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Abstract: The reliability of collision avoidance systems for Maritime Autonomous Surface Ships
is one of the most critical factors for their safety. In particular, since many ship collisions occur in
coastal areas, it is crucial to ensure the reliability of collision avoidance algorithms in geographically
limited coastal waters. However, studies on maritime autonomous surface ships collision avoidance
algorithms mainly focus on the traffic factor despite the importance of the geographic factor. Therefore,
this study presents a methodology for establishing a practical collision avoidance system test bed,
considering the geographic environment. The proposed methodology is a data-driven approach that
objectively categorizes collision risk situations by extracting these risks using Automatic Identification
System (AIS) and Electronic Navigational Chart (ENC) data, followed by clustering algorithms.
Consequently, the research results present a direction for establishing test beds from the perspective
of geographic and traffic factors.

Keywords: MASS; collision avoidance system; geographic environment; test bed; data-driven

1. Introduction

Maritime Autonomous Surface Ship (MASS) development is one of the most active
research areas in the maritime domain [1]. Its benefits are reflected in finance, sustain-
ability, and safety [2–4]. It is also promising that MASSs will be an alternative means of
maritime transportation. However, some studies have raised issues about MASSs’ safety
and security [5]. Although MASSs are likely to eliminate human error, which is the leading
cause of marine accidents [6], the internationally harmonized regulations for MASS are
insufficient [7], and its systematic verification method is still unclear. To this end, collision
avoidance systems for MASSs must be tested using every possible collision risk situation
because ship collisions are the most frequent type of maritime accident, causing significant
consequences [8].

For this reason, researchers have proposed various methods to validate the MASS
collision avoidance system [9–30]. Among the recent papers published from 2020 to
date, 22 studies were found that related to the development and verification of collision
avoidance algorithms. However, those studies mainly considered the traffic factor. Among
22 studies in Table 1, only 4 studies considered geographic environments, while 18 studies
concentrated on traffic factors in generating collision scenarios. These facts depict that the
research on collision situations has been focused on the open water.

A large portion of ship collisions occurs in coastal water due to the characteristics of
the coastal water environment, which has limitations in navigation from high traffic density
and geographic factors [31,32]. In order to develop the test bed for the MASS collision
avoidance test that is applicable even in coastal water, it is essential to develop a test bed
under the contemplation of the geographic environment.

Based on the above facts, the proposed methods extracted ship Collision Risk Situa-
tions (CRSs) using Automatic Identification System (AIS) data and Electronic Navigational
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Chart (ENC) data. Then, the methods classified the CRSs based on multiple-stage clustering
to analyze distinguishing collision risk situations.

Therefore, the purpose of this study is to develop a systematic method for designing
test beds for an objective evaluation of the collision avoidance system of MASSs.

Table 1. Related studies on collision avoidance system tests.

Related Studies Factors Purpose

Porres, I. et al. (2020, August) [9] traffic Scenario-based test of a collision
avoidance algorithm

Pedersen, T. A. et al. (2020) [10] traffic Simulation-based verification of a collision
avoidance algorithm

Shokri-Manninen et al. (2020) [11] traffic Formal verification of COLREG-based navigation
of autonomous maritime systems

Kufoalor et al. (2020) [12] traffic and geographic Field verification of an autonomous surface vehicle
in challenging scenarios

Porres, I. et al. (2020, October) [13] traffic Verification and validation of AI
navigation algorithms

Shaobo, W. et al. (2020) [14] traffic Development of a collision avoidance algorithm

Cho, Y. et al. (2020) [15] traffic Development of a collision avoidance algorithm

Han, J. et al. (2020) [16] traffic Development and field testing of a collision
avoidance algorithm

Guo, S. et al. (2020) [17] traffic Development of a collision avoidance algorithm

Bakdi, A. et al. (2021) [18] traffic and geographic Test bed scenario design for a collision
avoidance algorithm

Fiskin, R. et al. (2021) [19] traffic Experimental validation in virtual and
real environments

Hwang, T. et al. (2021) [20] traffic Development of a collision algorithm test bed

Chun, D. H. et al. (2021) [21] traffic Development of a deep reinforcement
learning-based collision avoidance system

Wu, X. et al. (2021) [22] traffic Development of an optimized collision avoidance
decision-making system

Zhang, X. et al. (2021) [23] traffic A state of the art survey of a collision avoidance
navigation system

Sawada, R. et al. (2021) [24] traffic
Development of an automatic ship collision

avoidance system using a deep reinforcement
learning model

Zhang, L. et al. (2021) [25] traffic and geographic Development of a hybrid approach model for the
path planning system of autonomous ships

Torben, T. R. et al. (2022) [26] traffic Automatic simulation-based testing of
autonomous hips

Akdag, M. et al. (2022) [27] traffic Development of a collaborative collision
avoidance model

Li, M. et al. (2022) [28] traffic and geographic Development of a dynamic trajectory plan in
multi-object environments

Xing, S. et al. (2022) [29] traffic Development of a model predictive control-based
collision avoidance algorithm

Hagen, I. B. et al. (2022) [30] traffic Development of a scenario-based model
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2. Methodology

This section provides a data-driven approach as shown in Figure 1. The methodology
includes data collection, preprocessing, feature engineering, and clustering steps. The
authors collected ship traffic data (AIS) and geographic data (ENC). In the preprocessing
step, obtained data were subsequently refined to extract CRSs. Features from the CRSs were
designed, extracted, and selected in the feature engineering step. Then, in the clustering
step, CRSs were categorized using multiple-stage clustering. Detailed steps are provided
in the following subsections.
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Figure 1. Workflow of the proposed methodology.

2.1. Data Collection

The collected data were AIS and ENC data. AIS data were provided by the Republic of
Korea’s Ministry of Oceans and Fisheries. It consists of static, voyage-related, and dynamic
information. ENC data comprises marine geographic information, such as land, buoys,
and contours [33].

As shown in Figure 2, the area where various traffic situations between ships entering
and departing was selected. The selected area, Incheon, Pyeongtaek, and Daesan ports,
had an appropriate distribution of ENC data. Figure 2a shows the data points of AIS data,
and Figure 2b indicates the aspects of geographic objects in the corresponding area.
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The collection period of AIS data was one month, from 1 September 2019 to
30 September 2019. When considering the establishment of CRSs for the MASS test bed,
the spatial and temporal size of the collected data is rather limited, but from the perspective
of validation, the data size was appropriate.

2.2. Preprocessing
2.2.1. Collision Risk Situation Extraction

CRS extraction was conducted by recognizing ship-to-ship situations, finding geo-
graphic objects, and identifying CRSs that include traffic and geographic factors simultane-
ously. Each ship in the accumulated ship trajectories was selected as own ship (OS), and
the target ships (TSs) within the designated distance to OS were recognized, as shown in
Figure 3.
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Figure 3. Ship-to-ship situation recognized from the AIS data.

The criteria for recognizing ship-to-ship situation groups are defined in Table 2. Over-
all, OSs were of a length (L.O.A) between 150 m and 200 m, and the speed was set to
more than five knots to sort the sailing ships. Ships within one nautical mile from OS
were recognized as TSs. In the distance calculation, the Euclidean distance was used. The
length of the own ship can be considered rather limited, but it is selected according to the
specification of the target ship of the funding project.

Table 2. Ship-to-ship CRS extraction criteria.

Criteria Object Description

Ship’s length OS 150 m~200 m

Ship’s SOG OS Over five knots

Distance TS Less than one nautical mile

Afterward, the geographic objects were found among the ship-to-ship situations
where geographic objects exist within one nautical mile from OSs. In selecting geographic
objects, the authors focused on the physical obstacles, such as buoys, coastlines, bridges,
depth contours, wrecks, pontoons, pylons, and bridge supports, as detailed in Table 3.
Since the maximum draft of the extracted OS was 15m, the depth contours were restricted
accordingly.
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Table 3. Physical objects from ENC data.

Categories Abbreviations Object Descriptions

Beacons
BCNCAR Beacon, Cardinal

BCNISD Beacon, Isolated danger

Buoys

BOYISD Buoy, Isolated danger

BOYCAR Buoy, Cardinal

BOYLAT Buoy, Lateral

BOYSPP Buoy, Special purpose

Depth

COALNE Coastline

LNDARE Land area

DEPCNT Depth contour

DEPARE Depth area

SOUNDG Sounding

Obstacles

WRECKS Wreck

BRIDGE Bridge

OBSTRN Obstruction

PONTON Pontoon

PYLONS Pylon/Bridge support

Consequently, 5906 cases of CRSs were extracted upon the contemplation of the above
traffic and geographic factors. Figure 4 is the sample of extracted CRSs for one OS.
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2.2.2. Data Cleaning

AIS data have errors. The timestamp intervals of all ships differed according to their
SOG and communication status [34], and the heading has frequent errors, such as “zero” or
“511” [35]. In order to handle errors, the time interval was regularized to one minute, and
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dynamic variables (COG, SOG, ship’s position) were interpolated by linear interpolation.
The heading error was substituted for the COG [20] because the heading is an essential
element in the determination of the encounter situation. Then, CRSs exceeding six-minute
intervals were truncated.

2.3. Feature Engineering
2.3.1. Feature Extraction

CRSs were distinguished by three feature classes. One feature in the “Area class”
classifies the spatial characteristics of CRSs. Another feature in “Own ship class” represents
the traits of a ship’s navigating pattern. The other feature in the “Target ship” class
distinguishes the relationship between OS and TS. Features extracted by the classes are
shown in Table 4. Feature extraction used windowing. The window size was set to six
minutes, and the moving size was set to three minutes.

Table 4. Extracted features.

Classes Features Descriptions

Area

Density of an ENC data point
Number of lands

Density of land datapoints
Number of contours

Density of contour datapoints

Number of all obstacle data points
Number of land groups

Number of land data points
Number of contour lines

Number of contour data points

Own ship Standard deviation from COG
Standard deviation from SOG

Course changing intensity
Speed changing intensity

Target ship Type of ship
Type of encounter

Type of target ship
Quadrant changes of the target ship

In the area class, the features represent the degree of spatial constraint using the density
of geographic objects in CRSs. DBSCAN is used to transform the adjacent objects’ data
points into land and contour groups [36] to extract the “Number of lands” and “Number
of contours.” The quantities of object data points in CRSs were extracted as “Density of
ENC data points,” “Density of lands data points,” and “Density of contour data points.”
The own ship class extracted the standard deviation of COG and SOG to represent the
intensity of changes in course and speed, respectively [37]. In the target ship class, the
authors re-categorized standard AIS types of ships into four types for effective clustering
in Table 5.

Table 5. Recategorization of ship type.

Type Code Description Recategorized

0 Not available (default) N/A

1–19 Reserved for future use N/A

20~29 Wing In the Ground (WIG) Others

30 Fishing Fishing (small)

31~32 Towing Operation

33 Dredging or underwater operation Operation

34 Diving operation Operation

35 Military operation Operation
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Table 5. Cont.

Type Code Description Recategorized

36 Sailing Fishing (small)

37 Pleasure craft Fishing (small)

38~39 Reserved N/A

40~49 High-speed craft (HSC) Others

50 Pilot boat Operation

51 Search and Rescue vessel Operation

52 Tug Operation

53 Port tender Operation

54 Anti-pollution equipment Operation

55 Las enforcement Operation

56–57 Spare-Local vessel Operation

58 Medical transport Operation

59 Noncombatant ship (RR Resolution No.18) Operation

60~69 Passenger ship Commercial ship

70~79 Cargo ship Commercial ship

80~89 Tanker ship Commercial ship

90~99 Other types of ship Others

Afterward, newly defined types of ships were converted into a logical array. The
logical array describes the composition of TS involved in each CRS. Figure 5 shows the
example of the “type of ship” feature in the form of a logical array.
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Similarly, “Type of encounter” was transformed into a logical array using the TS’s
relative bearing changes. The relative bearing was converted into a Cartesian coordinate
system. Then, the switches of relative position quadrants were calculated and described as
a logical array [20]. Figure 6 show the example of the “Type of encounter” feature.

2.3.2. Feature Selection

The primary purpose of feature selection was to select the distinctive features for
effective clustering. Since features in the “area” and “ownship” classes were continu-
ous numerical values, the Laplacian rank method was an appropriate feature selection
method [38]. The result of the Laplacian ranks of “area” and “ownship” features was
derived distinctively, indicating the importance of the feature. On the contrary, features in
the “target ship” class were independent enough to cluster; thus, all features in the “target
ship” class were selected.
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2.4. Clustering

Subsequently, the feature dataset of CRSs was classified through multiple-stage clus-
tering. Multiple-stage clustering is an intuitive and interpretable method that keeps the
accessibility of each cluster by providing results in stages [39].
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2.4.1. First Stage Clustering

CRSs were classified according to the area’s spatial characteristics using the “area”
class feature. The clustering algorithm used here was the K-means clustering algorithm.
The distance measurement was the Euclidean distance, and an optimal number of clusters
was selected using silhouette evaluation methods.

2.4.2. Second Stage Clustering

CRSs were distinguished according to the intensity of the own ship using the own
ship class feature. The clustering algorithm adopted was the K-means clustering algorithm.
The Euclidean distance was used for distance measurement. The optimal K of silhouette
evaluation was employed in selecting cluster numbers required for applying the K-means
algorithm.

2.4.3. Third Stage Clustering

This stage clustered CRSs using the feature “type of ship” in the TS class. The distance
measurement was the hamming distance. Calculated pairwise distances between CRSs
were applied to the linkage algorithm. The silhouette evaluation was used in the selection
of an optimal number of clusters.
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2.4.4. Fourth Stage Clustering

This stage grouped CRSs by the TS class’s feature “type of encounter.” The applied
distance measurement was the hamming distance. The pairwise hamming distance between
CRSs was applied to the linkage algorithm and clustered. The optimal K of the silhouette
evaluation was employed in selecting cluster numbers required for using the K-means
algorithm.

3. Result
3.1. Extraction and Selection of Features

The highest three features were selected in the “area” class, as shown in Figure 7a.
One feature was selected in the “own ship” class feature, as described in Figure 7b.
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Based on the feature selection result, the final adopted features are listed in Table 6.
The features of the “area” class were comprised of “Density of ENC datapoint,” “Number of
lands,” and “Density of Contours datapoints.” The selected feature of the OS class was the
“Standard deviation of COG.” As for the “Target ship” class, the logical arrays describing
the type of ship and type of encounter were the features selected.

Table 6. List of selected features.

Class Feature Description

Area
The density of the ENC data point

Number of lands
The density of the contour datapoints

Number of data points of all geographic obstacles in the CRS
Number of islands or lands in the CRS

Number of contour data points in the CRS

Own ship The standard deviation of COG Represents how much the own ship changed course in the CRS

Target ship Type of ship
Type of encounter

Type of target ship (Static AIS data) in the CRS
Quadrant change in target ship using relative bearing

Figure 8 shows sample CRS and feature values. The figure on the left describes the
CRS on the map. The green color indicates land, blue indicates depth contour, and the
black dot indicates buoys. The initial position and direction of the OS are indicated using a
blue circle and a line, and the red circle and line indicate TS. The figure on the right is the
feature value that depicts the geometric navigation situation in numbers. The area used
had 17,021 ENC data points and 5 land groups. Among the ENC data points, there are
9612 contour data points. The standard deviation of the OS course was 6.39, indicating a
course change. Furthermore, the type of ship encountered was a combination of a fishing
boat and a commercial ship, comprising an encounter-type situation where the OS overtook
the TS on the starboard side.
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3.2. Clustering Result

As a result of clustering, 5906 CRSs were categorized into 1393 groups. Figure 9
describes the division of each clustering stage. The first stage distinguished CRSs into three
clusters based on the density of geographic objects. In the second stage, the three clusters
from the first stage were subdivided into two groups by the OS maneuvering intensity.
The third stage grouped the clusters by TS ship type. Finally, the last stage subdivided
the clusters by the encounter type of TS. The results of each clustering are described in the
subsection.

The lines at the final nodes (right end) are the clusters of similar collision risk situations.
These lines were represented by grey lines and other colored lines based on the frequency.
The colored lines indicate clusters containing multiple CRSs. These comprised 584 clusters,
which explained 86.3% of the entire CRSs. The remaining grey lines are sole clusters, which
occurred only once out of 5906 CRSs, and they were excluded from other clusters due to
their complex and unique characteristics.

The red dotted line in Figure 9 is a sample CRS to explain the clustering result. As the
line went through the clustering stages, CRSs were subdivided into detailed clusters. The
navigation situation in Figure 10 is the corresponding sample CRS. Based on the criteria for
each clustering stage, this CRS was interpreted as follows:

“The geographic condition of this CRS is less limited, and the movement of the own
ship is stable. Therefore, the target ship is a commercial ship that follows the own ship
from the starboard quarter.”

3.2.1. First Stage Clustering

This stage distinguished CRSs into three clusters based on the density of the geographic
objects. As shown in Figure 11a, while the lowly restricted area was 62.9% of the total CRSs,
the moderately restricted area was 29.8%, and the highly restricted area was 7.3%.

Figure 11b shows each cluster’s spatial distribution of the CRSs. While green indicates
the geographic objects, the other three colors represented the clusters. Investigations
revealed that the closer the area was to the port or inner land, the more it was classified
as highly restricted. Contrastively, the farther the area, the more it was classified as
lowly restricted.

3.2.2. Second Stage Clustering

The own ship’s STD of COG was this clustering stage’s feature. This stage distin-
guished the CRSs into two groups, “Active” and “Inactive.” Figure 12 shows the ratio of the
two intensity-based groups. Investigations revealed a difference in the inactive and active
OS ratio by area. The ratio was 6.5:1 in the lowly restricted area, 3.5:1 in the moderately
restricted area, and 3.29:1 in the highly restricted area. This indicates that the OS tended to
move more actively in the highly restricted area than in the lowly restricted area.
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3.2.3. Third Stage Clustering

The result of clustering based on the type of TS differentiated the CTSs into 14 clusters.
The type of TS not only includes the single type but also includes the combined TS types.
As can be seen in Figure 13, the commercial ship is the main composition of the TS type.
The highest three TS types include commercial ships. On the contrary, the others showed a
low frequency, indicating that the more complex the combination of ship types, the lower
the occurrence.
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3.2.4. Fourth Stage Clustering

The final clustering stage identified 1393 CRS clusters based on the encounter type of
TS. As mentioned in the clustering overview, CRS clusters can be labeled as multiple CRS
groups and sole CRS groups. The multiple CRS group is the cluster with the plural CRSs,
and the sole groups are clusters with one CRS excluded from any other clusters because
the situation is complex and unique.

As shown in Figure 14a, while 574 multiple CRS groups contained 5097 CRSs, rep-
resenting 86% of the total CRSs, the remaining 14% consisted of 809 sole CRS groups.
Figure 14b shows the frequency of clusters highlighting the top 50 clusters of the
ordinary group.

Accordingly, clusters could be separated into the “ordinary CRS” and “unique CRS”
groups with particular characteristics. Figure 14c presents the characteristics of the “or-
dinary” and “unique” CRS groups by sample trajectory. In this figure, green represents
the geographic obstacles, the blue circle and line indicate the position and direction of
OS, and the red circle and line represent the position and direction of TS. Investigations
revealed that the trait of the “Unique CRS” was based on the ship’s type and encounter
type complexity. In particular, the high complexity of the ship’s type and encounter type
was a dominant factor in the lowly restricted area. Nevertheless, since the environment
had a low occurrence, a unique situation could be classified with only a small number of
TS in the highly restricted environment.
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4. Discussion

This study’s methodology presents a data-driven approach to extracting and categoriz-
ing CRSs to develop a systematic method for designing test beds for an objective evaluation
of the collision avoidance system of MASSs.

Navigational features of three classes were generated and adopted to multiple-stage
clustering, then 5097 CRSs were categorized into 1393 clusters. The clustering results
showed the following achievements of this methodology:

First, the area class clustering classified CRSs as lowly restricted, moderately restricted,
and highly restricted, along with ratios. Notably, the ratio was highest in the “lowly
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restricted” and lowered as it approached the port or inland. It implies that the collision
risk situation of MASS will occur more in lowly restricted water than near ports. Therefore,
this result presented a basis for the area selection of the MASS test. Second, the cluster
by the type of target ship presented a composition of the target ship types with ratios.
This result is expected to be used in generating target ships in collision avoidance tests of
MASSs. The authors expect that collision avoidance tests with various combinations of
target ships will improve the reliability of the MASS collision avoidance algorithm. Third,
the encounter type was classified into ordinary and unique groups according to frequency.
The ordinary group comprised CRSs in which the same situations had occurred more
than once in the entire period. The unique group comprises the CRSs excluded from any
cluster because the situation was very complicated. These findings suggest two factors to
be considered when constructing a test bed: one is the objective basis for the composition
of basic navigation scenarios, and the other is the ground for establishing harsh scenarios
for debugging collision avoidance algorithms.

5. Conclusions

This study presented a methodology for developing an objective and realistic collision
risk situation to test the collision avoidance algorithm for MASS. It differs from previous
studies because the collision risk situation was extracted as data-driven, considering the
geographic environment.

Collision risk situations were extracted where traffic and geographic factors coexist
within one nautical mile from the own ship. Afterward, these situations were categorized
through four-stage clustering.

Consequently, the results presented classified collision risk situations from sea area,
type of target ship, and type of encounter situations. Occurrence rates of CRSs were also
provided on the sea area and target ship type. These results are expected to apply to the
design of the collision avoidance test.

In addition, ordinary and unique CRSs were identified. Identifying a unique collision
risk situation was the most significant achievement of this methodology. Although these
unique situations were complex and infrequent navigations, they were likely encountered
during MASS sailing during its lifetime. Therefore, applying this unique case to the test
bed should complement and improve MASS’s collision avoidance system.

However, despite our achievements, limitations to this study also exist. The limitations
identified through the application of this methodology are the limitations of ship and port
selection, feature engineering, and clustering. Therefore, these limitations will be improved
in future works.

First, geographic and ship traffic characteristics were different for each sea area. Hence,
future research on various sea areas and ports should develop a generalized collision risk
situation scenario.

Second, since the own ship designated with a specific size needed to be applied based
on ship type and various sizes, the size of other ships should also be identified as a future
consideration.

Third, the situation classification using the quadrant change of the Cartesian coordinate
system presented in this study still has an ambiguous distinction between head-on and
overtaking situations. In future studies, it is necessary to improve these shortcomings using
the ship’s speed, course, or duration of the situation.

Lastly, while a feature composed of three classes needs to be established from vari-
ous perspectives, improvements in the design of clustering methods and multiple stages
are required.
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