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Abstract: The drive rolling bearing is an important part of a ship’s system; the detection of the drive
rolling bearing is an important component in ship-fault diagnosis, and machine learning methods
are now widely used in the fault diagnosis of rolling bearings. However, training methods based
on small batches have a disadvantage in that the samples which best represent the gradient descent
direction can be disturbed by either other samples in the opposite direction or anomalies. Aiming
at this problem, a sparse denoising gradient descent (SDGD) optimization algorithm, based on the
impact values of network nodes, was proposed to improve the updating method of the batch gradient.
First, the network is made sparse by using the node weight method based on the mean impact value.
Second, the batch gradients are clustered via a distribution-density-based clustering method. Finally,
the network parameters are updated using the gradient values after clustering. The experimental
results show the efficiency and feasibility of the proposed method. The SDGD model can achieve
up to a 2.35% improvement in diagnostic accuracy compared to the traditional network diagnosis
model. The training convergence speed of the SDGD model improves by 2.16%, up to 17.68%. The
SDGD model can effectively solve the problem of falling into the local optimum point while training
a network.

Keywords: neural networks; sparse denoising; gradient optimization; rolling bearings fault diagnosis

1. Introduction

With the rapid development of the global economy, maritime transportation logistics
have become an important lifeline to the global economy. The safe and reliable operation
of the power transmission equipment of large marine ships is critical to the marine logistic
enterprise. In order to meet the needs of production, marine powertrain equipment usually
needs to work for a long time or even under a state of overload, which leads to the most
common failure of the rolling bearing system in the powertrain [1]. Once these failures
occur, they can cause huge economic losses. These accidents make people realize the
importance of fault diagnosis in marine powertrain equipment. If the faults can be found
and repaired in time, according to the operation data of the equipment, the loss can be
effectively retrieved [2].

As shown in Figure 1, the internal power and transmission system inside a ship
includes the engine and a large number of rotational parts, most of which include rolling
bearings, and the frictional wear of these bearings occurs continuously with mechanical
movement. These bearing faults account for a considerable proportion of all powertrain
failures [3].
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Model-based diagnosis methods are the most commonly used in the field of fault
diagnosis [4]. By analyzing the operation process of the equipment, a fault diagnosis
model is established for performing effective fault diagnosis. However, the wear and aging
of rolling bearings often have a non-linear or uncertain correspondence and are always
accompanied by the failure of other components. Multiple faults may occur simultaneously
and interact with each other, so it is difficult to build the fault diagnosis model accurately [5].

Data-driven fault diagnosis methods can effectively demonstrate the operation infor-
mation and the fault status from a large amount of historical data [6]. Based on the obtained
historical data, a data-driven diagnosis model can be built to provide an effective diagnosis
result [7]. Commonly used data-driven fault diagnosis methods include the artificial neural
network (ANN) algorithm [8], autoencoder [9], and Bayesian network [10].

Feature extraction is an important step for data-driven fault diagnosis based on neural
networks. Frequency domain feature extraction is the most commonly used method [11].
Hu et al. [12] applied kernel principal component analysis (KPCA) and wavelet packet
decomposition methods to extract features from continuous, raw time signals and feed the
features to a weighted limit learning machine for classification and diagnosis. A feature
extraction approach based on the sparse filtering of the raw data was proposed in [13].
However, some diagnosis networks can extract data features themselves. The convolutional
operation is the most commonly used method to extract data features [14,15]. In order to make
the diagnosis network more adaptable to multiple fault types, Cai et al. [16] investigated
deep Bayesian networks to model the dynamic processes of faults, as well as Markov chains
for different fault types, including transient faults, intermittent faults, and permanent faults.
The network-based methods have some disadvantages. During the training process of
diagnosis networks, they often fall into local optimal points. Tao et al. [17] addressed the
fact that adding a genetic element to the updating process of the gradients can improve the
convergence speed effectively as well as the accuracy of the diagnosis network.

There are numerous research results on how to alleviate diagnosis networks from
falling into local optimal points and improve the convergence speed. Stochastic gradient
descent (SGD) was first applied to solve the problem, where one sample is randomly
selected in each training epoch to represent the updated gradient values of all samples. The
SGD method is sensitive to gradient noise and tends to fall into local optimal points [18].
Then, full-batch gradient descent (FGD) was proposed, where the gradients of all samples
are obtained during each training epoch, and then take the mean value as the updating
gradient. The FGD method is highly undesirable due to the iteration efficiency being too
low when the sample size is huge [19]. The mini-batch gradient descent (MGD) method
combines the advantages of both SGD and FGD [20]. The number of samples taken during
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each iteration is fixed, and the mean value of these sample gradients is used as the updating
value. This method is currently the most widely used one [21].

In order to achieve faster convergence speeds for the network during the training
process, a series of improvements have been made based on stochastic gradient descent
algorithms. By adding a momentum factor, the historic gradient changing information
can be integrated to improve the optimization efficiency [22]. The momentum updating
strategies include the classical momentum algorithm (CM) and the Nesterov accelerated
gradient algorithm (NAG) [23,24]. In order to reduce the continuous accumulation of the
gradient variance during random sampling in the iterative process, researchers have pro-
posed the stochastic variance reduction gradient algorithm (SVRG), which gives a general
framework for variance reduction algorithms [25]. The subsequent variance reduction
algorithms that emerged successively, mostly improved upon this version, such as VR-SGD
and stochastic primal-dual coordinates (SPDC) [26,27]. The accelerated gradient methods
reserve a corresponding gradient value for each sample. During the iteration process, sam-
ples are drawn in turn and replaced the former gradients with new ones [28]. The stochastic
average gradient algorithm (SAG), augmented Lagrange-stochastic gradient algorithm
(AL-SGA), and point-SAGA were derived based on different updating strategies [29–31].
The adaptive learning rate adjustment algorithm allows for the flexible online adjustment
of the learning rate. It can reduce oscillations and speed up convergence during the training
process. According to the different adjustment strategies, some scholars proposed the
adaptive gradient (Adagrad) [32] and adaptive moment estimation (Adam) [33] algorithms
for the adaptive adjustment of learning rate.

However, it has been pointed out that large-scale training datasets have the problem
of sample redundancy [34]. The noise and imbalanced distribution of sample gradients are
not fully considered. Somehow, falling into a local optimal point is still a serious issue.

Based on the above analysis, a new sparse denoising gradient descent (SDGD) network
model was proposed to improve the updating method of the batch gradient. The algorithm
proposed in this paper can obviously improve the convergence speed of the neural network
and effectively solve the problem of falling into local optimal points during network
model training.

The main contributions of the work can be summarized as follows.
(1) A sparse method based on mean impact values is proposed. The network nodes

are weighted based on the mean impact value sparse method, and then the key nodes of
the network are marked. The network parameters can be effectively “sparsed”.

(2) The density-based spatial clustering of applications with noise (DBSCAN) method
was used to cluster and denoise the batch gradients. The parameters after denoising can
obviously improve the convergence speed of the training and effectively solve the problem
of falling into local optimal points.

The rest of this paper is organized as follows. Section 2 provides the preliminar-
ies. Section 3 gives a specific description of the proposed SDGD optimization algorithm.
Section 4 gives a case study. Section 5 draws a conclusion and presents the future work.

2. Preliminaries
2.1. Fault Diagnosis of Marine Machinery

For modern maritime ships, effective machinery fault diagnosis is essential [35]. The
existing data-driven intelligent recognition methods that are widely used mainly collect
historical data through a large number of sensors to establish an intelligent recognition
model, so that it has effective recognition ability. Yan et al. performed fault diagnosis by
means of vibration signals collected from marine blowers [36]. Firstly, the time domain
vibration signal was extracted by the EEMD method, and then the diagnostic model was
constructed by the back propagation neural network (BPNN). The EEMD-BPNN intelligent
diagnostic method has excellent diagnostic results for marine blowers. Xu et al. [37]
combined expert knowledge and data-driven methods effectively. The model was first set
up by an expert system and then optimized using historical data. Thus, a belief, rule-based
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expert system for the fault diagnosis of marine diesel engines was established. Xu et al. [38]
proposed an approach that fused multiple data-driven models for the fault diagnosis of
a marine diesel engine. The method can effectively fuse the predictions of individual
models, and the results are often more reliable than single data-driven diagnosis models.
Tan et al. [39] proposed a one-class SVM-based approach for the diagnosis of the main
propulsion system in a ship’s operation. Compared with traditional methods, this method
can effectively reduce the amount of data required. A model based on neural networks
was developed to detect the state of ship engine systems [40]. Operational data from the
machine were first collected, and then the diagnostic network was trained. The diagnostic
modeling of long- and short-term memory (LSTM) networks, combined with automatic
encoders, has also been used more often in the diagnosis of marine machinery [41,42].
LSTM has an advantage with time-series input signals.

Compared with other data-based fault diagnosis methods in the industry, the diag-
nostic approach for maritime ships is generally consistent. First, the historical data signals
are collected via sensors. Then, feature extraction of the signal is performed. Finally,
the model of the diagnosis network is established [43,44]. However, these approaches
are essentially rudimentary applications of neural networks and fail to consider some
practical problems in the data-training efficiency of maritime ship environments. How to
increase the speed of training convergence efficiency, effectively improving the diagnosis
accuracy, and avoid falling into local optimum points during the training process needs to
be addressed urgently.

2.2. Overview of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Density-based spatial clustering of applications with noise (DBSCAN) is a density-
based clustering algorithm. The three important definitions in DBSCAN: density reachable,
and density connection, are shown in Figure 2.
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Assume a sample set, D= (d1, d2, . . . , dB), where B is the number of the samples. The
DBSCAN algorithm is executed as follows: First, the neighborhood, ζ, and the minimum
number of density points, MinPts, are set. Second, select a random point, di, from the
sample set. Next, determine whether di is a core object. If the data di is a core object, all
“density reachable” points of di in the sample data set are found and a new bunch with all
other density reachable points is created. Third, a cluster is obtained based on the “density
connected” of all points in the bunch. Following the above steps, all the data points in the



J. Mar. Sci. Eng. 2022, 10, 1376 5 of 25

sample data set are processed to obtain the final clustering result: D′= (d′1, d′2, . . . , d′B′),
as well as the noise. The above clustering process is noted as Equation (1).

(d′ i
∣∣i = 1, 2 . . . B′ ) = fd(di|i = 1, 2 . . . B ), B′ ≤ B (1)

3. The Proposed SDGD Model

We propose an optimization method to select valuable nodes based on the mean
impact value of the nodes in the network. The gradients of the valuable nodes were
clustered and denoised using the DBSCAN method. Considering the information of each
sample’s updating gradient inside a batch as a vector, it is assumed that they obey a certain
distribution. In this way, we conduct clustering on this gradient information and remove
the noisy gradients, which can effectively avoid the drawbacks of the original method of
averaging by simply summation.

3.1. Keys Nodes Sparse Method Based on Mean Impact Value

Studies related to network sparsity have shown that only few of the nodes in a multi-
layer multi-node network have a critical impact on the propagation of the subsequent layers.
The mean impact value (MIV) method can quantify the impact weight of each neural node in
the network propagation. For a neural network, the sample dataset is X= (X1, X2, . . . , XN),
where Xn= (x1

n, x2
n, . . . , xl

n, . . . , xL1
n ). The hth layer of the network has Lh nodes. The input

of the hth layer corresponding to the input of Xn is Uh
n= (u1

n, u2
n, . . . , ul

n, . . . , uLh
n ), and the

output of the layer is Vh
n = (v1

n, v2
n, . . . , vl

n, . . . , vLh
n ). The key nodes sparse method based on

MIV is described as follows.
At the hth layer, the self-increment and self-subtraction operation is carried out on the

input of its lth node.
Uhl

n,±δ= (u1
n, u2

n, . . . , (1± δ)ul
n, . . . , uLh

n ) (2)

where, Uhl
n,±δ is propagated from the hth layer to the output layer. The nonlinear iterative

process transmitted forward from the hth layer is denoted as Ŷ = Fh(Uh), where ψh is the
nonlinear activation function of the hth layer. The new output obtained is noted as

Ŷhl
± =

H
∑

j=h
ψj[ωjU

hl
n,±δ + bj]

=
H
∑

j=h
ψj[

Lj

∑
i=1

ωijui
n,±δ + bij]

= Fh(U
hl
n,±δ)

(3)

Therefore,

IVh
l =

∥∥∥Ŷhl
+ − Ŷhl

−

∥∥∥
1

=

∥∥∥∥∥ H
∑

j=h
ψj[

Lj

∑
i=1

ωijui
n,+δ + bij]−

H
∑

j=h
ψj[

Lj

∑
i=1

ωijui
n,−δ + bij]

∥∥∥∥∥
1

=
∥∥∥Fh(U

hl
n,+δ)−Fh(U

hl
n,−δ)

∥∥∥
1

(4)

where IVh
l is the impact value of the lth neuron in hth layer for the diagnosis network

output. Similarly, the impact values of all other neurons in the hth layer can be derived as
Equation (5).

IVh = [IVh
1 , IVh

2 , . . . , IVh
l , . . . , IVh

Lh
] (5)
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Each element in IVh is the impact value of the corresponding neuron in the hth layer
of the output. MIVh can be obtained by summing up all the elements together.

MIVh =
1
Lh

Lh

∑
i=1

IVh
i (6)

The value obtained by dividing IVh
l with MIVh can be considered as the relative

impact value of the corresponding node. Based on the obtained relative impact values, the
nodes in this layer can be effectively sparsed. Before the batch internal gradients update,
the impact value threshold of the node can be set to θ. The nodes in each layer are filtered
according to θ. If the impact value of the corresponding node is greater than θ, the node
is marked as a key node, otherwise this node is sparsed. The connection values between
key nodes are updated using DBSCAN. The remaining connection values are obtained by
BSGD. By this method, the complexity of the algorithm operations is greatly reduced while
the gradient updating is effectively performed.

3.2. Clustering Noise Reduction Method Based on Distribution Density

It is generally accepted that within each batch, the distribution density of its superior
gradients will be greater than the distribution density of the other noisy updating values.
The values outside the distribution edge of the intra-batch gradient clustering are treated
as noise. In the process of training the diagnosis network, the loss function of the network
is defined as Equation (7). B is the sample size of the batch.

Jb|b = 1, 2 . . . B = 1
2

LH
∑

l=1
e2

l + λ∑ (ω)2

= 1
2

LH
∑

l=1
(yl − ŷl)

2 + λ∑ (ω)2
(7)

where ∑ (ω)2 denotes the L2-normalization of all parameters of the network, and λ is the
weight coefficient of the normalization term. The updating formulas for the weights ∇ωb

ij
based on DBSCAN are as follows.

∇ω′ ij =
1
B′

B′

∑
n=1

d′n (8)

(d′n
∣∣n = 1, 2 . . . B′ ) = fd(dn|n = 1, 2 . . . B ) (9)

dn = ∂Jn
∂ωij
|n = 1, 2 . . . B

=

∂

 1
2 [

H
∑

j=1
ψj(

Lj
∑

i=1
ωijxi

n+bij)−yn ]

2

+λ
H
∑

j=1

Lj
∑

i=1
[ωij ]

2


∂ωij

(10)

The updating process of∇b′ ij based on DBSCAN is similar and will not be detailed here.

3.3. Sparse Denoising Gradient Descent Optimization Algorithm

This section will introduce the sparse gradient denoising optimization algorithm in
detail. Compared with the original algorithm’s strategy of summing up the gradients in
the batch and averaging them, this algorithm denoises the gradients of the samples within
the batch using the DBSCAN-clustering method and then updating the gradients.

The structure diagram of the algorithm is shown in Figure 3. The key nodes of the
network are marked by the MIV-sparse algorithm during each iteration, and the connection
weights between the key nodes are clustered and denoised by the DBSCAN algorithm.
Then the network weights are updated until the network training stopping condition is
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satisfied. The trained diagnosis network is used to diagnose the test data and gives the
diagnosis results.
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The training flow for the sparse denoising gradient decent optimization algorithm is
shown in Figure 4.
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The process of the sparse denoising gradient descent optimization algorithm is de-
scribed as follows.
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(1) Setting network parameters: [L1, L2, . . . , LH ]. BatchSize = B, learning rate η, impact
value threshold θ, and the network connection parameters are randomly initialized. The
training loss stop condition threshold J0 and training epochs are set;

(2) The samples in the batch are sequentially fed into the network for forward propaga-
tion to obtain the predicted output value corresponding to that sample, and Jb is calculated.
According to the loss Jb, the backward derivative is derived and the gradient updated
values ∇ωb

ij =
∂Jb
∂ωij

, ∇bb
ij =

∂Jb
∂bij

of all nodes of the network corresponding to each sample
are calculated.

(3) According to Algorithm 1, all nodes of the network are marked and Net_Lab is
obtained. Gradients of connection weights between key nodes are updated using the
DBSCAN method ∇ω′ ij = fd(∇ωb

ij|b = 1, 2 . . . B ), ∇b′ ij = fd(∇bb
ij|b = 1, 2 . . . B ). The

results are obtained by summing up and taking the average. ωij(k + 1) = ωij(k)− η · ∇ω′ ij,
bij(k + 1) = bij(k)− η · ∇b′ ij

Algorithm 1: MIV-Sparse algorithm.

-B: batch size;
-H: number of network layers;
-[L1, L2, . . . , LH ]: node numbers per network layer;
-Uh: input of the hth layer;
-Ŷ = Fh(Uh): the nonlinear iterative process transmitted from the hth layer backward;
-Input: network: [L1, L2, . . . , LH ], impact value threshold θ, training dataset
-Output: spared network: Net_Lab
1. for n = 1 . . . B do //samples traversal
2. for i = 1 . . . H do //transmission between input and output layers
3. for k = 1 . . . Li do //node traversal per layer

4. Uhi
n,±δk= (u1

n, u2
n, . . . , (1± δ)uk

n, . . . , uLi
n

)
//self-increment and self-subtraction operation

5. Forward Propagation: Ŷhi
n,±k = Fi(U

hi
n,±δk)

6. IVhi
n,k = ‖Ŷhi

n,+k − Ŷhi
n,−k‖1

= ‖Fi(U
hi
n,+δk)−Fi(U

hi
n,−δk)‖1

7. end for //quit node traversal
8. IVhi

n = [IVhi
n,1, IVhi

n,2, . . . , IVhi
n,k, . . . , IVhi

n,Li
] //impact value vector of the ith layer

9. Summation comparison: IVhi
n = IVhi

n / 1
Li

Li

∑
k=1

IVhi
n,k

10. end for //quit layer traversal
11. end for //quit samples traversal
12. for i = 1 . . . H do //marked the key nodes

13. IVhi = 1
B

B
∑

n=1
IVhi

n

14. All elements within IVhi are compared with θ. The network node greater than θ is marked as 1, otherwise it is marked as 0, and
spare network Net_Lab is obtained.
15. end for

The Pseudo code and flow chart of SDGD algorithm are shown in Algorithm 2 and
Figure 5, respectively. During the forward propagation of the network, the key nodes of
the net are marked with the MIV-sparse method. According to the loss function, Jb of each
sample is calculated. Finally, gradients of the connection weights between the key nodes
are updated using the DBSCAN method.
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Algorithm 2: Sparse denoising gradient decent optimization algorithm

-Jb: loss function;
-∇ω: connection weight gradient;
-∇b: connection bias gradient;
-IV: impact value of nodes;
-MIV: mean impact value;
-Input: network parameters [L1, L2, . . . , LH ], BatchSize = B, learning rate η, impact value threshold θ, training loss stop condition
threshold J0, training epochs;
-Output: the trained network Nettra
1. for k = 1 . . . epochs do //Cycle epochs times
2. for b = 1 . . . B do //All samples traversal
3. Calculating Ŷ = F1(Xb) //Forward propagation
4. Calculating loss function Jb;
5. if Jb ≤ J0 //Whether the stopping condition is satisfied
6. yes:stop training;
7. else
8. ∇ωb

ij =
∂Jb
∂ωij

, ∇bb
ij =

∂Jb
∂bij

; //Calculate the corresponding gradient update value for each sample
9. get Net_Lab //Net_Lab is obtained according to Algorithm 1
10. ∇ω′ ij = fd(∇ωb

ij|b = 1, 2 . . . B ), ∇b′ ij = fd(∇bb
ij|b = 1, 2 . . . B ) //Calculating gradient update values by DBSCAN method;

11. ωij(k + 1) = ωij(k)− η · ∇ω′ ij, bij(k + 1) = bij(k)− η · ∇b′ ij //Updating network connection weights
12. end if
13. end for
14. end for
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Figure 5. SDGD algorithm flow chart.

The input data for each batch in Figure 5 are X1, X2, . . . , XB and X1= (x1, x2, . . . , xl, . . . , xL1).
The network consists of three pieces: the input layer, the hidden layers, and the output
layer. The white neurons in the network layer indicate less important nodes after MIV
filtering. The black neurons indicate key nodes. The neuronal connections between all key
nodes are indicated by the purple connecting lines, which are updated with the SDGD
algorithm during the gradient update. The rest of the connection lines are connected by
dashed lines. The red arrows in the output layer indicate that the output value is positive at
that location, while blue is negative. The input data are first propagated forward, indicated
by the large green arrow, to give the predicted output Ŷ. The loss value, J, is calculated
after a comparison with the real output. The network weights are then updated by back-
propagating through the large red arrow. W&B in the figure indicates the network weights.
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The network structure in Figure 5 is an abstract representation. For a convolutional-type
network, the input and hidden layers correspond to the convolutional and pooling layers.
While the output layer corresponds to the flattened and fully connected layers as well as
the output layer.

4. Validation Experiments

In order to demonstrate the effectiveness of the proposed method for fault diagnoses,
two fault diagnosis experiments were conducted to verify it. The advantages of the pro-
posed method are mainly reflected in its ability to improve the convergence rate of the
existing algorithms in the training process, avoid local optimization, and prevent oversat-
uration. It represents an improvement in the training process. The existing data-driven
intelligent diagnosis methods can be divided into two categories. One is the network model,
with a strong feature extraction ability, such as convolutional neural networking and its
deformation. The other is to process the signal first, extract the characteristics of the signal,
and then send them to the network model, such as DNN and SVM. Therefore, in this part
of the experimental verification, we selected several widely used network structures in the
field of fault diagnosis: Resnet, random CNN, SAE, and DNN, based on feature extraction
of the original data for comparative experimental analysis.

The diagnostic object of case one is a “motor drive system bearings dataset” publicly
available at Case Western Reserve University. In this case, we use a fault diagnosis method
based on Resnet random-CNN and -SAE. The experimental results show that the proposed
algorithm in the manuscript has significantly improved the diagnostic accuracy and training
convergence speed of the network. The object of case two is the rolling bearing dataset
published by Xi’an Jiaotong University. In this case, a fault diagnosis neural network based
on time-frequency domain feature extraction is built. The experimental results show that
the proposed algorithm significantly improved the solving of the local optimal point trap.

4.1. Case One: Study of Accuracy & Convergence Speed of Fault Diagnosis Model
4.1.1. Dataset Preparation and Parameter Settings

This experiment case uses the open-source rolling bearing fault dataset from Case
Western Reserve University as the experimental dataset [45]. The experimental object is a
motor drive system. The vibration acceleration signal of the device is collected by installing
sensors at different locations in the drive system. The collection location includes the drive
end, fan end, and base. The load on the motor can change during operation. The load
change range is 0–3 hp. The states of the bearing after failure are simulated by manually
setting different levels of damage at various locations on the bearing. The details of the
three different degrees and the three different locations of damage are shown in Table 1.
They combine with each other for a total of nine different faults. The data selected for this
experiment were collected by drive end at a 0 hp load. They are ball defect I (BDI), ball
defect II (BDII), ball defect III (BD III), inner race defect I (IRI), inner race defect II (IRII),
inner race defect III (IRIII), outer race defect I (ORI), outer race defect II (ORII), and outer
race defect III (ORIII), respectively. The sampling frequency of the vibration sensor was
12 kHz and the motor speed was set to 1772 rpm. It can be calculated that there are about
400 sampling points per circle. The sample status information is shown in Table 1. The
samples are processed using a k-fold cross validation method in order to ensure that the
experiment results are non-accidental.
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Table 1. Data information for the nine types of fault states.

Fault Type Fault Diameter (inch) Label Sample Size

BDI 0.007 1 1000
BDII 0.014 2 1000
BDIII 0.021 3 1000

IRI 0.007 4 1000
IRII 0.014 5 1000
IRIII 0.021 6 1000
ORI 0.007 7 1000
ORII 0.014 8 1000
ORIII 0.021 9 1000

The acceleration signals for the nine types of faults on the drive end are shown in
Figure 6.
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In the process of the experimental validation, after many experiments and analyses,
we have given a range for the selection of the parameters. First, for the two parameters,
ζ and MinPts, of DBSCAN, we know that, for the minimum distance, ζ, if the value is
set too large, the denoising effect will not be achieved; if it is too small, the total number
of categories will be too large. Therefore, after several choices, we decided to select the
maximum standard deviation of all samples within the batch as the basis. The best results
are achieved when set to 0.3–0.4 times. For the parameter MinPts, the aim is to achieve
the best possible filtering effect, and we want the valid samples to be clustered together as
much as possible. Therefore, we assume that the gradient information is useful for most of
the samples, and when its multiplicity is set to 1, it is the normal MGD algorithm. During
the experiments we found that, if the parameter was set too large, the clustering result
was similar to MGD. If it was too small, there will be many clusters, and the denoising
performance will be poor. Therefore, we suggest 0.3–0.5 times the BatchSize to speed up
clustering and effectively achieve the effect of noise removal. It has little impact on the
iteration rate of the network. The connection values for the top 50% of the network are set
to use the proposed algorithm in the paper for gradient updating.
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4.1.2. Comparative Experiments Based on RESNET

Resnet-18 networks are usually used to process image datasets of 255*255*3 using
3 channels. Conventional Resnet-18 has four Res blocks, and each Res block is composed of
four convolution layers. Since the dimensions of the input data used in the experiment RE
400*1, we have simplified the network structure and removed two Res blocks (Conv4 and
Conv5) to speed up the convergence speed. The network parameters are set as per Table 2.
The input data to the network are the 1D raw vibration signal data, shown in Figure 5, and
the input data for the network in case one is a time-series 400-dimensional input data, as
shown in Figure 6.

Table 2. Resnet network settings.

Layer Number Layer Name Core/Pool Size Output Shape

1 Conv1 [5,5] [400,5]
2 Pooling1 4(stride = 1) [100,5]

3 Conv2
[

6, 5
6, 5

]
× 2 [100,54]

4 Conv3
[

6, 5
6, 5

]
× 2 [100,58]

5 Output AvergePooling+FC+Softmax 9

The input data for the CNN and SAE are also the 1D raw vibration signal data, shown
in Figure 5, and the shape of the data is 400*1. The input data for the DNN in case two are
10*1 dimensional feature data processed in the frequency domain, with reference to [12].

It can be seen that the (10 times) average accuracy of the SDGD-Resnet method is
nearly the same when compared to that of the common Resnet diagnosis method from
Table 3.

Table 3. Accuracy comparison.

No. RESNET (Acc:%) SDGD-RESNET (Acc:%)

1 99.44 99.78
2 99.56 99.67
3 99.72 99.44
4 99.67 99.56
5 99.44 99.50
6 99.50 99.61
7 99.78 99.78
8 99.78 99.72
9 99.61 99.34
10 99.38 99.78

Mean accuracy 99.58 99.62

We have visualized the results of a particular run as an example. The visualization
results of the proposed method, with the usage of t-distributed stochastic neighbor embed-
ding (t-SNE) technology, are shown in Figure 7. It is observed that some categories, such as
type 8, are separated from other categories. However, type 1, type 2, and type 3 overlap.
Moreover, the confusion matrix for the proposed method for the test set is calculated as
exhibited. It can be seen that most of the fault types can be identified clearly. The results
are consistent with the visual inspection results.
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Figure 7. (a) Visualization and prediction error matrix of RESNET (b) Visualization and prediction
error matrix of SDGD-RESNET.

The convergence speed of the proposed algorithm (green line) is significantly better
than that of the common RESNET diagnosis method, denoted as the purple line. Corre-
spondingly, the diagnostic accuracy of the proposed algorithm (red line) improved faster
than that of the common RESNET method, denoted as the blue line. With larger batchsize
settings, as illustrated in Figure 8d, the network’s accuracy improves significantly faster
than the conventional networks. Moreover, Table 4 demonstrates that SDGD-RESNET
outperforms RESNET by a maximum of 14.89% in the impact on convergence speed, which
shows that SDGD-RESNET is better than RESNET on convergence performance while
maintaining a comparable diagnostic accuracy to RESNET.

Table 4. Convergence speed comparison.

BatchSize SDGD-Resnet
(Epochs)

Resnet
(Epochs) Loss-Aim Improvement Index (%)

50 39 45 0.05 13.33
100 80 94 0.05 14.89
200 125 135 0.05 7.41
350 478 559 0.05 14.49
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4.1.3. Comparative Experiments Based on Random CNN

Faults 1, 2, 4, 5, 7, and 8 were selected as the diagnostic types. The network parameters
are set as per Tables 5 and 6, referring to [11].

Table 5. Convolutional network settings.

Parameters First Convolution Layer Second Convolution Layer

Number of filters 5 4
Size of filter 16 18

Stride 1 1

Table 6. Pooling Layer.

Parameters First Pooling Layer Second Pooling Layer

Pooling size 5 4
Stride 1 1

Table 7 shows a comparison of the results for 10 rounds. As can be seen, the proposed
SDGD algorithm can improve the diagnostic accuracy of the network by 2.35% to 99.13%.

Table 7. Accuracy comparison.

No. CNN (Acc:%) SDGD−CNN (Acc:%)

1 97.33 99.17
2 97.00 99.33
3 96.83 99.00
4 96.86 98.83
5 96.50 99.17
6 95.86 99.17
7 96.33 99.33
8 97.57 99.00
9 96.50 99.00
10 97.00 99.33

Mean accuracy 96.78 99.13

The visualization results are shown in Figure 9.
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The comparison of the convergence speed between the proposed algorithm and the
common CNN-based algorithm are shown in Figure 10.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 17 of 26 
 

 

 
                                      (a) 

 
                                      (b) 

 
                                      (c) 

 
                                      (d) 

Figure 10. Convergence speed comparison (a) BatchSize = 40 (b) BatchSize = 50 (c) BatchSize = 100 

(d) BatchSize = 200. 

The diagnostic accuracy comparisons are shown in Table 8. 

Table 8. Diagnostic accuracy comparison. 

BatchSize 
SDGD-CNN 

(Acc:%) 

CNN 

(Acc:%) 
Improvement Index(%) 

40 99.13 96.78 2.35 

50 98.45 96.29 2.16 

100 98.17 94.71 3.46 

Figure 10. Convergence speed comparison (a) BatchSize = 40 (b) BatchSize = 50 (c) BatchSize = 100
(d) BatchSize = 200.

The diagnostic accuracy comparisons are shown in Table 8.



J. Mar. Sci. Eng. 2022, 10, 1376 17 of 25

Table 8. Diagnostic accuracy comparison.

BatchSize SDGD-CNN
(Acc:%)

CNN
(Acc:%) Improvement Index (%)

40 99.13 96.78 2.35
50 98.45 96.29 2.16
100 98.17 94.71 3.46
200 94.71 92.01 2.7

In Figure 11, the diagnostic accuracy of the proposed algorithm is denoted by the red
line and the common CNN method by the blue line. After comparing the two curves, it is
clear that the SDGD algorithm can improve the diagnostic accuracy of the network. When
the batchsize chosen is too large, this will lead to decreasing training efficiency. As can
be seen from the figures, the declines in loss are comparable for both. Although the loss
decreases at the same level, the SDGD algorithm can obviously enhance the network’s
generalization ability, improving the diagnosis accuracy of the network, and reducing the
saturation degree of the network. In Figure 10a, the CNN sometimes falls into a local
optimum during training, while SDGD effectively solves this problem.
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4.1.4. Comparative Experiments Based on Sparse Auto-Encoder (SAE)

A total of nine fault types were used as the inputs for this experiment. The SAE
hidden layer parameters were set to 512/400/300/200/100. The sparse method of SDGD-
SAE in this paper has strong superiority over the traditional SAE sparse method. Table 9
shows a comparison of the results for 10 rounds. It can be seen that the (10 times) average
accuracy of the SDGD-SAE method is nearly the same when compared with the common
SAE method.

Table 9. Accuracy comparison.

No. SAE (Acc:%) SDGD-SAE (Acc:%)

1 96.56 97.33
2 96.44 96.44
3 96.00 96.89
4 96.22 97.00
5 96.56 97.33
6 97.11 97.00
7 96.67 96.67
8 95.78 96.11
9 97.00 97.21
10 97.56 96.89

Mean accuracy 96.59 96.89

The comparison of the convergence speed between SDGD-SAE and SAE is shown
in Figure 11. Table 10 shows that SDGD-SAE improves the convergence speed by up to
17.68% over SAE.

Table 10. Convergence speed comparison.

BatchSize SDGD-SAE
(Epochs)

SAE
(Epochs) Loss-Aim Improvement Index (%)

40 163 198 0.05 17.68
50 236 273 0.05 13.55
100 393 449 0.05 12.47

4.1.5. Computational Cost

The resource configuration of the experimental platform: Window 10 system, Mat-
lab2019a platform, Cpu @ 2.3GHz, RAM 8GB.

When the batchsize is 40, SDGD-ResNet takes 0.39 s per round, while ResNet takes
0.36 s; SDGD-CNN takes 0.25 s per round, while CNN takes 0.22 s; SDGD-SAE takes 0.05 s
per round, while SAE takes 0.02 s. It can be seen that, as the computational complexity
increases, the computational time consumption increases slightly.

4.2. Case Two: Study of Local Optimal Trap of Fault Diagnosis Model Training
4.2.1. Dataset Preparation and Parameter Settings

The data set for the rolling bearings from Xi’an Jiaotong University (XJTU-SY) is
used in this case [46]. The vibration acceleration signals were collected in the horizontal
and vertical directions of the experimental test bench, respectively. When the vibration
signal vibration amplitude exceeds 10 g, it is determined that the test experiment has
failed. When a failure occurs, according to the bearing failure location, the fault types
are divided into inner ring defect (ID), outer race defect (OR), and cage defect (CD). The
experimental conditions are set as follows: speed 2250 rpm, sampling frequency 25.6 kHz,
sampling duration 1.28s, and sampling interval 1 min. When selecting 880 consecutive
horizontal vibration signal sampling points as one sample, 37 samples can be obtained for
each sampling. The experimental data set is shown in Table 11. The acceleration signals for
the three types of faults are shown in Figure 12.
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Table 11. Data information on three types of fault states.

Fault Type Label Train Sample Size Test Sample Size

ID 100 265 105
OR 010 266 104
CD 001 269 101
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The setting ranges for parameters ζ and MinPts in DBSCAN are recommended as
follows. ζ is set between 0.3~0.4 times (of the largest standard deviation of all the batch
samples) and MinPts is set to 0.3~0.5 times that of the batch size. This has little impact on
the iteration rate of the network. The connection values for the top 50% of the network
are set to use the proposed algorithm in the paper for gradient updating. The experiments
are simulated in the Matlab platform. The initial values of the diagnostic network can be
assigned by a random initialization algorithm. The simulation platform can control the
random values generated by setting a random seed with the ‘rng()’ function.

A fault diagnosis neural network with time-frequency domain features was built.
The initialization parameters of the network are controlled by setting the random seed.
Compared with common diagnosis networks, which often fall into local optimal points
during training, the proposed method can effectively avoid this situation. Referring
to [12], 10 statistical features in the time-frequency domain are extracted for training
the network, including: Absolute mean, Variance, Crest, Clearance factor, Kurtosis, Crest
factor, Skewness, Pulse factor, Root mean square, Shape factor. The network parameters
are set as follows: the network input layer shape is 15, the hidden layer shape is 31 + 30,
and the output layer shape is 3.

In Figure 13, the red line and blue line are the accuracy rates of DNN and SDGD-DNN
during training, respectively, and the green line and purple line are the training losses
for them.
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From the experimental accuracy, it can be seen that the proposed optimization algo-
rithm can effectively solve the problem of the network falling into local optimal points
during the training process and cannot continue to improve the network accuracy under
certain initialization parameters. As shown in the three experimental results in Table 12,
with the same initialization network parameters, the proposed algorithm can effectively
avoid falling into local optimal points and achieve a test accuracy of as much as 99%.

Table 12. Accuracy comparison.

Random Seed rng (4) rng (200) rng (258)

DNN accuracy 33% 63.67% 65%
SDGD-DNN accuracy 99.33% 99% 98.33%
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4.3. Experimental Analysis

Case one aims to reveal the improvement of the SDGD algorithm concerning model
convergence speed and the prevention of over fitting. We plan to verify the Resnet, Random-
CNN, and SAE network models. Case Two mainly aims to reveal the ability of the SDGD
algorithm to effectively avoid falling into local optimum during model training. Compared
with the model used in case one, the DNN-based network model can be effectively trapped
into local optimization by setting random seeds. In Section 4.2.1, we pointed out that
DNNs can easily fall into local optimization by designing random seeds. However, the
Resnet-based, Random-CNN-based and SAE-based network models find it difficult to
effectively find and reproduce the local optimum during their training process. Therefore,
case two will choose a different network model structure from case one to implement
validation. The comparisons between the performances in terms of diagnostic accuracy,
convergence speed, and local optimal point trap involved in the experiments are given
below. A table comparing the experiments based on case one above is shown in Table 13.

Table 13. Methods comparison.

Method With SDGD Fault Types Acc:% Acc Improve:% Convergence Speed
Improve:%

Avoid Local
Optimal Trap

Resnet
N 9

(CRWU)
99.58

0.04 7.41–14.89 NY 99.62

CNN
N 6

(CRWU)
96.78

2.35 0–5.71 YY 99.13

SAE
N 9

(CRWU)
96.59

0.3 12.47–17.68 NY 96.89

DNN
N 3

(XJT)
53.89

33.33-66.33 - YY 98.89

Note:”-”: The DNN loss did not meet the training target, so they were not counted.

(1) Diagnostic accuracy
As can be seen from Table 13, for different diagnostic models, the proposed algorithm

enables an improvement in the convergence speed. The accuracy of the modules has
also improved to some extent. The main reasons for this improvement can be attributed
to the following two aspects. First, based on published research, it is known that there
is an amount of redundant structure in neural networks, so the MIV-based method can
effectively filter out the redundant weights. Thus, the network’s generalization capability
becomes enhanced. Therefore, the SDGD model allows for the improvement of diagnostic
capabilities for different network structures.

(2) Convergence speed & Local optimal point trap
When performing weight updating, the DBSCAN method is used to cluster and

denoise the batch gradients. This gradient updating method effectively removes gradient
noise, thus, allowing the model to converge quickly, as we can see in the comparison of
the experimental results in case one. The experimental results show large convergence
speed improvements for various models and for different batch sizes. At the same time,
conventional optimization methods often fall into local optimization points due to gradient
noise. The proposed SDGD model is effective in removing the noise interference, so that in
case two, it can effectively avoid the situation of falling into the local optimal point trap.

5. SDGD’s Application on a Ship Engine System

The structure of the application of SDGD on a ship engine system is shown in Figure 14.
The collected historical data were used to train the SDGD-based diagnosis network until
the stop condition was satisfied. Then, the data collected in real-time were fed into the
trained network to give a diagnosis result. At the same time, the collected new data were
also sent to the network for further training, which is used to update the network weights
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in real-time. With the fast convergence property of SDGD, the real-time training of the
network is faster, and the real-time performance is guaranteed.
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The SDGD optimized neural network model consists of three main components: the
establishment of a historical database, the training of the diagnostic model, and real-time
fault diagnosis.

(1) Establishment of a historical database. The data are obtained by installing vibration
or stress sensors at different positions on the marine powertrain to obtain data on its
different fault states. Also, information on the operation of the equipment needs to be
recorded. After the data have been collected, the acquired data are classified and stored.
Tagging the different fault states and building a database to provide data support for the
training of the network.

(2) Training of diagnostic model. After the collection of historical data, a local network
model is built. The model is efficiently trained using the SDGD optimization algorithm.
After the training stop condition is met, the network parameters are saved. During real-time
diagnosis, the newly collected fault data can also be used to train the network so that the
network parameters can be updated in real-time.

(3) Real-time fault diagnosis. The parameters, after refreshing, are used as the pa-
rameters for the diagnostic network. The vibration data from the equipment are collected
by sensors and sent to a local computer via a communication network. Once a fault has
occurred, the device immediately alarms.

In the experimental verification part of the previous section, case one involves the SKF
and NTN bearings; The SY bearings were involved in case two. These kinds of bearings
are widely used in marine power mechanical systems. The proposed diagnostic network
has good applicability to the above different data sets. In the real-time diagnosis stage of
the model, the new fault data will dynamically update the data set in real-time, and the
new data and historical data will participate in the learning and training of the network
model together, which makes the diagnosis network have good adaptability when facing
new fault types.

In these experiments, we are simulating a real-time system when conducting the model
tests. The model runs at ms level during testing, so we can assume that this is a real-time
system. We split all the data sets into training and test sets. When we train the network with
the training set, this corresponds to the training part of the red box in Figure 14. During test-
ing, the data from the test set can be considered as data collected by the device in real-time
and are sent to the network for real-time fault diagnosis. Due to practical constraints, we
are still a long way from actually conducting such experiments. However, this assumption
is entirely reasonable. This kind of simulation has clear practical significance.

The above mechanism makes the proposed method feasible for practical application
in the rolling bearing fault diagnosis system of ocean ships.
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6. Conclusions

In order to improve the performance of neural network-based fault diagnosis methods,
this paper proposes the SDGD method. The interference of gradient noise with network
convergence is effectively removed, while the sparsity of the network structure is also
well considered at the same time. Based on this method, the Resnet-, random CNN-SAE-,
and DNN-based fault diagnosis methods were established, respectively. The improved
diagnosis network based on SDGD is compared with the classical algorithm. It was
verified that the proposed algorithm can effectively accelerate the convergence speed of the
diagnosis network while ensuring diagnosis accuracy and can effectively solve the problem
of the diagnosis network falling into the local optimal points.

Although some satisfactory results have been obtained with the proposed method, the
limitations of this work should be soberly recognized. First, we found that the computa-
tional speed of the clustering algorithm can have a large impact on the convergence speed
of the diagnostic model. For example, if the DBSCAN parameters are not set correctly, the
calculation time will significantly increase. Therefore, knowing how to cluster effectively
and improve the clustering speed and, thus, further accelerate the convergence speed are
areas that need to be further investigated.

Moreover, the MIV approach proved to be effective over the course of the study but
lacks theoretical support. It is worth investigating whether the removed neurons may
also have an effect on the network. This will give the MIV method its theoretical basis
when selecting the number of key nodes. In addition, the interpretability principle of the
MIV-based sparse method proposed in this paper requires further research.
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