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Abstract: At present, there are increasing applications for rosette diffusers for buoyant jets with
a lower density than the ambient water, mainly in the discharge of wastewater from municipal
administrations and sea water desalination. It is important to study the mixing effects of wastewater
discharge for the benefit of environmental protection, but because the multiport discharge of the
wastewater concentration field is greatly affected by the mixing and interacting functions of wastewa-
ter, the traditional research methods on single-port discharge are invalid. This study takes the rosette
multiport jet as a research subject to develop a new technology of computational fluid dynamics
(CFD) modeling and carry out convolutional neural network (CNN) simulation of the concentration
field of a multiport buoyant jet. This study takes advantage of CFD technology to simulate the mixing
process of a rosette multiport buoyant jet, uses CNNs to construct the machine learning model, and
applies RSME, R2 to conduct evaluations of the models. This work also makes comparisons with the
machine learning approach based on multi-gene genetic programming, to assess the performance of
the proposed approach. The experimental results show that the models constructed based on the
proposed approach meet the accuracy requirement and possess better performance compared with
the traditional machine learning method, and they can provide reasonable predictions.

Keywords: numerical simulation; convolutional neural network; rosette-type diffusers;
buoyant discharges

1. Introduction

Wastewater discharge is an important factor that leads to changes in the water en-
vironment, which can not only change the physicochemical property of water but can,
worse still, also cause the pollution of water, eutrophication, and so on. Therefore, it is
of great importance to study the mixing mechanism of wastewater discharge. When the
density of wastewater and the receiving water are different, the motion forms a buoyant
jet [1]. To protect the quality of the near-shore water environment, wastewater produced
by municipal administration and sea water desalination is often dealt with as offshore
discharge. This means the wastewater is taken through the discharge system to the diffuser
and centralized discharger. The choice of diffuser type is one of the important influencing
factors affecting the sewage discharge density field [2]. The commonly utilized diffusers are
single-hole-type, T-type, rosette diffusion-type, and so on; the single-hole type is seldom
utilized in actual sewage discharge projects because of its slow speed and limited dilution
capacity. The rosette-type diffuser has the features of small spacing, low price, and strong
dilution capacity, and is extensively utilized in sewage discharge. However, on account of
its complex mechanism, the modeling of the sewage mixing procedure in the discharge
procedure of rosette-type diffusers is relatively inefficient, so further research is needed.
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Physical modeling and experimental methods are the most used methods to study
rosette jets. For example, Lai and Lee [3] published measurement trajectories of jets dis-
charged from rosette-like diffusers to stagnant water, Abessi et al. [4] measured the mixing
process of rosette-dense jets in fixed receiving water, and Abessii and Roberts [5] reported
concentration field measurements of rosette-dense jets in flows. These previous experi-
mental works have greatly improved the knowledge of rosette jets. However, laboratory
methods are often very time-consuming and expensive, so there is an urgent need to
develop complementary methods [6]. On account of the significant elevation of com-
puter speed and storage capacity, especially the rapid development of computer-generated
three-dimensional mesh capabilities, computational fluid dynamics (CFD) applications
are becoming more and more extensive [7]. CFD mainly studies and describes various
flow phenomena [8] and can use computers instead of physically simulating the natural
environment, mechanical devices, and so on, so the CFD model is utilized to study the
jet and realize its three-dimensional numerical simulation [9]. As a complement to physi-
cal modeling and experimental approaches, several studies on the analysis or simplified
numerical models of unidirectional multi-femoral jets have been reported. Yannopoulos
et al. [10] experimented with a circular vertical turbulent buoyancy jet, using tap water as a
jet liquid and saline as an environmental liquid, analyzed the normalized axial velocity and
concentration distribution along the jet axis, and proved that the research results could be
used for design purposes, laboratory simulation study, and numerical model verification.
Wang et al. [11] discussed the interaction between jets in stationary fluids and their adjacent
jets, established a model of an infinite-length isometric identical jet merger in stationary flu-
ids, and successfully predicted the diffusivity change in the free entrainment and jet merger
planes, as well as the tracer distribution during the merger process. However, the CFD
method requires a significant amount of memory as well as computation time, so further
research should be carried out to improve forecasting and computing power, and shorten
the time required [12]. Currently, machine learning has been extensively utilized in the
field of water conservation, and the applicability of the model has been proven in practice.
Therefore, machine learning can be combined with computational fluid dynamics to train
predictive models. Compared with traditional regression-based methods, machine learning
does not require a predetermined structural model, has portability, discovers the internal
distribution characteristics of the data through neural networks, and quickly and directly
obtains the hidden relationship between the input layer and the output layer. Therefore,
machine learning-based models are often superior to empirical equations derived using
traditional regression-based methods. Methods based on ML can be divided into direct
and indirect methods. In the direct method, the ML-based model is developed for target
variables such as flow rate, water depth, and flood range. For example, Yan et al. [13] pre-
dicted the flow depth of river systems using the polygenic genetic programming (MGGP)
method. We will show that the ML algorithm can effectively replace the hydraulic model
and significantly reduce the computational cost. In indirect methods, the ML algorithm is
used to develop new lower-order models of turbulence closure or flow simulations. For
example, Zhao et al. [14] proposed a CFD-driven ML method for the development of the
Reynolds-Average Navier–Stokes (RANS) model. Compared with the simple CFD model,
the trained CFD model based on machine learning shows good efficiency [15,16] and good
practicality [17,18]. The training procedure of machine learning techniques often requires
large datasets, but large amounts of data are often not available in the water conservation
field, which limits its widespread use in water-related problems.

This study aims to develop a CFD and machine learning-based model to simulate
rosette multiport sewage discharge. Firstly, the CFD model is utilized to simulate the
mixing procedure of the buoyant jet discharged by the rosette multiport diffuser, and the
experimental data are verified. After the verification is passed, additional calculations are
made using the CFD model to enrich the dataset and meet the requirements of machine
learning, which requires a large amount of data. The result is a machine learning model that
can be trained by an extended dataset. It predicts standardized concentrations at diverse



J. Mar. Sci. Eng. 2022, 10, 1383 3 of 15

locations of the discharge holes. In this study, CFD models are built within the framework of
OpenFOAM [19], and machine learning models are developed using convolutional neural
network (CNN) methods [20,21]. An important outcome of this study is a trained hybrid
model based on CFD and machine learning [22]. The hybrid model based on CFD and
machine learning has the same accuracy as CFD models, but has been greatly improved
in computational speed, enabling predictions to be carried out in seconds. Unlike the
previous CFD model in the application of jets, most of the previous research was mainly
utilized to develop and evaluate the performance of diverse models, and this study uses
CFD models to expand the dataset for the purpose of providing a large amount of data for
machine learning.

Machine learning was utilized for sewage discharge modeling, while the mixing
mechanisms for diverse types of discharges are significantly distinct, and the prediction
performance of diverse technologies is also distinct. For the purpose of improving the
efficiency of machine learning and verifying the modeling effect of CNNs, this machine
learning uses convolutional neural networks for modeling. In previous research work,
authors have modeled rosette-type multiport emissions using polygenic genetics (MGGP)
techniques. The overall idea of the MGGP algorithm is based on Darwin’s law of biological
evolution of “survival of the fittest”. It integrates the concepts of gene coding, chromosome
crossover, gene variation, and natural selection in biology into the procedure of optimizing
the solution of the problem, and finally obtains the optimal solution to the problem through
continuous “population evolution”. While MGGP modeling has the disadvantages of
complex genetic algorithm programming, involving gene encoding and decoding, setting
parameters such as crossover rate and the variability contained in the algorithm relies on
experience and a strong dependence on the advantages and disadvantages of the initial
population. CNNs are structures that mimic human nerves and consist of neurons with
learnable weights and bias constants. CNNs have the advantages of sharing convolutional
kernels, having no pressure on high-dimensional data processing and the ability to retain
the original position relationship after the image is convoluted, among other things. Re-
cently, the CNN algorithm has been widely used in the field of water resources research
and has proven to be an effective tool for predicting complex water-related processes. For
example, Eltner et al. [23] proposed a new method of automatically measuring water levels
through CNNs and photogrammetry. The results showed that the proposed method can
provide reliable water level measurements. Recent studies have shown that the CNN
algorithm can effectively predict flow fields, and Kreyenberg et al. [24] measured concen-
tration distribution based on the density-driven solute transport, using CNNs to estimate
the velocity field. The results showed that the CNN algorithm can successfully represent
the underlying mechanism and compensate for the information difference of the missing
system variables. Therefore, by comparing the modeling results of the MGGP and CNN
methods, starting from the mean square value and concentration distribution map, this
paper verifies that the CNN method has great advantages in processing spatial data; as
far as the authors are aware, this is the first time that three-dimensional computational
fluid dynamics and CNNs have proposed the technology for developing a rosette-type
multi-port buoyancy emission model.

2. Materials and Methods
2.1. CNN Method

The convolutional neural network is a multi-layer supervision learning neural net-
work, and the convolutional layer and pool sampling layer of the implicit layer are the
core modules that implement the feature extraction function of the convolutional neural
network. Convolutional neural network structures include the convolutional layer, the
down sampling layer, and the fully linked layer. Each layer has multiple feature maps, each
feature map extracts the input of a feature through a convolutional filter, and each feature
map has multiple neurons. Convolutional layer: Because we can extract the characteristics
of the data through convolution operations, we can enhance some of the characteristics of
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the original signal, and reduce noise. Down sampling layer: Because conducting down
sampling on the image can reduce the amount of data processing while retaining useful
information, sampling can confuse the specific position of the feature, and because, after
a feature is found, its position is no longer important, we only need the relative position
of this feature and other features, and this can cope with the changes of the same kind of
objects brought about by deformation and distortion. Fully connected layer: Softmax is
utilized to fully connect, and the obtained activation value is the picture feature extracted
by the convolutional neural network. A convolutional structure can reduce the amount
of memory occupied by the deep network, and it has three key operations: one is the
local sensing field, the other is weight sharing, and the third is the pooling layer, which
effectively reduces the number of parameters of the network and alleviates the overfitting
problem of the model. The network model uses the gradient descent method to minimize
the loss function to reverse adjust the weight parameters in the network layer by layer, and
this improves the accuracy of the network through frequent iterative training. Its weight-
sharing network structure makes it more similar to biological neural networks, reducing
the complexity of network models and reducing the number of weights. This advantage
is more obvious when the input of the network is a multidimensional image, so that the
image can be directly utilized as the input of the network, avoiding the complex feature
extraction and data reconstruction procedure in the traditional recognition algorithm [25].
Deep CNN is specialized in processing 2D data (images and videos), commonly referred to
as “2D CNN”. 2D CNN can extract features from massive, labeled data and learn complex
objects. Although the classical CNN was developed specifically for 2D signals, Kiranyaz
et al. [26]. proposed the first 1D-CNN to process sequential data (1D signals). Since then,
1D CNN has been widely and successfully used in various fields, such as biomedical data
classification (Zihlmann et al., 2017) [27] and structural damage detection (Abdeljaber et al.,
2018) [28].

In essence, CNN is an input-to-output mapping that learns a significant amount of
mappings between inputs and outputs without the need for any precise mathematical
expressions between inputs and outputs, and as long as convolutional networks are trained
with known patterns, the network has the ability to map between input and output pairs.
The training procedures for the network are as follows:

(1) Select the training group and randomly set 60 percent of the samples as the training
group, 20 percent as the verification group, and 20 percent as the test group from the
sample set;

(2) Set each weight and threshold value to a small random value close to 0 and initialize
the precision control parameters and learning rate. Set the parameter epochs to 1000,
batch size to 32, and verbose to 2;

(3) Select Fr, x, and y as the input vectors, and normalize the concentration target output
vector;

(4) Calculate the output vector of the middle layer and calculate the actual output vector
of the network;

(5) The output error is calculated by comparing the elements in the output vector with
the elements in the target vector. For the hidden elements of the middle layer, the
error also needs to be calculated;

(6) The adjustment amount of each weight and the adjustment amount of the threshold
are calculated in turn;

(7) Adjust weights and adjust thresholds;
(8) When M is experienced, it is judged whether the indicator meets the accuracy require-

ments. If not, it returns (3) and continues to iterate. If satisfied, it proceeds to the next
step;

(9) At the end of training, the weights and thresholds in a document are saved. At this
moment, it can be considered that the various weights have reached stability and the
classifier has been formed. Training is performed again, exporting the weights and
thresholds directly from the documents for training; no initialization is required.
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CNNs themselves can take diverse forms of neurons and learning rules, and the gener-
alization ability is significantly better than other methods. Convolutional neural networks
have been utilized for pattern classification, object detection, and object recognition. The
pattern classifier is established by using the convolutional neural network, and the convo-
lutional neural network is utilized as a general pattern classifier for direct use in grayscale
images.

2.2. The Joint Method of CFD-CNN

The method first requires a good CFD model to be built. In previous work, the
author utilized the OpenFOAM platform to build a CFD model. First, Spatial analysis
of the diffuser is performed to determine the jet influence factors. The multifluid solver
“twoLiquidMixingFoam” in the OpenFOAM framework is used to solve the governing
equations. Secondly, the grid is established. By dividing the diffuser evenly into 12 parts,
to save the computational cost, only one part is simulated, and the rest can be obtained
through the “symmetric” and “mirror” functions. The initial jet velocity, Uj, is set to
0.365 m/s, and the density Freud number, Fr, is 2.5 for the baseline case. Non-slip boundary
conditions with standard wall functions are assigned to the bottom patch. The jet inlet
adopts a fixed value velocity, and the coordinates of the jet inlet (port surface) remain
unchanged under different circumstances. The horizontal distance between the jet inlet and
the centerline of the computational domain is 0.028 m, and the vertical distance between the
jet inlet and the bottom patch is 0.140 m. Computational geometry and meshes were created
using the open-source platform, Salome. A locally modified unstructured computational
grid near the ports is used for domain discretization. The mesh size is between 0.001 m
and 0.005 m. The number of grids is less than 1 million, so the simulation can easily run
on a PC. Digital time steps are dynamically determined by the “adjust time steps” code
available in OpenFOAM, and the criterion for calculating termination is defined by the
user-defined end time. Final numerical simulations of the rosette buoyancy jet experiments,
as reported by Lai and Lee [14], are carried out, followed by six calculations using the
validated model. The experimental data and predicted data are compared, and the jet
trajectory and cross section distribution are verified. The verification results are good and
meet the accuracy requirements, so the joint CFD-CNN model will be based on the CFD
model previously established. Additional simulations are performed with CFD models to
scale datasets for machine learning. Froude numbers are a key factor affecting the mixed
diffusion performance of wastewater, so this study uses CFD models to simulate 20 diverse
Froude numbers. Because the CFD model has been tested, we believe that the accuracy of
the simulated data is acceptable, and it is trained as measured data.

The dataset contains four variables: the number of Fr, x (horizontal) and y (vertical)
coordinates, and normalized concentrations. To prevent overfitting, the dataset is divided
into training, validation, and testing sets on a 6:2:2 scale. To build a CNN-based rosette
buoyancy jet concentration field model, the Number of Fr and x and y coordinates are
defined as input variables, and the normalized concentration is utilized as the output
variable. First, the training set is utilized for model training, and the validation set validates
the trained model. The number of training iterations is set to 1000 generations, and the
model is evaluated by RSME, R2 value, etc. If the validation results are good, the prediction
is made from the test set. If the verification effect is not good, the parameters are adjusted
to continue training.

2.3. Comparison of Models

Multigene Genetic Programming (MGGP) is the development of genetic pattern
groups (GP) and combines the model building capabilities of GP with the parameter
estimation capabilities of statistical regression methods to find the relationship between
input and output variables through a series of procedures [29]. In traditional genetic pro-
gramming, evolutionary models consist of single chess trees, while in polygenic genetic
programming, each regression model is a weighted line combination of multiple pendulum
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trees [30]. The workflow can be roughly described as follows: random generation of pri-
mary populations, consisting of a group of individuals consisting of correspondence and
variables; calculating the adaptability of each individual in the population, and selecting
the excellent individual with good adaptability as the mother; by means of mutation,
intersection, replication, and so on, new individuals are generated and a new generation
(offspring) is created; repeating the second step and the third step until the termination
criteria are met.

In the previous work, the author utilized machine learning to model the buoyancy
jet of the rosette-type diffuser. The authors built the MGGP-CFD hybrid model based on
the CFD model [31]. Additional simulations using CFD to extend the machine learning
dataset and reuse MGGP for learning ultimately resulted in a predictive model. However,
the prediction data obtained from the MGGP model has low accuracy and needs further
improvement. For the purpose of verifying the advantages of the CNN modeling results,
this research compares the modeling results of MGGP and CNN, two diverse methods from
mathematical statistics, normalized concentration distribution, and so on, to determine the
advantages and disadvantages of model performance.

3. Results
3.1. Results of CFD

In this research, the multifluid solver “twoLiquidMixingFoam” under the OpenFOAM
framework was utilized to solve the control equations. Yan et al. [6] have verified that this
model can be utilized for rosette-type multi-port emission buoyancy jets. As shown in
Figure 1, The emitter consists of six ports with a diameter of 0.0044 m, and the calculation
domain is a cylinder with a diameter of 0.6 m. Because the research area is symmetrical,
it can be divided into 12 areas, and for the purpose of saving costs, only one of the
areas is numerically simulated, and the entire research area can be obtained by using
symmetry. The boundary condition is set for the subdomain, the symmetry plane uses
the symmetry boundary, and the bottom adopts the standard wall function without slip
boundary condition. The jet inlet uses a fixed value velocity, and in this research the initial
velocity in the vertical direction is set to 0. The top and exterior settings are the inlet—
outlet boundaries. The “flipped” and “mirrored” images via ParaView (Sandia National
Laboratory, New Mexico, USA) and Tecplot software have small and negligible errors.
Because the sewage is discharged centrally at the port, an area of 0.06 m times 0.06 m near
the port was selected as the area of interest to study the dilution mixing characteristics of the
buoyancy jet. The initial values of k and ε ware calculated based on the jet diameter, initial
velocity, and initial density, which are 0.000246 m2/s2 and 0.002061 m2/s2, respectively.
The open-source platform Salome was used to compute the geometry and meshes, with
regional discretization near ports and local refinement using unstructured computational
meshes. According to the method proposed by Yan et al. [2], a sensitivity analysis of the
grid was carried out, and the grid size iwas finally determined to be between 0.001 and
0.005 m. The “adjusttimestep” in the OpenFOAM software was used to automatically
determine the time step.

Numerical simulations were performed for the single discharge ports. Table 1 shows
the basic parameters of the simulation. The rosette-type buoyancy jet data obtained by
experiments and simulations are shown in Table 2 (The center of the diffuser is taken as
the origin, the transverse is the x-axis, and the vertical is the y-axis). From Table 2, it can
be observed that the simulated buoyancy jet is a vertical buoyancy jet, and the trajectory
of the dilution characteristics is basically consistent with the experiment. The rms error
(RMSE) of the normalized concentration is 0.25, the measurement coefficient (R2) is 0.98,
and the normalized rms error (NRMSE) is 0.04. The dilution characteristic trajectory of
the simulated jet on the vertical cross-section at diverse heights is also basically consistent
with the experiment. Therefore, we believe that the model meets the accuracy required for
simulation, can simulate the buoyancy jet relatively well, and can reasonably predict the
dilution characteristics of a buoyant jet of the rosette-type multi-port diffuser.
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diffuser, (b) is a computational grid, and (c) is a refined mesh near the discharge port).

Table 1. Model parameter.

D U Fr ρ g

0.0044 m 0.185 m/s variable 997 km/m3 9.8

Froude number is an important factor affecting the mixed characteristics of buoyant
jets. Therefore, in this study, 20 jets with diverse Fr values were simulated using the above
validated CFD model, as shown in Figure 2. In various cases, the initial velocity, jet angle,
sewage density, etc. are the same. The ambient water density value is determined using
the “rand” function in MATLAB, and the Fr value is randomly selected, with a maximum
of 24.676 and a minimum of 5.750. Because Fr is not very diverse in diverse cases, it is
believed that the current number of cases meets the data requirements of the machine
learning training model. The default value utilized for calculating the time step is 1 s,
but the model automatically adjusts based on the Courant number, which has a value of
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1. Sensitivity analysis was performed to finally determine that the simulation run time
was 30 s, and the longer calculation time did not have a significant impact on the results.
Figure 2 shows the Froude parameters for 20 cases.

Table 2. Comparison of experimental results and simulation results.

y/D x/D (Exp) x/D (Num)

0.40 1.28 0.99
1.76 2.56 2.84
3.12 3.52 3.67
4.88 3.92 4.39
37.72 4.48 5.13
6.57 4.64 4.80
8.01 4.96 5.10
35.48 4.96 5.09
9.69 5.28 5.35
33.15 5.28 5.20
11.13 5.52 5.53
30.75 5.52 5.32
28.11 5.68 5.47
25.71 5.76 5.64
13.53 5.84 5.79
19.14 5.84 6.23
20.98 5.84 6.19
22.74 5.84 6.02
15.22 5.92 5.99
17.06 6 6.20
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Figure 2. 20 cases of Froude parameters.

Figure 3 shows the jet dilution trajectory of 20 cases under the CFD model, using
the normalized concentration at the center plane (shown in the dashed line in Figure 1b)
(defined by concentration, C, divided by the initial jet concentration, C0) to represent the
concentration size near the port. As can be observed from the figure, the influence of the
Froude number on the dilution trajectory of the jet is very significant. The jet is generally a
vertical buoyant jet, diluted by the discharge port, and the farther away from the port, the
lower the concentration and the greater the diffusion range. The smaller the Froude number,
the larger the difference in the density of sewage and environmental water, the greater
the buoyancy effect, and the more obvious the vertical upward layering. In addition, the
influence range is above the port, showing a parabolic shape. On the contrary, the smaller
the Froude number, the smaller the difference in the density of sewage and environmental
water, the smaller the buoyancy effect, and the less obvious the stratification. The diffusion
impact range at the port is approximately circular, the concentration near the discharge
fracture does not change much, and the bending is not obvious. The smaller the difference
in Froud’s numbers, the less diverse the jet concentration curve is.
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Figure 3. The normalized concentration field of the central plane under different conditions obtained
by CFD model.

Numerical data were extracted using ParaView and MATLAB, and in the dataset
the mean, minimum, maximum, and median values of Fr were 9.993, 5.305, 24.676, and
8.022, respectively. The standard deviation, variance, kurtosis, and bias were 5.079, 25.801,
4.109, and 1.267, respectively. The mean, minimum, maximum, and median values of the
normalized concentrations were 0.33, 0, 1, and 0.28, respectively. The standard deviation,
variance, kurtosis, and skewness of the normalized concentrations were 0.28, 0.08, 2.09, and
0.49, respectively. Because this model has been validated, the above 20 cases were utilized
as measured data for training and testing machine learning models.

3.2. Results of CFD and CNN Joint Method

While applying the MGGP method to train a model, 80 percent of the data were
utilized to train the model, and 20 percent were utilized to test the model. The training
procedure was set to 1000 generations; each generation could generate 500 models, and
the model performance was evaluated by the RSME value. During training, the model
performance was more obvious. At the beginning of training, the model performance was
poor, and the RSME value was large, averaging about 0.3. With the training, the model
performance improved; after approximately 300 generations, the difference was small;
RSME value was lower than 0.15. For the purpose of ensuring the accuracy of the model,
learning was continued to 1000 generations. The last generation of models trained by
MGGP consisted of 500 models, which needed to be evaluated for better accuracy and
simpler operation, and the best model was selected through the Pareto-optimal method.

Figure 4 presents the normalized concentrations of diverse cases under the MGGP
model. Fr, x, and y were chosen as input variables, and the normalized concentrations in
diverse cases were predicted by the best model as the output variables. It can be observed
from the figure that the prediction of the normalized concentration distribution of the
MGGP model for diverse cases is consistent with the actual comparison, and the law of the
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concentration distribution changing with the Froude number is consistent with the actual
data, but it is not difficult to see that the concentration distribution map obtained by the
MGGP model has a large error: the occurrence of a higher concentration area above the
port, which is inconsistent with the actual situation.
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Figure 5 compares the prediction of the MGGP model with the normalized concen-
tration of the actual data. From this figure, it can be observed that the prediction data are
concentrated around the 1:1 line, so it can be judged that the performance of the MGGP
joint method is basically good. The predicted values were compared to the actual values,
and the RMSE and R2 values were calculated to further evaluate the model performance.
It was calculated that the RMSE values of the training set and the test set were 0.087 and
0.088, and the R2 values were 0.903 and 0.902, respectively. The RMSE value was low and
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the R2 value was high, so the accuracy of the model prediction is acceptable, though large
errors still exist.
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When using the CNN method to train the model, the dataset division is improved,
and the dataset is divided into training sets, validation sets, and test sets according to a
6:2:2 ratio. The training set is utilized to train the resulting neural network model, and
then the validation set is utilized to verify the validity of the model, and the model that
obtains the best results is selected until a satisfactory model is obtained. When the model
“passes” the validation set, the test set is utilized to test the final effect of the model, and the
accuracy of the model is evaluated by RSME, R2 value, and so on, including errors. The test
set is only utilized for model testing, and it is absolutely impossible to adjust the network
parameter configuration and select the trained model according to the results on the test
set, otherwise the model will be overfitted on the test set.

Figure 6 shows the adaptability of the CNN model at each evolutionary step. The
CNN method also sets the training procedure to 1000 generations; the initial fitting effect
of training is poor, with an increase in the number of changes, the R2 value is becoming
larger and larger, the degree of fit is getting higher and higher, and after 300 generations,
the result is not very diverse. According to the prediction of the normalized concentration
of diverse cases at diverse locations, the normalized concentration field of the central plane
is established, as shown in Figure 7. At large Fr values, the simulation prediction is not
very good. This is due to the fact that the dataset is relatively small when Fr is larger, which
also shows that machine learning requires a large amount of data for training in order to
reduce errors. Overall, the prediction of the buoyant jet trajectory at the nozzle of the CNN
method is highly consistent with the actual situation, showing an upward vertical jet. As
can be observed from the figure, the CNN joint method predicts that the scope of sewage
impact is basically consistent with the actual data, which provides a reference basis for
determining the location of sewage diffusers and formulating environmental protection
policies. In cases 1 to 8, the sewage has a large impact range and is round or elliptical. In
cases 9 to 20, the boundary of the sewage impact range is more obvious, and it is greatly
affected by buoyancy, which is consistent with the actual data obtained. The validation set
is verified by using the trained model, and the resulting RSME value is 0.031 and the R2

value is 0.985, so it can be proved that the model passes the test and can be tested. The
test set was evaluated using this model, and the resulting RSME value was 0.056 and R2

value was 0.956. Figure 8 compares the actual and predicted normalized concentrations
of the CNN model. It can be observed from the figure that the CNN model prediction is
consistent with the actual data trend, and the numerical size is not very diverse, so the
prediction accuracy of the model is relatively high.
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Compared with the models trained by the CNN and MGGP methods, the model
obtained by the CNN joint method has a lower RMSE value and a higher R2 value, and
the accuracy rate is significantly improved compared with MGGP. Compared with the
normalized concentration distribution maps under diverse models, the concentration
distribution maps obtained by MGGP have obvious concentration band fractures, and
horizontal concentration distribution bands appear above the port, which is quite diverse
from the actual concentration distribution. The concentration distribution map obtained by
the CNN method is more consistent with the actual value, and the concentration band is
basically the same, so it can be said that the simulation effect is better. The buoyancy jet
trajectory was predicted by the CNN combined method, which was more consistent with
the measured data, and the vertical normalized concentration distribution and diffusion
range were basically consistent with the measured data. In addition, in terms of computing
time, MGGP needs several hours to build a model, while CNN training time is relatively
short and can be completed in a few minutes; therefore, the computational efficiency is
greatly improved. This shows that the results of modeling predictions using the CNN
method are superior to the MGGP method, which is an encouraging result in the domain
of machine learning.

3.3. The Performance of the Proposed Approach

The CNN model has both reliability and the accuracy. From the perspective of spatial
distribution, the CNN model can accurately capture the process of predicting the start,
transmission, and diffusion of the buoyant jet. Quantitatively, the RMSE and R2 values
calculated by the CNN model based on the buoyancy jet space coordinates are 0.056
and 0.956, respectively, which are higher than the 0.088 and 0.902 of the MGGP model,
confirming that the CNN is greatly improved compared with other machine learning
models. To the best of the authors’ knowledge, this is the first time a CNN model has been
developed for jets or plumes. The CNN method has recently been employed in similar
applications. For example, Syed Kabir et al. [32] developed a fast-prediction flood model
based on the deep convolutional neural network method, which further confirmed the
performance of the CNN model. We have shown that the CNN model greatly outperforms
the SVR. Hossein Hosseiny et al. [33] proposed a general river flood modeling framework
based on coupled hydraulics and ML modeling, and the results showed that machine
learning can reduce the computational time, resources, and cost of large-scale real-time
simulations with high accuracy. Compared with CNN technology, the R2 value of the CNN
model in this study is 0.956; the R2 of Syed Kabir et al. using CNN modeling was 0.94, and
the CNN model studied by Hossein Hosseiny et al. had an R2 of 0.88, which confirms that
the accuracy achieved in this study is comparable to those achieved in previous similar
studies. In the later research, more influencing factors will be added to continuously
improve the accuracy of the model.
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4. Conclusions

This research proposed a modeling of a rosette-type multi-port buoyancy jet based on
a combination of CFD and CNN technologies. Using a validated CFD model to calculate
20 diverse Froude number cases, and then using CNN technology to build a machine
learning model, the accuracy between the final prediction data and CFD physically based
data is acceptable. The predicted data RSME value is 0.056 and R2 value is 0.956; when the
Froude number is small, the buoyancy jet trajectory shows a significant upward parabolic
shape, and the concentration distribution is consistent with the measured value. Compared
with MGGP, the CNN model occupies less memory, the operation rate is faster, the accuracy
of the results is higher, and the overall performance of the model is better. This study
demonstrates the ability of this method in simulating the concentration field of a rosette
buoyancy jet. When more data is available, the composite model can be further improved
or the performance of the composite model can be extended. Furthermore, in machine
learning, the training method and hyperparameter settings have a significant impact on the
model training results, and in the training of neural networks, how to better train a model
is a problem that is worth exploring.
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