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Abstract: In order to identify the natural frequency of ship propulsion shafting under the running
condition, a multi-method approach that combines Duffing Oscillator, harmonic wavelet packet
transform, and probability density function is proposed. An experimental investigation on the
natural frequency of running propulsion shafting is conducted on the ship propulsion shafting test
bench, and the natural frequency response of running propulsion shafting under different alignment
states is obtained from the measured bearing vibration signal. The results show that the natural
frequency of propulsion shafting can be excited under the running condition, but its response is
feeble. When the alignment state of the propulsion shafting gradually changes with the elevation of
the front stern bearing, the identified natural frequency of the propulsion shafting shows an upward
trend. In contrast, its amplitude shows a downward trend. Therefore, the proposed approach can
identify the natural frequency of the ship propulsion shafting from the measured bearing vibration
signal under the running condition.

Keywords: ship propulsion shafting; natural frequency; running condition; identification

1. Introduction

Ship propulsion shafting is a vital part of the ship power system, so its condition
monitoring and fault diagnosis are effective means to ensure the reliable operation of the
ship power system and realize the safety of ship navigation. Modal parameter identification
is a common technical means for monitoring and diagnosis structures [1]. Research has
showed that when a fault such as a misalignment occurs in the shafting, its inherent
properties such as stiffness or damping would be altered [2]. It may cause a change in the
natural frequency of the shafting. Therefore, the natural frequency can be used to monitor
the running condition of the ship propulsion shafting. However, since it is difficult to obtain
the natural frequency of the propulsion shafting in a running condition, monitoring the
condition of the ship propulsion shafting by using its natural frequency is still a challenge
in application.

Fortunately, the Operational Modal Analysis (OMA) technique has been widely used
to solve the above problem in recent years. Using the OMA technique, the modal parame-
ters of structures, whose inputs are unknown and difficult or even unable to be measured,
such as wind turbines, bridges, and other civil structures, can be obtained from the out-
put response of the structures [3]. The propulsion shafting is one of the main excitation
sources of ship vibration and noise. Therefore, condition monitoring and fault diagnosis
of shaft systems by analyzing vibration signals are the primary tools at this stage. In
2022, Wen et al. propose a composite method that is based on the ensemble empirical
mode decomposition (EEMD) and coupled with the autocorrelation method (AM), the fast
Fourier transform (FFT), which is mixed and applied to identify the fault information of
marine shafting during its operating by hull vibration [4]. In 2019, Lech Murawski et al.
monitored torsional vibrations in propulsion shaft systems using instantaneous angular
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velocity measurements [5]. Moreover, the bearing vibration signal, which can be acquired
easily by sensors in real-time, is one of the important output responses of the propulsion
shafting during navigation. Therefore, it is a practical method to obtain the natural fre-
quency through the bearing vibration signals. Unfortunately, the natural frequency cannot
be obtained from the bearing vibration signals by using the current OMA techniques,
such as frequency domain decomposition [6], stochastic subspace identification [7], and
Eigensystem Realization Algorithm [8]. Natural frequency is the standard information
obtained from dynamic tests [9]. However, it is rarely possible to identify the signal at
the natural frequency in the vibration analysis of ship shafting. Most researchers have
analyzed the effects of transverse and torsional vibrations on ship shafting [5,10]. The
occurrence of faults in the shaft system of a ship is often more evident at this time, and
early fault monitoring is not possible. One possible reason is that the natural frequency
component may be weak, even lower than the environmental noise due to the unknown
and uncontrollable input excitation. Therefore, novel approaches are required to obtain the
natural frequency of the running propulsion shafting from the bearing vibration signals
in situ.

Usually, the signals corresponding to the natural frequency are weak. Thus, the
Duffing Oscillator and the harmonic wavelet packet transform (HWPT) are suitable for
extracting the natural frequency. Duffing Oscillator is one of the classic nonlinear systems,
which is sensitive to periodic signals and immune to noise. Thus, it is widely used in
weak signal detection [11–13]. For example, the Duffing Oscillator can be used to detect
the weak fault characteristic frequency of a rotor in an aero-engine [14]. Additionally, the
harmonic wavelet is widely used to extract the weak signal from noise due to its good
band-pass filtering performance, and the frequency ranges can be chosen very flexibly
for the time-frequency analysis [15]. For example, the weak characteristic frequencies of
rolling bearings can be extracted by the HWPT [16]. Therefore, the combination of Duffing
Oscillator and HWPT is proposed to detect and extract the weak periodic signal from the
bearing vibration signal of propulsion shafting. Further, since both the harmonic responses
and natural frequency responses are periodic signals, they are difficult to distinguish by
their time domain waveform and spectrum. Since the statistical properties of a harmonic
response and narrow-band stochastic response of a structural mode are different [17], the
probability density function (PDF) is used to distinguish the natural frequency and the
harmonic response from the extracted periodic signals. Therefore, based on the proposed
method, the natural frequency response of the propulsion shafting is obtained from the
bearing vibration signal under the running condition, which provides an opportunity to
study the relationship between the natural frequency of the propulsion shafting and its
running state.

In order to verify the validity of the proposed method, the experiments were conducted
on the ship propulsion shafting test bench under different alignment states in this paper. The
bearing vibration signals of the propulsion shafting were collected during the experiments.
The natural frequency response of the running propulsion shafting was obtained from
the measured signals using an approach combining the Duffing Oscillator, HWPT, and
PDF. Then, the variation of natural frequency response was investigated under different
alignment states.

2. Experiments
2.1. Experimental Equipment

The natural frequency of the running propulsion shafting was identified on the ship
propulsion shafting test bench, as shown in Figure 1. In Figure 1a, a driving motor (modal
number: D1TP180L-6) with a rotating speed ranging from 0 to 1000 rpm, rated power of
15 kW, and a rated voltage of 380 V is connected with the input end of the transmission
shaft through coupling to drive the rotation of the transmission shaft. The transmission
shaft with a length of 3.1 m and a diameter of 43 mm was supported by three journal
bearings (i.e., the intermediate bearing, the front stern bearing, and the aft stern bearing).
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In order to change the alignment of the propulsion shafting, each bearing was installed on
a worm gear screw lifter as shown in Figure 1b, and the height variation of the bearing was
0.25 mm for every revolution of the worm gear. In addition, a counterweight plate with a
mass of 22 kg was installed at the output end of the transmission shaft.
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Figure 1. The ship propulsion shafting test bench. (a) Test bench: 1 Driving motor; 2 Coupling; 3 In-
termediate bearing; 4 Transmission shafting; 5 Front stern bearing; 6 Aft stern bearing; 7 Acceleration
sensor; 8 Counterweight plate; 9 worm gear screw lifter; (b) Worm gear screw lifter.

2.2. Experimental Set-Up

The stern front bearing changes had the most significant effect on the condition of
the propulsion shafting test bench in this study. Therefore, different alignment states were
obtained by changing the elevation of the front stern bearing, while leaving the other two
bearings unchanged. Consequently, it was possible to analyze the vibration response of
the shaft system in different states. During the experiments, the elevation of the front
stern bearing was set to 0 mm under the linear alignment state, and then it was gradually
increased from 0 mm to 1.2 mm with a step length of 0.2 mm. Thus, seven alignment states
were obtained. What needs to be emphasized is that the rotating speed of the shaft was
90 rpm, and the running time at each alignment state was 10 min.
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2.3. Collection of Vibration Signal

Three uniaxial acceleration sensors (model number: YA-22T) with a sensitivity of
506.2 mV/g, a range of 10 g, and a mass of 36 g were fixed on the bearing by means
of magnetic adsorption to measure the vibration response. A data acquisition system
(model number: NI Pxle-4499) was applied to collect the vibration signals from the uniaxial
acceleration sensor with the sampling frequency of 2048 Hz and the sampling time of 10 s.
Finally, we output the data to a personal computer (PC). During the experiments, a set of
time series of vibration signals was collected every 20 s. At each alignment state, 20 groups
of vibration signals were obtained. The schematic of this test experimental is depicted in
Figure 2.
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2.4. Measurement of Natural Frequency

Under the linear alignment state, the natural frequency of the non-running propulsion
shafting was investigated by using the experimental modal analysis (EMA) method.

In this test, a single input single output (SISO)-type measurement was used, where the
input excitation was applied to different excitation locations and a response was obtained
at a fixed location to construct a single row of the frequency response function (FRF) matrix.
The experimental setup consists of:

1. A uniaxial acceleration sensor (model number: YA-22T) was fixed on the output end
of the transmission shaft to measure vibration response.

2. The sensitivity of and measurement range of the modal testing hammer (model
number: YC-1160401) were 4 mV/N and 0–5 kN, respectively, and the material of the
selected hammerhead was nylon.

3. Both the impact hammer and the acceleration sensor output were connected to the
data acquisition (system model number: INV-3062T). The chassis was connected to
the PC, and signals were acquired using DASP V10 (Figure 3).

The frequency range of interest in the experiment was 0–300 Hz. Due to the influence
of frequency fluctuations on data collection, the analysis frequency was set to 500 Hz.
Therefore, based on Shannon Sampling Theorem, and the sampling frequency of the
acceleration sensor was set to 1280 Hz. In order to obtain a high-quality excitation pulse
signal, the number of points within the pulse width of the force pulse was at least 20. Thus,
the sampling frequency of the impact hammer sensor was set to 10,240 Hz. Figure 4 was a
schematic of EMA experimental setup.

The shafting was marked with 33 excitation points, which were impacted by the
hammer. It can be seen from Figure 4 that the vibration signal measurement point was
designed near the counterweight plate. For these 33 excitation points, each excitation point
was impacted three times, and the average value of these three signals was taken as the
effective value. Each of the 33 data consisted of an output acceleration sensor response
and an input impulse force imparted by the hammer. Thus, a unique frequency response
function was obtained for each input and output combination: Figure 5a displays input
and the output response of 33 measurements and the resulting FRF.
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In this paper, Eigensystem Realization Algorithm was used to calculate the experi-
mental modal of the propulsion shafting [8]. The Modal Assurance Criteria (MAC) and
the stabilization diagrams (Figure 5b) were used as consistency indicators for modes and
mode shapes [18]. The first six-order natural frequencies of the shafting were determined
by the MAC value and the stabilization diagram, as shown in Table 1.

Table 1. Natural frequency of the non-running propulsion shafting under the linear alignment state.

Order-Number 1 2 3 4 5 6

Natural frequency/Hz 23.8 47.9 75.8 105.7 122.5 151.5

3. Implementation Approach

In this paper, Duffing Oscillator, HWPT, and PDF are used separately to detect, extract
and identify the natural frequency of the running propulsion shafting from the measured
vibration signals, and these methods are described below.

3.1. Detection

The Duffing equation can be expressed as follows:

d2x
dt2 + c

dx
dt
− x + x3 = γ cos(t) (1)

where c is the damping ratio, γ cos(t) is the reference signal, γ is the amplitude, ω is the
angular frequency [11].

The ship propulsion shafting is a typical nonlinear dynamical system, and its dynamic
natural frequency belongs to unknown frequency detection. Therefore, frequency transfor-
mation is performed in the Equation (1) to detect weak signals with different frequency
components [19].

Defining t = ω0τ, ω0 is the reference frequency.{ .
x(τ) = ω0y
.
y(τ) = ω0(−cy + x− x3 + γ · cos(ω0τ))

(2)

By computation of the theoretical bifurcation value of Equation (1), we know that the
chaotic motion is transforming into periodic motion when R = γd/c = 1.676889. That
is, if the amplitude of external exciting periodic force γ = γd = R·c is or little less than
this value, Equation (1) will experience chaotic and periodic motion alternately as time
goes on [14]. Therefore, we derived from calculations in practice that the duffing oscillator
isbest observed when the damping ratio is 0.5. The damping ratio can be in the range of
0~1. When the damping ratio c remains constant, there is a bifurcation value γd, and the
Duffing Oscillator is in a critical state. When γ < γd, the Duffing Oscillator remains in a
chaotic state, as shown in Figure 6a; when γ > γd, the Duffing Oscillator is in a large-scale
periodic state as shown in Figure 6b.

The system produces mutation from chaos to a large-scale periodic state by utilizing
periodic signal components to a system in a critical state, thereby realizing the detection
of weak signals. Therefore, after setting the amplitude of the reference signal to γ0, which
is slightly smaller than the bifurcation value γd, the input signal is embedded into the
Equation (2) to obtain:{ .

x(τ) = ω0y
.
y(τ) = ω0(−cy + x− x3 + γ0 · cos(ω0τ) + input(τ))

(3)

The ‘input’ term represents the external forcing input to the oscillator. Weak periodic
signals within the input signal are low amplitude signals in comparison to the reference
signal [11,19,20].
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The unknown frequency value of weak periodic signals embedded in the input signal
is detected by frequency scanning based on the variable ω0. If the frequency of the weak
periodic signal is the same as the frequency of reference signal, the frequency of weak
periodic signal could be detected by the Duffing Oscillator. The input signal can be
defined as

input(τ) = s(τ) + N(τ) (4)

where, s(τ) = γ1 · cos(ω1τ + θ) is the weak periodic signal within the input signal, N(τ)
is noise, γ1 is the amplitude, ω1 is the angular frequency, θ is the phase.

When the frequency of the weak periodic signal is the same as the reference signal
frequency (ω1 = ω0), it can be detected by the Duffing Oscillator, and the total periodic
signal of the Duffing Oscillator is:

γ′ · cos(ω0τ + ϕ) = γ0 · cos(ω0τ) + γ1 · cos(ω0τ + θ) (5)

where, γ′, ϕ respectively are the amplitude and the phase of the total signal.
If the total periodic amplitude is γ′ > γd, the Duffing Oscillator only goes to the large-

scale periodic phase. When the frequency of the external forcing input signal is different
from the frequency of the reference signal, the Duffing Oscillator remains chaotic. Thus,
the detection of weak periodic signals can be realized by applying the Duffing Oscillator.

3.2. Extraction

As an extension and translation of the harmonic wavelet transform (HWT), the HWPT
has the excellent orthogonality and filtering characteristics of the HWT, and it can decom-
pose a signal into an infinite number of signals with different refined frequencies. Although
the energy is feeble, the signal in a frequency band of interest can be extracted by the HWPT.
Therefore, the HWPT is used to extract the weak periodic signal detected by the Duffing
Oscillator, and the process of HWPT is as follows.

Firstly, according to the frequency of the signal detected by the Duffing Oscillator, the
number of layers j (j = 0, 1, 2, 3, . . . ,) of HWPT is determined, and then the bandwidth B in
j layer can be written as:

B = 2−j fh (6)

where f h is the maximum analysis frequency of the signal. Let the upper and lower limits
m and n of frequency band follow as:

m = sB
s = 0, 1, 2...2j − 1

n = (s + 1)B
(7)
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s is the index of the sub-band. Further, after determining the interested frequency
band (m, n), the frequency-domain expression for the harmonic wavelet ψ̂m,n is obtained:

ψ̂m,n[(n−m)ω] =

{
1/[(n−m)2π] 2πm 6 ω < 2πn

0 other
(8)

Then carry out Fourier transform on the measured signal f (t) to obtain its discrete
value in the frequency f̂ (ω). The frequency-domain expression of the discrete HWT is

Ŵ(m, n, ω) = f̂ (ω)ψ̂m,n[(n−m)ω] (9)

where ψ̂m,n[(n−m)ω] is the conjugate of ψ̂m,n[(n−m)ω].
By taking the inverse Fourier transform of Equation (9), an equivalent expression of

the HWT in the time domain can be expressed as

W(m, n, k) = (n−m)
∫ ∞

−∞
f (t)ψm,n

(
t− k

n−m

)
dt (10)

where k is the translation parameter, k/(n − m) is the translation step of the harmonic
wavelet, ψm,n is the general expression of harmonic wavelet in the time domain, and ψm,n
is the conjugate of the ψm,n.

Finally, the time domain signal W (m, n, k) in the interested frequency band (m, n) is
got by the HWPT.

3.3. Identification

The ship propulsion shafting in operation usually presents harmonic excitation such
as rotating frequency and its frequency multiplication. Therefore, the extracted periodic
signal may be either the harmonic or natural frequency response. In order to obtain the
natural frequency response of the ship propulsion shafting, the harmonic response needs
to be identified and removed. In this paper, the PDF was used to distinguish between the
natural frequency and harmonic response from the periodic signals extracted by the HWPT,
and the method is described as follows.

The natural frequency response of the ship propulsion shafting can be considered as a
linear superposition of responses under multiple random excitations [21], and its PDF P1(x)
approximately obeys gauss distribution and can be expressed as

P1(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (µ > 0, σ > 0) (11)

where µ is the mean of stochastic response variable x and σ is the standard deviation of x.
The harmonic response is a harmonic signal with periodic variations, and its PDF P2(x)

is non-gaussian distribution and can be written as

P2(x) =
1

π
√

x02 − x2
(12)

According to Equations (11) and (12), the probability density curves of the stochastic
and harmonic response were drawn, as shown in Figure 7. It can be observed from Figure 7
that the probability density curves were significantly different between the stochastic and
harmonic responses. The stochastic response has only one peak, as shown in Figure 7a,
while the probability density curve of the harmonic response contains two peaks, as shown
in Figure 7b. Therefore, in this paper, the natural frequency response was determined by
analyzing the shape of the probability density curve of the extracted periodic response
signal, and then the harmonic response was eliminated.
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4. Results and Discussion
4.1. Acquisition of Natural Frequency Response
4.1.1. Analysis of Measured Signal

The bearing vibration signals are collected under the linear alignment state during the
running of the propulsion shafting. Figure 8 is the time-domain waveform and spectrum of
vibration signal measured from the intermediate, front, and aft stern bearing, respectively.
It can be seen from Figure 8(Aa–Ca) that the measured vibration signal is an aliasing signal
containing periodic and aperiodic components. Furthermore, it can be observed from
Figure 8(Ab–Cb) that the natural frequency components such as 23.8 Hz are very weak,
e.g., the first-order natural frequency of 23.8 Hz is almost submerged in the spectral line.
Therefore, it is difficult to directly identify the natural frequency of the propulsion shafting
from the bearing vibration signals.

4.1.2. Detection of Measured Signal

The natural frequency varies in a small range during the running of the propulsion
shafting due to a limited effect of the running state on the natural characteristics of
propulsion shafting. Based on existing research and related literature [2], the error
between the natural frequency identified by the ship propulsion shafting under running
conditions and the natural frequency obtained by the EMA is approximately 1.6%. In
addition, bandwidth size has a significant impact on the efficiency of the calculation.
This study considers the existence of errors and the efficiency of the calculation, and
chose a bandwidth value of 3 Hz (1.98% of the sixth-order natural frequency of the EMA)
after many numerical calculations. In practice, researchers can adjust the monitoring
bandwidth according to the natural frequency of a real ship in its non-running state,
reducing unnecessary frequency scanning. This, in turn, reduces the identification
time and improves the real-time performance of the monitoring system. Therefore, the
bandwidth of the detecting signal was chosen to be 3 Hz, and it is centered on the natural
frequency measured by the EMA. According to the natural frequency of the non-running
propulsion shafting measured by the EMA, the six frequency bands are determined, as
shown in Table 2.

Table 2. The frequency bands for the detecting signal.

Order-Number 1 2 3 4 5 6

Natural frequency (Hz) 23.8 47.9 75.8 105.7 122.5 151.5
Detection band (Hz) 22.3~25.3 46.4~49.4 74.3~76.3 104.2~107.2 121.0~124.0 150.0~153.0

Reference signal amplitude 0.8265 0.8264 0.8263 0.8281 0.8305 0.8387
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Figure 8. The time domain waveforms and frequency spectrum of the bearing vibration signal under 

the linear alignment state: (A) Intermediate bearing; (B) Front stern bearing; (C) Aft stern bearing. 

4.1.2. Detection of Measured Signal 
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the natural frequency identified by the ship propulsion shafting under running conditions 

and the natural frequency obtained by the EMA is approximately 1.6%. In addition, band-

Figure 8. The time domain waveforms and frequency spectrum of the bearing vibration signal under
the linear alignment state: (A) Intermediate bearing; (B) Front stern bearing; (C) Aft stern bearing.

To identify the weak periodic signals in different frequency bands, the six frequency
bands generated are the range of variation of the reference frequency ω0. The reference
frequency ω0 of the Duffing oscillator is varied in steps of 0.1 Hz within the six frequency
bands to enable frequency monitoring of the bearing housing vibration signal. During
the detection, the damping ratio c is chosen to be 0.5, and the amplitude of the reference
signal in the different frequency bands is shown in Table 2. Under the linear alignment
state, the vibration signal of the aft stern bearing in the frequency band of 22.3~25.3Hz
is investigated, and the Duffing Oscillator’s phase trajectories of the different detection
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frequencies are shown in Figure 9. It is clearly observed from Figure 9 that the phase
trajectory of 22.7 Hz, 22.9 Hz, 23.6 Hz, and 24.6 Hz are large-scale periodic states, and the
phase trajectories of other frequencies remain chaotic. Therefore, four periodic signals with
different frequencies in the frequency band of 22.3~25.3 Hz are detected by the Duffing
Oscillator, and the periodic signals in other frequency bands are also detected, as shown in
Table 3. It can be seen from Table 3 that the number of periodic signals detected in each
frequency band is different.
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Figure 9. Phase trajectories of the Duffing Oscillator at 22.3~25.3 Hz: (a) 22.7 Hz; (b) 22.9 Hz;
(c) 23.6 Hz; (d) 24.6 Hz; (e) Others.

Table 3. The frequency of the periodic signal detected in six frequency bands.

Frequency
Band (Hz) 22.3~25.3 46.4~49.4 74.3~77.3 104.2~107.2 121.0~124.0 150.0~153.0

Frequency of the
periodic signal (Hz)

22.7 47.0 75.4 105.1 121.8 150.4
22.9 47.8 75.9 105.3 122.3 150.7
23.6 48.1 76.2 105.5 122.5 151.3
24.6 49.0

4.1.3. Extraction of Weak Periodic Signal

To obtain the weak periodic signals with different frequencies, the HWPT is used
to extract the weak periodic signals detected from the measured signals. Taking the



J. Mar. Sci. Eng. 2022, 10, 1432 12 of 17

weak periodic signals detected with the frequency of 22.7 Hz, 22.9 Hz, 23.6 Hz, and
24.6 Hz as examples, a 13-layer HWPT is selected to decompose the measured signals into
8192 frequency sub-bands, and the bandwidth of each frequency sub-band is 0.125 Hz.
The signals in the 181st (frequency band of 22.625~22.750 Hz), 183rd(frequency band of
22.875~23.000 Hz), 188th (frequency band of 23.500~23.625 Hz) and 196th (frequency band
of 24.500~24.750 Hz) sub-bands are extracted as weak periodic signals respectively, as
shown in Figure 10. It is clearly observed from the waveform in Figure 10A–D that all
the extracted signals show periodic characteristics, and their spectrum is a line spectrum.
Therefore, the weak periodic signals with different frequencies can be extracted using
the HWPT. However, it is still difficult to distinguish between the harmonic signals the
superimposed periodic signal.
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4.1.4. Identification of Extracted Signal

In order to distinguish the natural frequency and harmonic response from the extracted
periodic signals, the amplitude probability distributions of the extracted periodic signals
are calculated. Figure 11 shows the probability density curves of the extracted periodic
signals with the frequency of 22.7 Hz, 22.9 Hz, 23.6 Hz, and 24.6 Hz. It is clearly observed
that the probability density distribution of 23.6 Hz is a single peak curve as shown in
Figure 11C and the others are double peak curves as shown in Figure 11A–C. According to
the definition of PDF in Section 3.3 it can be suggested that the extracted periodic signal with
the frequency of 23.6 Hz is a linear superposition response, i.e., 23.6 Hz is identified as the
natural frequency. In this paper, based on the signals measured from the intermediate, front
stern, and aft stern bearings, the first six-order natural frequencies of running propulsion
shafting in the linear alignment state are obtained, as shown in Table 4. It can be seen from
Table 4 that the obtained natural frequencies of the same order at different positions are
close to each other, and their standard deviation is less than 1.
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Table 4. Natural frequencies of running propulsion shafting in the linear alignment state.

Measuring Position
Order-Number

1 2 3 4 5 6

Aft stern bearing/Hz 23.6 48.1 76.2 105.3 121.8 150.4
Front stern bearing/Hz 23.6 47.8 75.8 105.5 122.1 150.7

Intermediate bearing/Hz 23.1 47.5 75.0 105.3 122.2 150.4
Standard deviation 0.289 0.300 0.611 0.116 0.208 0.173

4.2. Variation of Natural Frequency Response under Different Alignment States
4.2.1. Frequency Changes

In order to investigate the variation of the natural frequency of the running propulsion
shafting with alignment, the first six natural frequencies under different alignment states
are obtained using the proposed approach combining the Duffing Oscillator, HWPT, and
PDF. Figure 12 is the change of the natural frequency with the front stern bearing elevation.
It can be clearly seen that the natural frequency of each order modal shows an upward
trend with the increase of the front stern bearing elevation, as shown in Figure 12A−F
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which implies that that the natural frequency is closely related to the axis position of the
propulsion shafting and can be used to describe the alignment state.
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4.2.2. Amplitude Changes

Further, the natural frequency response signals are extracted, and the root mean
square (RMS) values of their amplitudes are calculated, as shown in Figure 13. It can be
observed that the amplitude RMS value of the natural frequency response signal at each
order modal is very small and shows an obviously dropping trend with the increase of
the front stern bearing elevation, as shown in Figure 13A−F. It indicates that the natural
frequency response can be excited under the running of the propulsion shafting despite its
weak intensity, and the natural frequency response signal can be used to characterize the
alignment state.
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It is well known that when the axis position of the propulsion shafting changes,
the stiffness of the propulsion shafting usually changes and the vibration form of the
propulsion shafting also changes, such as the natural frequency of the propulsion shafting.
This investigation shows that when the front stern bearing elevation gradually increases,
the natural frequency of the propulsion shafting increases, and the amplitude decreases.
Therefore, the natural frequency can be used to monitor the operating state of the propulsion
shafting. It should be pointed out that the influence of the alignment on the propulsion
shafting stiffness needs further investigation.
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5. Conclusions

In this paper, a multi-method approach combining Duffing Oscillator, HWPT, and
PDF was proposed to detect, extract and identify the natural frequency of the running
propulsion shafting in a ship. By investigating the variation of natural frequency response
under different alignment states, the following conclusions can be drawn:

1. Under the running condition, the natural frequency of the ship propulsion shafting can
be excited, and the detection, extraction, and identification of the natural frequency
can be achieved using a multi-method approach combining Duffing Oscillator, HWPT,
and PDF.

2. When the propulsion shafting alignment changes gradually with the increase of
elevation of the front stern bearing, the natural frequency increases, and the amplitude
decreases. Therefore, the natural frequency can be used to monitor the operating state
of the propulsion shafting.

In future studies, we will add various variables, such as motor speed, propeller
mass, blade diameter, torque, bearing damage, and other failure modes. Further analysis
of the variation in the natural frequency and its amplitude under these factors will enable
condition monitoring of the natural frequency of the ship propulsion shafting, so that
early fault characteristics can be detected in time. In addition, most vibration signal
monitoring systems suffer from interference from ambient noise and other vibrating me-
chanical equipment. Therefore, noise reduction processing and rejection of interference
mechanical equipment vibration frequency is part of the following research content. This
method is somewhat inconvenient for cases in which the parameters of the monitoring
equipment are unknown because of the need to identify the natural frequency of the
monitored shaft system static in advance. However, with improvements in computer
performance, the identification of static natural frequencies can be directly replaced by
using a wide range of frequency scans. There is still a possibility of errors in this method
because it requires manual screening of phase trajectory figures and probability density
figures. Grayscale processing will achieve intelligent image recognition, eliminating
manual screening’s drawbacks.
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