviation from the theoretical layering sequence.
The occurrence of defects has an important impact on the buckling and failure of the shell.
In order to quantify the influence of defects on the ultimate load of shell, the concept of
“defect sensitivity” is introduced. The defect sensitivity is measured by the Knockdown
Factors (KDF), which is the ratio of the critical buckling load of the shell with defects to the
nonlinear buckling critical load of the ideal perfect shell. The buckling critical load of the
ideal shell obtained by theoretical calculation is sometimes 50% higher than that obtained
by experiment because the influence of defects is not considered.

One of the important contents of the early shell buckling research is to explain the huge
gap between the classical theory and the experimental measurement, and it is aimed at the
cylindrical shell under axial compression. The study on the stability of cylindrical shells
under external pressure is much later than that under axial pressure. The earliest work was
carried out by Von Mises and Flugge. Simitses and Kardomates [55] studied the instability
problem of composite cylindrical shells with defects in medium thickness under uniform
transverse pressure, and considered that the range of defect sensitivity of composite shells
largely depends on the anisotropy of materials, the thickness of shells and whether the
influence of end loading pressure is included. Shen, Jiang and others [56] studied the
buckling characteristics of a thin-walled composite cylindrical pressure shell with defects
under hydrostatic pressure, and considered the influence of geometric defects caused by
the winding process on the buckling load of a composite pressure shell. The results show
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that the existence of geometric defects leads to the sharp reduction of the buckling load of
the composite pressure shell. Tsouvalis, Zafeiratou and others [57,58] proposed a method
of introducing geometric defects into the finite element model of composite cylindrical
shells. The accuracy of the method was verified by comparing the calculation results with
the experimental ones. Through the parametric model, the influence of the initial defect
amount and the end boundary conditions on the buckling load of composite cylindrical
shells under external hydrostatic pressure was studied. It was found that the buckling
ultimate load of cylindrical shells decreased with the increase of the geometric defect
amplitude. The actual buckling load of the shell is 24~40% lower than that of the intact
shell, and the influence of geometric defects on the critical buckling load grows with the
rise of the end support stiffness. Sun [59] studied the influence of geometric defects on
the bearing capacity of composite cylindrical shells with initial defects under external
pressure by using the single point perturbation load method, the least favorable point
perturbation load method, the eigenvalue buckling mode defect method and the measured
defects method, and obtained the corresponding effects of single point hollow defects,
multi-point hollow defects, eigenvalue buckling mode defects and the measured defects
on the bearing capacity of composite cylindrical shells. Jiang [60] studied the influence
of circumferential, axial and rectangular delamination on the critical load of laminated
cylindrical shells under axial and external pressure. Li, Liu and others [61] considered
the nonlinear pre buckling deformation and initial geometric defects of the shells in the
post buckling analysis of the medium thickness and thick anisotropic laminated cylindrical
shells under the combined action of external pressure and axial compression, and extended
the boundary layer buckling theory of laminated cylindrical shells. Błachut [62] considered
geometric shapes including hemispherical, ellipsoidal and elliptical shapes in the buckling
research of composite heads with local defects under external pressure. They mainly
studied the nonlinear buckling characteristics of composite heads with concave defects
based on Force-Induced-Dimple method and nonlinear finite element method. Zhang, Li
and others [63] studied the buckling problems of composite shells with initial imperfections
under hydrostatic pressure; a novel initial imperfection model was introduced to study the
effects of initial imperfection parameters and ply angle as well as stacking sequence on
the critical buckling pressures of composite shells. Wei, Shen and others [64] numerically
investigated the delamination damage and the effect of buckling behavior on delamination
propagation in the composite cylindrical shell subjected to hydrostatic pressure. It was
found that local or global buckling of the shell promoted the propagation of delamination,
and the ultimate buckling pressure of the shell was more sensitive to the axial initial
delamination length.

In a word, scholars in China and elsewhere have carried out extensive research work
on buckling failure of composite pressure shells under hydrostatic pressure. Most of them
focused on thin shells with relatively small thickness to radius ratio. For thick composite
pressure shells, there was still a lack of effective theoretical methods to predict critical
buckling loads. The effects of shell defects formed by different processes, composite layer
structure and thickness ratio on shell nonlinear buckling require further study.

3. Material Failure

In addition to structural stability, the factor of material failure of the pressure hull can-
not be ignored. In some cases, especially for thick wall composite shells, the loss of bearing
capacity was caused by material failure under compression. Under hydrostatic pressure,
uniform compressive stress was mainly generated in the composite shell. However, the
compression strength of the composite material was not only related to the placement of
the shell, but also to the coupling relationship of tension-bending and tension-shear in the
constitutive relationship of the material, making the failure analysis and strength prediction
of the composite structure much more complicated.

However, at present, the compression failure research of fiber composites has mainly
focused on the composite structure under axial compression, while the combined load
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of axial and lateral pressure was less studied. When composite structure is subjected to
unidirectional compressive load along the fiber direction, the continuous fiber acts like an
elongated column, and the fiber would buckle. Even if the volume content of the composite
fiber is very low, and even when the matrix stress is within the elastic range, the fiber
microbuckling will also occur. Fiber buckling failure and microbuckling failure are the
most important failure modes of composite materials under axial compression. The main
failure mechanisms are as follows [65–68]: (i) If the strength and toughness of the matrix are
relatively weak compared with the fiber, the internal fracture of the matrix will occur under
the action of compressive load. Macroscopically, the failure mode is longitudinal splitting
of the substrate through the plate thickness parallel to the fiber direction (Figure 5a). (ii) If
the matrix has higher toughness and strength than the fiber, and the interface between the
fiber and the matrix is not well bonded, the material will produce delamination defects and
wear damage under the action of compressive load. Macroscopically, the main failure mode
under longitudinal compression load is shear failure (Figure 5d). (iii) If the toughness and
strength of the matrix are higher than that of the fiber, that is, when the interface between
fiber and matrix is well combined, the specimen will bend under compressive load, leading
to shear instability. The section and the loading direction are about 45◦, which shows that
the fiber is crushed macroscopically (Figure 5e). Fiber microbuckling usually occurs after
matrix yield, component degumping and matrix microcracking, which is manifested as
follows: when the fiber volume fraction is small (Vf < 0.2), the fiber will buckle in the
reverse direction, and the strain in the matrix will be either tensile or compressive, which is
the tension-compression mode (Figure 5b). However, at the actual fiber volume fraction
(Vf > 0.2), the fiber buckles in the same direction, which is the shear mode (Figure 5c).
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Figure 5. Compression failure mode of unidirectional composites [65]. (a) Matrix failure; (b) fiber
reverse buckling; (c) fiber synthetic buckling; (d) fiber shear failure; (e) fiber shear buckling.

The failure modes of composites under compression are mainly affected by four
factors: material properties, fiber deflection angle (the angle between longitudinal direction
of the fiber and loading direction), fiber volume content, and defect sensitivity. An effective
technical approach to improve the compressive bearing capacity of a composite materials
is to improve the shear modulus, shear strength, fiber volume content, and to reduce the
fiber deflection angle and its own defects [69].

Under hydrostatic pressure, the composite shell needs to bear bi-axial compressive
load, and the failure modes are very complex. The researches on its bearing capacity and
failure mode have been mainly based on experimental research. As part of the research
work of The World Wide Failure Exercise, Soden et al. systematically gave The Failure test
results of thick wall fiber composite circular tubes under biaxial compressive load (lateral
and axial pressure) [70,71]. It has important reference significance for understanding the
compression failure mechanism of composite materials under hydrostatic pressure. The
results show that all thick-walled composite tubes fail due to rupture rather than buckling.
Figure 6 is the shell strain diagram of E-glass fiber/epoxy composite circular tube with
winding angle of 55◦ under biaxial compressive load.
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Figure 6. Pressure-strain curves for the ±55◦ composite tubes under SR = −2/−1 [71]. (a) D = 51
mm, h = 9.23 mm, S2-hollow glass; (b) D = 51 mm, h = 6.91mm, S2-solid glass.

Davies, Riou and others [72] conducted a comparative study on the mechanical be-
haviors of glass-fiber and carbon-fiber reinforced epoxy composite thick-walled cylindrical
shells under hydrostatic pressure. The diameter and thickness of specimen were 175 mm
and 20 mm, respectively. Eventually the specimen was failed at about 90 MPa. The failure
mode, hoop and axial strains of the shells are shown in Figures 7 and 8. For thick glass
fiber/epoxy and carbon fiber/epoxy composite cylindrical shells, strain gauges detected
no signs of buckling.
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The main theoretical prediction methods for composite material performance sub-
jected to compressive load include elastic microbuckling theory, nonlinear microbuckling
theory, three-parameters model, fracture mechanics method, finite element analysis method
and cumulative damage analysis technology [73,74]. Among them, the first three methods



J. Mar. Sci. Eng. 2022, 10, 1456 11 of 19

mainly predict the compressive strength of unidirectional composite material under com-
pression failure. The last three methods can be used to predict the compression failure of
composite shell structures. At present, the possible strength failure factors of the pressure
shell are considered in the failure research and performance optimization of some deep sea
composite pressure shells, and the method based on First Ply Failure is adopted, that is, the
failure of any single layer of the composite laminates will result in the overall failure of the
entire composite. Carvelli et al. [29] analyzed the shell strength under buckling failure and
material compression failure modes, respectively, for the glass fiber composite cylindrical
thin shell with an external diameter of 740 mm, and carried out a real sea test. The Tsai-Hill
criterion was used to predict the structure failure or the strength of the shell. The analysis
results showed that the buckling strength of the shell was less than the compressive strength
of the material, and the final failure was dominated by the overall structural buckling.
Tsai–Wu and maximum stress failure criteria were used by Fathallah et al. [75,76] to analyze
the material strength failure. They minimized the buoyancy coefficient of the composite
pressure shell as the objective function, and took the failure strength and buckling strength
of the shell as the constraint function to optimize the layup of the composite pressure
shell. Shen et al. [77,78] predicted shell failure based on the Tsai–Wu failure criterion and
established an optimization platform based on genetic algorithm and analytical schemes to
optimize the design of filament wound cylindrical shells.

In view of the characteristics of nonlinear material and progressive failure of composite
materials, it is necessary to consider the influence of material damage on the strength and
stability of composite pressure shells during the pressure bearing process, which can be
achieved by establishing a progressive failure model. According to the progressive failure
theory, the failure of one layer of composite material does not mean the failure of the whole
laminate. After the failure of some elements, the laminate can continue to bear the load,
and the failure of the whole laminate is not considered until all the laminates fail. This
method is called the Last Ply Failure method. The analysis model based on this method is a
progressive failure model, and the corresponding load is named as the ultimate strength.

Graham et al. [79,80] carried out a series of tests and analyses for thick-walled com-
posite cylindrical pressure shells in the European composite underwater pressure structure
project, and believed that the Hashin criterion was more appropriate for gradual failure
analysis of shell strength. Hur et al. [30] used the maximum stress criterion combined
with the complete stiffness degradation model to study the layer failure behavior of the
thin-walled composite shell after buckling. Chen and Zhu [81] consider structures such as
initial geometric imperfection and the material nonlinearity and so on, using the algorithm
of nonlinear arc length and introduce the Hashin failure criterion and the damage evolu-
tion criterion, for the sandwich composite cylindrical shell model, carrying out numerical
research on voltage, assessing both structural strength and stability of the double indicator,
predicting structure gradual failure mode and ultimate load. The numerical analysis results
are in good agreement with the experimental results.

In a word, the microscopic failure mechanism of composite materials under axial com-
pression has been studied in detail. However, the composite materials under hydrostatic
pressure are under bidirectional compressive stress, and their damage characteristics and
failure mechanism are different from those under axial compression; this needs to be further
studied. Some scholars have carried out failure tests of composite thick wall round tubes
or cylindrical shells under hydrostatic pressure to obtain the compression failure mode
of composite shells, and complex progressive failure processes such as fiber and matrix
failure, fiber-matrix in-plane shear damage, and interlayer delamination/debonding of
composite shells. The progressive damage failure analysis methods for deep sea thick wall
composite pressure shells need further research and improvement.

4. Snap Buckling Failure

Snap buckling is a unique failure mode of composite shell with large thickness under
high hydrostatic pressure in the deep sea. Its particularity lies in the fact that delamination
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buckling can occur without initial delamination under high pressure stress. In this case,
buckling is accompanied by instantaneous interlaminar fracture. On the other hand, snap
buckling is a nonlinear problem, different from the linear problem in which the post-
buckling equilibrium form is close to the pre-buckling equilibrium form. The transition
of snap buckling to a new equilibrium state occurs instantaneously, and the new form is
essentially different from the original form, as depicted in Figure 9.
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In the 1970s, Kachanov [82,83] made a theoretical study on the snap buckling phe-
nomenon in thick-walled fiberglass composite pipe under pressure in the deep sea, and
its failure mechanism was as follows: When the external water pressure reached a critical
value, the thin sub-layer of the thick-walled composite pipe would be delaminated from
the inner surface suddenly and snap buckling would occur; then the interlaminar cracks
would propagate rapidly along the interface of the delaminated composite layer, leading to
the final failure of the structure. This paper pointed out the necessity and importance of the
study of the snap buckling problem. Since the deflection at the center of the delaminated
sub-layer was several times the shell thickness, a large deflection theory was needed to
solve the critical load of structure.

At present, when considering the delamination buckling problem of a composite shell,
delamination was assumed to be already present in most instances, mainly due to manu-
facturing factors or in service, resulted in the interlaminar fect. For example, Kardomateas
and Chung [84] theoretically analyzed the critical load of the buckled composite cylindrical
shell model with an axial through-film delamination. Li and Zhou [85,86] established an
axial buckling analysis model of laminated cylindrical shells containing circumcircular
through-delamination composite materials by using the high-order shear deformation
theory. The buckling equation and fixed solution conditions of delamination shells were
derived by using the variational principle, and the critical buckling load of delamination
shells was obtained by using the state-space method. Tafreshi [87–89] used gap element
to prevent the mutual penetration of delamination sub-layers after buckling, and applied
binding constraints to the nodes in the undelamination zone and the nodes in delamination
zone to maintain displacement coordination. The buckling of laminated composite cylindri-
cal shells with rectangular delamination on the surface and axial through-delamination was
studied. The critical buckling loads and the influence laws of parameters of composite cylin-
drical shells with delamination under axial compression, lateral compression and combined
loading are obtained. It is proved that neglecting the contact effect of delamination will lead
to unreasonable calculation results. Fu and Yang [90], based on the variational principle
of movable boundary and considering the contact effect between delamination, studied
delamination extension of composite cylindrical shells with circumferential penetration
delamination under external pressure in combination with the Griffith criterion.

However, it should be noted that even if there was no initial delamination in the
structure under certain specific loads, delamination will occur in the process of loading due
to the lower interlaminar strength, and the generation of delamination and the buckling of
delamination sub-layers may occur simultaneously, namely the so-called “delamination



J. Mar. Sci. Eng. 2022, 10, 1456 13 of 19

coupled buckling”. Kachanov [91] specifically explained this problem in his work. He
divided the delamination buckling of composite materials under external pressure into two
categories. One was linear buckling, that is, the equilibrium configuration of the film after
delamination buckling was similar to that before buckling, which could be solved by using
the theory of linear elastic fracture mechanics. The other was a nonlinear buckling problem,
the equilibrium configuration of film delamination changing greatly compared to that
before buckling. This snap buckling becomes a nonlinear problem and needed to be solved
theoretically by using large deflection theory combined with fracture mechanics method.
In either case, the local delamination could be regarded as a crack in the bonding zone of
the composite material. With the local buckling deformation of the film delamination, high
interlaminar stress was generated at the crack tip, which leads to the propagation of the
delamination crack and ultimately to the loss of the overall stability of the structure.

Bottega [92,93] regarded the delamination buckling of composite cylindrical shells
as a variational problem of movable boundary, established a mathematical model of de-
lamination buckling based on flat shell theory, obtained the buckling control equation
and boundary conditions, matching conditions and cross-sectional conditions by energy
functional, and carried out numerical analyses on the post-buckling distortion. Based on
Griffith energy balance principle, we obtain the delaminating extension path, concluding
that due to the existence of contact area, for the delaminating extension in type II fracture
pattern or type I and II mixed mode fracture, the process is likely to be stable or unstable,
or even disastrous, mainly depending on the size of the delamination and bond strength of
structural materials.

Yin [94] established a model for delamination and jump buckling of thin films on
the inner surface of cylindrical shells under axial compression, and deduced a nonlinear
difference equation with elliptic integral by using classical elastic line theory, which is
suitable for finite deformation and arbitrarily large rotation. The classical laminated shell
theory, transverse shear deformation theory and small deflection flat shell theory were used
to solve the problem. By comparing the theoretical solutions, it is found that transverse
shear deformation causes greater buckling deflection of film delamination, but it has no
significant effect on the energy release rate of delamination, while the theoretical solution
of flat shell based on small deflection significantly underestimates the strain energy release
rate of delamination.

Based on the elastic similarity theory, Wang and Shenoi [95] established a nonlinear
difference equation with elliptic integral, and analyzed the delamination buckling and
propagation characteristics of composite laminated curved beams subjected to the closing
moment. The derived results could evaluate the critical load and analyze the buckling
characteristics of composite rings and long composite cylindrical shells under uniform
external pressure.

Recently, Luo and Wang [96] established a model of delamination and hopping buck-
ling of the inner surface of composite spherical shells under compression based on the
principle of elastic similarity. The governing equation of delamination buckling was es-
tablished by using nonlinear large deflection theory, and the critical load expression of
delamination buckling of composite spherical shells was obtained. The coupling buckling
characteristics of composite spherical shells without delamination in the initial state were
studied, and the effects of delamination thickness, delamination location and delamination
size on the critical buckling load were discussed.

In general, snap buckling of large-thickness composite pressure shells under the high
pressure of the deep sea had only been studied theoretically, and few experimental and
numerical results had been obtained. The possible reason is that at present, it is difficult
to directly observe the snap buckling failure mode of composite shells in the test under
external load, and the influence of snap buckling on the ultimate bearing capacity of deep
sea composite shells could not be quantitatively evaluated. As future composite materials
are developed for large scale use, and large depth of latent application of the pressure shell,
special attention needs to be paid to shell structure buckling failure as an important security



J. Mar. Sci. Eng. 2022, 10, 1456 14 of 19

hidden danger. Further research is needed to establish deep big thickness of composite
pressure shell buckling failure criterion layer coupling, to guide the design of deep sea
pressure shell material resistant to delaminating buckling.

5. Other Failure Modes

With the further recombination of FRP with core or metal materials, new underwater
pressure shells, such as composite sandwich shells or composite shells with metal liner, have
been investigated. Some new failure modes have emerged besides the above mentioned
main failure modes. For the sandwich composite shell, affected by the properties of
the composite skin and core material, the sandwich shell may produce complex failure
modes such as skin fiber fracture, fiber delamination, local skin shear instability, skin and
core material denomination, core material shear instability, and combined failure [97,98].
Lee, Kweon and others [97] carried out hydrostatic external pressure test and calculation
verification on the sandwich composite cylindrical shell. The core material of the sandwich
shell was Nomex honeycomb, and the skin was carbon fiber prepreg with [0/90]4s. The
sandwich shell was formed by co-bonding process. The failure mode of the sandwich shell
obtained during a hydrostatic external pressure test is shown in Figure 10. The sandwich
shell exhibits complex failure modes, such as global buckling and skin fiber fracture, fiber
delamination, skin and core interface debonding and combined failure. The design load of
the composite sandwich cylindrical shell under external hydrostatic pressure was improved
by the optimization method, in which the overall buckling and material failure modes were
considered.
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Yuan, Bengsima and others [98] carried out hydrostatic tests on the composite sand-
wich cylindrical shell, with a low modulus polyurethane core. Overall buckling failure
mode was found in the shell, together with an obvious fiber fracture that occurred in both
inner and outer skin. Simultaneously, combined failure modes such as delamination be-
tween the skin layers and the skin/core interface occurred. In addition, another composite
sandwich shell model with a larger modulus of core was manufactured and tested under
hydrostatic pressure, by Zhu and Li [99], to compare their failure modes and mechanical
behaviors. It was found that composite sandwich shell with a large Young’s modulus core
was crushed, with the composite part of the model split into several parts. It was indicated
that material failure of the skin, initiated by the matrix cracking, not overall buckling,
dominated the overall failure of the composite sandwich shells, according to the numerical
results of the model. Kardomateas, Simitses and others [100] proposed an elastic solution
to the buckling of long composite sandwich cylindrical shells under external pressure load.
The results showed that there was a great difference between the three-dimensional elastic
theoretical solution and the shell theoretical solution, for the composite sandwich shell,
compared with the uniform laminated composite ones. Li, Wu and others [101] numerically
simulated the stability of the composite sandwich shell and the delamination evolution
behaviors between the skin and core, under the same load of internal and external pressure
by FEM. Liang and Chen et al. [102] optimized the filament-wound composite sandwich
pressure hull for an underwater vehicle. Multiple discrete variables, such as overall buck-
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ling failure of the shell, composite skin failure and yield failure of the core, were considered
to identify design constraints. The thickness and fiber orientations of the skin, together
with the thickness and shear modulus of the core, were chosen as design variables. Using
carbon fiber, glass fiber and boron fiber reinforced epoxy resin as composite materials for
the skin, respectively, the influence of operating depth, geometric parameters and aspect
ratio (L/D) on the performance of the composite pressure shell was studied, which could
provide a reference for the design of pressure shell of underwater vehicles.

6. Conclusions and Recommendations

The current study mainly reviews the progress of structural failure of composite
pressure hulls in the deep sea from three aspects: overall buckling failure, material failure
and snap buckling failure. Overall buckling failure tends to occur for thin or long composite
shells for underwater vehicles, which was the main concern of many researchers till now. A
large number of theoretical, numerical and experimental results have been obtained, giving
a profound understanding of the buckling failure mechanism of composite pressure hulls
under external pressure.

However, with the increasing depth of composite submersibles and deep sea pipelines,
etc., the pressure shells will become more and more thick, material failure may occur
before overall buckling, and it is difficult to directly determine the ultimate strength of
the pressure shell, for in some cases only the material failure mode was observed in the
hydrostatic test. Correspondingly, progressive damage analysis was adopted as a way to
study the influence of material failure on the ultimate bearing capacity of the pressure hull.
In addition, material failure may also occur in the post-buckling stage of moderately thick
shells, which was a concern of some researchers.

In particular, a unique failure mode that is prone to emerge only in the underwater
environment for composite shells, namely so-called snap buckling or delamination coupled
buckling failure mode, has already been demonstrated to exist for the very thick GFRP
composite pipes used in the deep sea. Unfortunately, however, investigations on this
subject have remained at theoretical level. There is still very little research in this area in
recent years.

Generally speaking, the current research on the structural failure of composite pressure
hulls in the deep sea is still in the exploratory stage. According to the authors, there are
still some problems as follows:

(1) The composite pressure hull that is suitable for large diving depths is a medium thick
or large thick shell; either overall buckling or material failure may occur, or both.
However, there are few studies on the relationship between them, and no appropriate
criterion has been established to distinguish them.

(2) Under hydrostatic pressure, the composite material of the pressure hull withstands a
bidirectional compressive stress. Whether the existing progressive damage methods
are appropriate to study the effects on a thick composite pressure hull or not, has not
been sufficiently investigated.

(3) Research on the important snap buckling failureof a large thickness composite pres-
sure shell under high external pressure has been limited to theoretical approaches,
while the experiment validation is not sufficient.

(4) The nonlinear buckling behavior of thick composite shells under hydrostatic pressure
needs to be further studied, to evaluate the effect of various defects on the ultimate
bearing capacity of the composite shells.

(5) Studies on progressive failure of thick composite pressure shells in the deep sea are
still lacking.

Future studies should pay more attention on the structural failure of moderate thick
and thick composite pressure shells under hydrostatic pressure, since their bearing capaci-
ties may be directly determined by material failure or overall buckling, or by the coupling
of them. An efficient method for progressive damage analysis of composite pressure hulls
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should be established and validated, to predict the ultimate load capacity of the composite
pressure hull in a deep sea environment.

Moreover, the structural failure caused by nonlinear buckling should be further stud-
ied, since overall buckling is still the main form of failure of composite pressure hulls. The
existence of defects is the key factor to determine the collapse load of the shell. Defect
introduction methods suitable for study of composite pressure shells need to be developed.
The influence of the unique lamination defects, internal pores, fiber misalignment and the
deviation from the theoretical layup sequence of composite materials on the ultimate load
capacity of pressure shell need to be further investigated.

Finally, great effort should be paid to strengthen research on the snap buckling failure
of large-thickness shells under high hydrostatic pressure, not only limited to the theoretical
investigation, but also the numerical and experimental aspects. In particular, effective and
reliable tests are needed to understand this unique failure mode and the critical buckling
load caused by snap buckling, though this is very difficult in practice. This is vital to
gain an insight into the snap buckling failure characteristics, and helpful to validate the
theoretical and numerical work on this form of failure.
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