
Citation: Kozitskiy, S. Coupled-Mode

Parabolic Equations for the Modeling

of Sound Propagation in a

Shallow-Water Waveguide with

Weak Elastic Bottom. J. Mar. Sci. Eng.

2022, 10, 1355. https://doi.org/

10.3390/jmse10101355

Academic Editor: João Miguel Dias

Received: 26 August 2022

Accepted: 20 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Coupled-Mode Parabolic Equations for the Modeling of Sound
Propagation in a Shallow-Water Waveguide with Weak
Elastic Bottom
Sergey Kozitskiy

Ocean and Atmosphere Physics Division, V.I.Il’ichev Pacific Oceanological Institute, Far-East Branch of Russian
Academy of Sciences, 690041 Vladivostok, Russia; skozi@poi.dvo.ru

Abstract: In this work, a mode parabolic equation method with interacting modes accounting for
the weak elasticity at the bottom is developed. An important feature of the proposed method
is that computations of elastic modes are avoided and that the solution is obtained in the form
of expansion over acoustic modes. A numerical technique for solving resulting mode parabolic
equations is developed, and the accuracy and efficiency of the resulting solution is validated by a
direct comparison against source image solutions in the 3D wedge benchmark problem. Satisfactory
agreement of the two solutions is achieved for sufficiently small values of shear wave speed that are
typical for soft sediments of the sea bottom. The developed approach may be used for solving 3D
problems of sound propagation with the elastic properties of bottom sediments taken into account.

Keywords: underwater acoustics; normal modes; multiple-scale method; elastic bottom; mode
parabolic equations

1. Introduction

The modeling of sound propagation in three-dimensional (3D) shallow water waveg-
uides is one of the most important areas of research in underwater acoustics [1]. Despite
the impressive achievements of the past two decades, the simulation of acoustic fields in
large domains with 3D inhomogeneities of various kinds remains a significant challenge,
especially when broadband signals are considered. Such simulations are necessary, e.g., for
the estimation of anthropogenic acoustic noise levels, which is important for the protection
of marine fauna [2]. It is also important that the modeling is carried out in reasonable time
(ideally, in real time). Many approaches to the simulation of 3D acoustic fields are being
actively developed, including 3D parabolic equations, Gaussian beams [3], rays-theoretical
techniques [4], as well as the methods based on the finite-difference or finite-element
discretizations [5] of wave equations (see the nice collections of papers in recent special
issues [6,7] dedicated to 3D propagation effects and techniques in underwater acoustics
and references therein).

Mode parabolic equations (MPE) are a promising and convenient tool for solving 3D
sound propagation problems of ocean acoustics. They have been used in adiabatic form,
for instance, by Collins [8] and in the refined version by Trofimov [9]. Wide-angle and
pseudodifferential MPE were also proposed in recent works [2,10] and used as a basis
for the computational code AMPLE [11] that is used for computing noise levels due to
broadband sources over large sea areas (e.g., during seismic survey [2]).

In the work in [12,13], this approach has been extended to the case of interacting
modes and obtained very good agreement between numerical solutions by MPE and by
the source image method in the wedge benchmark problem [14], which was achieved both
for up-slope and cross-slope propagation.

The MPE approach involves two separate steps in calculating the acoustic field. First,
we calculate the acoustic normal modes along the trace, and then we solve the system of
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amplitude parabolic equations, in which we obtain the amplitudes of the acoustic modes.
The summation of the modes with the calculated amplitudes gives us the desired field.
The first step, the computation of acoustic normal modes in waveguides, is a delicate and
important task. We should use numerical methods which provide sufficient accuracy along
with a high speed of calculations. The number of such methods has been developed in
the last few years. For instance, in the article [15] the Chebyshev–Tau spectral method
was implemented to solve acoustic normal modes with a stratified ocean [15]. In [16] The
Legendre collocation method based on domain decomposition is proposed to calculate
normal modes. In [17], the algorithm using the Chebyshev–Tau spectral method was
proposed to solve for the horizontal wavenumbers and modes of approximately range-
independent segments. In [18], a discrete PE model using the Chebyshev spectral method is
derived based on the wide-angle rational approximation. In [19], a multidomain Chebyshev
collocation method for the accurate computation of normal modes in open oceanic and
atmospheric waveguides was devised. In [20], a three-dimensional, coupled-mode two-way
model using the direct-global-matrix technique as well as Fourier synthesis was presented.

For many practical reasons, it would be very important to generalize the MPE theory
to the case of elastic bottom. Although, of course, one might perform it by computing
elastic normal modes, there is an alternative and a more convenient way to take weak
bottom elasticity into account in sound propagation problems of underwater acoustics [21].
The weak elasticity assumption significantly simplifies the derivation of the equations, but
the equations obtained in this way can be applicable in practical problems when the shear
wave velocity does not exceed the value of about 300 m/s. This may be true for liquid
sediments and for sand or clay.

Various parabolic equations for elastic media have been derived in some arti-
cles (see [22,23] etc.). As a rule, they have different restrictions and an insufficient
amount of test examples. Previously, we have derived an adiabatic mode parabolic
equation taking into account the weak elasticity of the bottom [24]. It can be used in the
seismoacoustics of liquid sediments when the shear modulus is small.

In this work, we derive a system of parabolic equations with interacting modes, taking
into account the small shear modulus at the bottom and the only interface between the
water column and elastic bottom. The derivation is based on the so-called generalized
multiscale expansions method [25]. The obtained equations are numerically solved by
the Crank–Nicolson scheme with iterations and are included into the software package
developed for the modeling of acoustical fields using the MPE approach [13]. Then, we
compare numerical results obtained by the derived elastic MPE with the source image
solutions and validate the efficiency and accuracy of the equations.

2. Basic Equations and Expansions

We consider the propagation of time-harmonic acoustic waves in the three-dimensional
waveguide Ω = {(x, y, z)|0 ≤ x ≤ ∞,−∞ ≤ y ≤ ∞,−H ≤ z ≤ 0} with weak elastic
bottom, described by the linear elasticity equations [26]

− ρω2uk =
3

∑
j=1

∂σkj

∂xj
, k = 1, 2, 3 , (1)

where ω is the angular frequency of the waves, and the stress tensor of elasticity σij is (here
u1 = u, u2 = v, u3 = w)

σij = λ

(
3

∑
k=1

∂uk
∂xk

)
δij + µ

(
∂ui
∂xj

+
∂uj

∂xi

)
.

Here, λ and µ are the Lame coefficients, ρ is the density of the medium, u, v, and w are
displacement components in the Cartesian coordinates with the z-axis directed upwards.
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We postulate the following expansions of parameters and displacements

Eef = λ + 2µ , Eef = E0(X, z) + εE1(X, Y, z) ,

µ = εµ1(X, Y, z) ,
1
ρ
= γ0(X, z) + εγ1(X, Y, z) ,

u = [u0(X, Y, z) + εu1(X, Y, z) + . . . ]eiθ(X)/ε

+ uS(X, Y, z, η)eiθ(X)/ε , (2)

v = ε1/2[v1/2(X, Y, z) + εv3/2(X, Y, z) + . . . ]eiθ(X)/ε

+ vS(X, Y, z, η)eiθ(X)/ε ,

w = [w0(X, Y, z) + εw1(X, Y, z) + . . . ]eiθ(X)/ε

+ wS(X, Y, z, η)eiθ(X)/ε .

Effective Young’s modulus is Eef = ρc2, where c is the velocity of compressional
sound waves [27]. Shear modulus is µ = ρc2

s , where cs is the velocity of shear waves. We
introduce slow variables X = εx and Y = ε1/2y, where small parameter ε is the ratio of
the wavelength to a typical size of horizontal inhomogeneities of the propagation medium.
We also introduce fast variable η = ξ(X, Y, z)/

√
ε and assume that displacements in shear

waves uS, vS, wS also depend on this variable wS = wS(X, Y, z, η), etc.
The Ansatz (2) is derived from a general form of expansion of the displacements by

considering expressions at different powers of ε in the basic equations (see Appendix A).
Using the notation introduced above, we expand the elasticity Equation (1). Then, we

collect terms with the same powers of ε. For ε0, we have the following equality

ω2u0 = −γ0E0iθX(w0z + iθXu0) ,

ω2w0 = −γ0[E0(w0z + iθXu0)]z .

Let us call P = −Eef(ux + vy +wz) quasi-pressure. Performing a multi-scale expansion
of P (see [25]), we obtain the following expansion for this quantity P = (P0 + εP1 +
. . .)eiθ(X)/ε, where P0 = −E0(w0z + iθXu0). Then,

(γ0P0z)z +

[
ω2

c2
0
− (θX)

2

]
γ0P0 = 0 , (3)

where c0(X, z) =
√

γ0E0 is the respective zero-order approximation of the sound speed.
Next, P0 is sought in the form P0 = A(X, Y)φ(X, z), and a Sturm–Liouville (SL) problem
is obtained for φ(X, z) (called acoustic spectral problem) with k2 = (θX)

2 as a spectral
parameter. The interface conditions for this SL problem are discussed in Section 4, and the
pressure-release boundary conditions have the form

(γ0φ0z)z +

(
ω2

c2
0
− k2

)
γ0φ0 = 0 , (4)

It is known that such an SL problem has a countable set of solutions (k2
j , φj) indexed by

j = 1, 2, . . ., where eigenfunctions φj are orthogonal to each other and can be normalized as

〈φi, φj〉 =
∫ 0

−H
γ0φiφj dz = δij . (5)

Each eigenfunction corresponds to a particular solution P0j = Aj(X, Y)φj(X, z) of the
equation for P0.
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Zero-order approximations for the displacements can be also expressed via P0 (index j
is omitted):

u0 =
γ0

ω2 ikP0 , v1/2 =
γ0

ω2 P0Y , w0 =
γ0

ω2 P0z .

Consider now the equations at ε1. The first-order approximation for the quasi-pressure
has the form

P1 = −E0(u0X + v0Y + w1z + iku1)− E1(iku0 + w0z) ,

Additionally, the respective equations for the displacement components u1 and w1
write as

ω2u1 = ikγ0P1 + ikγ1P0 + γ0P0X

− ik
ω2 γ0[2γ0µ1zP0z + (γ0zµ1P0)z] ,

ω2w1 = γ0P1z + γ1P0z −
k2

ω2 γ0P0(2γ0µ1z + γ0zµ1) .

Expressing all involved quantities in terms of P1 and P0, we obtain in the usual manner
at the O(ε1) the boundary value problem for P1, which is not always solvable.

(γ0P1z)z +

(
ω2

c2
0
− k2

)
γ0P1 = k2γ1P0 − (γ1P0z)z

− 2ikγ0P0X − γ0P0YY − ikγ0XP0 − ikXγ0P0 (6)

+
E1ω2

E0c2
0

γ0P0 +
k2

ω2

[
2(γ2

0µ1z)z + γ2
0zµ1

]
P0 = F .

3. WKB Solutions for Shear Waves

It is interesting to note that expressions for the displacements in the shear waves
in WKB approximation are obtained automatically in the frame of the used multi-scale
method. In comparison with the usual MPE, when we use parabolic scaling with the
asymptotic variables X = εx and Y =

√
εy and phase ζ = θ(X)/ε in the case of the weak

elastic media, we should introduce one more phase variable.
Consider the wave equation for the vertically propagating shear wave in the media

with constant cs: uzz + (ω2/c2
s )u = 0. However, c2

s = µ/ρ and µ = εµ1. So, we obtain
equation εuzz + (ω2ρ/µ2

1)u = 0. For this equation, we can obtain the approximate solution
by the classical WKB method even without the assumption of constant cs. In the multi-scale
approach, we can remove ε from this equation by introducing the new variable η = z/

√
ε.

In our more general case, when cs and other parameters are not constants, we should
introduce the phase variable η = ξ(X, Y, z)/

√
ε. Thus, in our considerations, only the

powers of
√

ε take parts in the asymptotic variables. Then, it is reasonable to seek solutions
for the displacements u, v, and w as the asymptotic series in the power of

√
ε. Additionally,

dependent variables should depend on X, Y, z, ζ, and η. Successive consideration of the
terms of these series is performed in the Appendix A.

For the shear waves displacements, we use Expansion (A3) obtained as a result of the
considerations in the Appendix A.

uS = ε1/2uS1/2(X, Y, z, η) + εuS1(X, Y, z, η) + . . . ,

vS = εvS1(X, Y, z, η) + ε3/2vS3/2(X, Y, z, η) + . . . ,

wS = εwS1(X, Y, z, η) + ε3/2wS3/2(X, Y, z, η) + . . . .

Let us substitute them into the elasticity Equation (1) and collect terms at the same
powers of ε. Note that subscript j is omitted everywhere in this section.



J. Mar. Sci. Eng. 2022, 10, 1355 5 of 17

At ε1/2 in the equation for uS and at ε0 in the equation for wS, we obtain:

γ0µ1ξ2
z uS1/2,ηη + ω2uS1/2 = 0 , (7)

ξzwS1,η + ikuS1/2 = 0 .

To solve these equations, we put uS1/2 = ũ(X, Y, z) exp(iη) and wS0 = w̃(X, Y, z)
exp(iη):

(−γ0µ1ξ2
z + ω2)ũ = 0 , i(ξzw̃ + kũ) = 0 .

Thus, we obtain the expression for phase variable ξ(X, Y, z):

ξ2
z =

ω2

γ0µ1
⇒ ξ = ±

∫ z

−H
q(X, Y, s) ds = ±|ξ| ,

where q = ω/
√

γ0µ1. Moreover, w̃ = −kũ/ξz. From the equations at ε1 and ε1/2 for uS
and wS, we obtain:

(2ξzũz + ξzzũ)µ1 + ξzµ1zũ = 0 . (8)

This equation with separable variables can be easily solved

2
ũz

ũ
+

ξzz

ξz
+

µ1z
µ1

= 0⇒ ũ =
C(X, Y)√
|ξzµ1|

.

Finally, we have solutions for uS1/2 and wS1:

uS1/2 =
1
√

qµ1

(
C1ei|ξ|/

√
ε + C2e−i|ξ|/

√
ε
)

,

wS1 = − k
q
√

qµ1

(
C1ei|ξ|/

√
ε − C2e−i|ξ|/

√
ε
)

.

The expressions at ε3/2 for uS and vS give us the equation for ṽ in vS1 = ṽ(X, Y, z)
exp(iη), which is identical to Equation (8) for ũ, and therefore we have

vS1 =
1
√

qµ1

(
C3ei|ξ|/

√
ε + C4e−i|ξ|/

√
ε
)

.

We also obtained the equation for ũ1 in uS1 = ũ1(X, Y, z) exp(iη):

(2ξzũ1,z + ξzzũ1)µ1 + ξzµ1zũ1 =

[k2 + ξ2
Y + ξ2

z(γ1/γ0)]µ1ũ− (µ1ũz)z .

w̃1 can be found from

ξzw̃1 = iw̃z − kũ1 − ξX ũ− ξY ṽ ,

which also appeared when collecting terms of the order ε1/2.

4. Interface Conditions

We consider the only interface between the water layer and the elastic bottom. At the
surface described by equation z = h(x, y), we introduce the interface conditions:

(u+ − u−) · n = 0 , n · (σ+ − σ−)n = 0 , (9)

t1 · (σ−)n = 0 , t2 · (σ−)n = 0 ,

where n is a unit normal vector to the surface, and the subscript ‘+’ denotes upper limit
of the respective quantities z = z0 (i.e., the limit z → z0 + 0), while the subscript ‘−’
corresponds to the limit z→ z0 − 0, and u is the particle velocity vector.
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The normal vector n has coordinates

n = (−hx,−hy, 1) · (1 + h2
x + h2

y)
−1/2 ,

while tangent vectors t1 and t2 can be written as having the components:

t1 = (1, 0, hx) · (1 + h2
x)
−1/2 ,

t2 = (−hxhy, 1 + h2
x, hy)

× (1 + h2
x)
−1/2(1 + h2

x + h2
y)
−1/2 .

We further assume that surface function h(x, y) can be represented in the form

h = h0(X) + εh1(X, Y) ,

and therefore hx = εh0X + ε2h1X and hy = ε3/2h0Y.
The interface conditions for the stress tensor modulo terms of the order O(ε2) are

as follows:
[σ33]− = [σ33]+ , [σ13]− = 0 , [σ23]− = 0 . (10)

Using the fact that the interface perturbation εh1 is small, we transfer the interface
conditions to the unperturbed surface z = h0, retaining only the terms up to the order O(ε).

Thus, we obtain the following Taylor expansion:

u(X, Y, z, η)|z=h0+εh1
=

u(X, Y, z, η)|z=h0
+ εh1u(X, Y, z, η)z|z=h0

+ . . . ,

σ(X, Y, z, η)|z=h0+εh1
=

σ(X, Y, z, η)|z=h0
+ εh1σ(X, Y, z, η)z|z=h0

+ . . . .

With all the mentioned assumptions, the interface Condition (10) at z = h0(X) can be
rewritten in terms of P0 and P1 in the following form:

(P0)+ − (P0)− = 0 ,

(P1)+ − (P1)− = −h1(γ0P0z)+
(

γ−1
0+ − γ−1

0−

)
(11)

− 2k2

ω2 (µ1γ0P0)− ,

(µ1ξzuS0η)− = −
[

ikµ1

ω2 (2γ0P0z + γ0zP0)

]
−
, (12)

(µ1ξzvS0η)− = −
[ µ1

ω2 (2γ0P0z + γ0zP0)Y

]
−

.

The interface condition for the normal displacement component from (9) is

[w0 + ε(w1 − h0Xu0 + h1w0z + wS0)]− =

[w0 + ε(w1 − h0Xu0 + h1w0z)]+ .

Let us express this condition through P0 and P1:

(γ0P0z)− = (γ0P0z)+ ,[
γ0P1z + γ1P0z −

k2

ω2 γ0P0(2γ0µ1z + γ0zµ1)

−ikh0Xγ0P0 + h1(γ0P0z)z + ω2wS0

]
−

= [γ0P1z + γ1P0z − ikh0Xγ0P0 + h1(γ0P0z)z]+ .
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From (7), we can express ω2wS0 = ikγ0µ1ξzuS0η and, considering the first equation
in (12), we obtain (ω2wS0)− = [γ0µ1k2(2γ0P0z + γ0zP0)/ω2]−, and finally obtain:

(γ0P0z)+ − (γ0P0z)− = 0 ,

(γ0P1z)+ − (γ0P1z)− = ikh0XP0+(γ0+ − γ0−)

− h1[{(γ0P0z)z}+ − {(γ0P0z)z}−] (13)

− (γ0P0z)+

[(
γ1

γ0

)
+
−
(

γ1

γ0

)
−

]
+

2k2

ω2 [γ
2
0(µ1P0z − µ1zP0)]− .

This expression contains only P0 and P1 variables, so we can consider a pure acoustical
case with the perturbations due to shear waves.

5. Boundary Conditions

At the upper boundary z = 0, we postulate σn = 0, which is reduced to

σ33 = −P0eiθ/ε − εP1eiθ/ε = 0 .

Thus, we have Dirichlet conditions or pressure release conditions P0 = 0 and P1 = 0.
At the lower boundary z = −H, we can choose σn = 0, and therefore

σ33 = −P0eiθ/ε − ε[P1 − 2(k2/ω2)µ1γ0P0]eiθ/ε = 0 .

Again, we have pressure release conditions for P0 = 0 and P1 = 0. Moreover, σ13 = 0
at z = −H reduces to the following equality:

(µ1ξzuS0η) = −
2ik
ω2 (µ1γ0P0z) .

In a similar way, the condition σ23 = 0 at z = −H reduces to:

(µ1ξzvS0η) = −
2

ω2 (µ1γ0P0Yz) .

More useful types of boundary conditions at the lower boundary for comparison of our
solutions with the solutions of ASA wedge wave propagation problems are transparent-like
conditions at z = −H, where we require

uS0 ∼ e−i|ξ|/
√

ε , wS0 ∼ e−i|ξ|/
√

ε , vS0 ∼ e−i|ξ|/
√

ε ,

Which can be satisfied explicitly by assuming C1 = 0 and C3 = 0. We also assume
P0 = 0 and P1 = 0 and introduce an absorbing layer in order to suppress reflections of
compressional waves from bottom.

6. Elastic Mode Parabolic Equations (EMPE)

Let {θj|j = M, . . . , N} be a set of phases. We introduce multi-mode representation
following [13]:

P = P0 + εP1 + . . .

=
N

∑
j=M

[
P0j(X, Y, z) + εP1j(X, Y, z) + . . .

]
eiθj/ε .

Which gives a solution for the compressional acoustic waves. Here,

P0j = Aj(X, Y)φj(z, X) ,
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P1j =
∞

∑
l=0

Bjl(X, Y)φl(z, X) ,

where Bjl = 〈P1j, φl〉 (projections obtained via inner product). Eigenfunctions φj with θj are
obtained from the spectral Problem (3). Amplitudes Aj can be found from the solvability
condition for the boundary value Problem (6) for P1j. For this following [13], we multiply
the expression for P1 by φl and then integrate the resulting equation from −H to 0 by parts
twice with the use of the interface Conditions (11) and (13).

N

∑
j=M

eiθj/ε
∫ 0

−H

[
(γ0φlz)z +

(
ω2

c2
0
− k2

j

)
γ0φl

]
P1j dz

=
N

∑
j=M

eiθj/ε
∫ 0

−H
Fjφl dz +

N

∑
j=M

eiθj/ε

×
{

φl
[
(γ0P1jz)+ − (γ0P1jz)−

]
−γ0φlz

[
(P1j)+ − (P1j)−

]
+ (k2

j − k2
l )Bjl

}
.

The left part of this equality turns zero due to (3), and the right part represents the
desired parabolic equation. The terms (k2

j − k2
l )Bjl in these expressions can be omitted

because of the resonant condition |k j − kl | = O(ε) [13].
As a result, we obtain a system of parabolic wave equations for l = M, . . . , N

2ikl Al,X + ikl,X A + Al,YY +
N

∑
j=M

βl j Aj exp(θl j) = 0 , (14)

where θl j = i(θl − θj)/ε, and βl j is given by the formula

βl j =
∫ 0

−H
γ0νφjφl dz +

∫ 0

−H
γ1

(
n2

0 − k2
j

)
φjφl dz

−
∫ 0

−H
γ1φjzφlz dz− ik j(Cl j − Cjl)

−
k2

j

ω2

∫ 0

−H
[2(γ2

0µ1z)z + γ2
0zµ1]φjφl dz

+

{
h1φjφl

[
k2

j (γ0+ − γ0−)−
(

n2
0γ0

)
+
+
(

n2
0γ0

)
−

]
− h1γ2

0φjzφlz

(
γ−1

0+ − γ−1
0−

)
−

2k2
j

ω2 γ2
0[µ1(ϕl ϕj)z − µ1z ϕl ϕj]

}∣∣∣∣∣
z=h0

.

Here, the values ν and n0 are the same as in the study [24], coefficients Cl j have been
obtained in the work [13], and βl j differs from αl j from the latter paper only by two terms
containing µ1. Thus, in the case of low shear velocities, the problem reduces to the acoustic
case with the correction in the form of these terms.

7. Initial-Boundary Value Problem for the System of Elastic Mode Parabolic Equations

We refer to the quantities and variables X, Y, ν,γ0 µ1, θj, uS1/2j, vS1j, wS1j, and Aj as the
asymptotic ones. Considerations of initial-boundary value problems in a partially bounded
domain require the use of physical quantities and variables, which are x, y, ν̄ = εν, γ̄ = γ0
µ̄ = εµ1, ūSj = ε1/2uS1/2j, v̄Sj = εvS1j, w̄Sj = εwS1, Āj(x, y) = Aj(εx,

√
εy) = Aj(X, Y),
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and θ̄j =
∫ X 1

ε
θj,X dX =

∫ x
k j dx, c̄s =

√
γ̄µ̄. It can be easily verified that Equation (14) in

physical variables are read as

2ikl Āl,x + ikl,x Āj + Āl,yy + β̄ll Āl +
N

∑
j=M,j 6=l

β̄l j Āj exp(θ̄l j) = 0 , (15)

where β̄l j are computed by the same formulae as βl j, with ν replaced by ν̄, θ̄l j = (θ̄l − θ̄j).
For Equation (15), we consider the initial-boundary value problem in the domain of

the form {(x, y)|0 ≤ x < ∞ ,−y0/2 ≤ y ≤ y0/2}, with the initial condition

Āj(0, y) = gj(y) = (g, φj) =
∫ 0

−H
γ0g(z, y)φj(z) dz , (16)

and the transparent boundary conditions at y = −y0/2 and y = y0/2 (i.e., requiring that
only outgoing waves are present there). In practice, this condition is ensured by the use of
perfectly matched layers.

Now, we formulate the interface conditions for the displacements in the case of the
absorbing conditions at the bottom.

(uS0j)− =
Ajk j

ω3

[√
γ0µ1

(
2γ0φjz + γ0zφj

)]
− (17)

(vS0j)− =
AjY

ω3

[√
γ0µ1

(
2γ0φjz + γ0zφj

)]
− (18)

(wS0j)− =
Ajk2

j

ω4

[
γ0µ1

(
2γ0φjz + γ0zφj

)]
− (19)

We have expressions for the displacements for the considered case:

uS0j = C2

(
γ0

ω2µ1

)1/4
exp(−iη) , vS0j = C4

(
γ0

ω2µ1

)1/4
exp(−iη) ,

wS0j = k jC2

(
γ3

0µ1

ω6

)1/4

exp(−iη) , η =
1
ε

∫ z

−H

ω
√

γ0µ1
dz .

Final expressions for the displacements in the shear waves in the physical variables are

ūS0j =
Ājk j

ω2 Φ(z, h)
(

γ̄

c̄s

)1/2[√
γ̄c̄3/2

s

(
2φjz +

γ̄z

γ̄
φj

)]
−

,

v̄S0j =
Āj,y

ω2 Φ(z, h)
(

γ̄

c̄s

)1/2[√
γ̄c̄3/2

s

(
2φjz +

γ̄z

γ̄
φj

)]
−

,

w̄S0j =
Ajk2

j

ω3 Φ(z, h)(γ̄c̄s)
1/2
[√

γ̄c̄3/2
s

(
2φjz +

γ̄z

γ̄
φj

)]
−

,

Φ(z, h) = exp
(

i
∫ −h(x)

z

ω

c̄s
dz
)

.

8. Numerical Examples

The developed model based on EMPE (15) can handle any waveguides where hori-
zontal changes of bathymetry and hydrology are slow in comparison with the wavelength.
Nevertheless, for the test calculations, it is convenient to choose a sufficiently simple
waveguide with the elastic bottom for which the exact solutions, or solutions, obtained
by essentially different methods are known. In our opinion, the most popular of such
waveguides is the ASA (Acoustical Society of America) wedge benchmark, for which we
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can obtain solutions for the acoustic fields by the source image method, even in the case of
elastic bottom.

In order to illustrate the accuracy of the solution obtained using the equations derived
in this study, we perform a numerical simulation of sound propagation in the standard ASA
wedge benchmark problem (Figure 1) with the bottom slope angle≈ 2.86◦ [1,14]. Moreover,
in some calculations, we used a wedge with an angle≈ 1.14◦. The sound speed in the water
is 1500 m/s. The sound speed at the bottom is 1700 m/s. The bottom density is 1500 kg/m3,
while the water density is 1000 kg/m3. We assume that the seawater is a lossless medium,
while at the bottom the attenuation is 0.5 dB/λ. The point source with frequency 25 Hz is
located at the depth of 100 m, and the depth of the receiver is 30 m. The water depth is 200 m
at the source location. For calculation purposes, we truncate the computational domain
at the depth of 1500 m below the sea surface. Shear speed at the bottom in the numerical
experiments considered below is varied in the range cs = 0–500 m/s. The attenuation of the
shear waves at the bottom is assumed to be zero.

Receivers

Water c = 1500 m/sec  = 1000 kg/m3

Attenuation = 0 dB/
Point source f = 25 Hz

Soft sediments c = 1700 m/sec

c
s
 = 0 - 500 m/sec

 = 1500 kg/m3 Attenuation = 0.5 dB/

Total depth of the area H = 1.5 km

ASA Wedge

Angle  2.86o

0 0.5 1 1.5 2 2.5 3 3.5 4
X, km

-400

-350

-300

-250

-200

-150

-100

-50

0

Z
, m

Figure 1. ASA wedge with the wedge angle ≈ 2.86◦.

Figure 2 shows transmission loss in the x−z plane obtained by the EMPE method and
the first 10 modes in this case at distance x = 1000 m from the source.

Figure 3 illustrates the comparison between transmission losses obtained by the EMPE
method and by the source images method for cs = 350 m/s (top) and cs = 500 m/s
(bottom). Moreover, for the case with cs = 350 m/s, we additionally assumed bottom
attenuation to be 0.65 dB/λ to illustrate the effect found in computational experiments
increasing the accuracy of calculations with the introduction of additional wave attenuation
at the bottom. The curves for the case cs = 500 m/s (bottom) illustrate how EMPE fails at
large values of cs. The comparison of the transmission loss obtained by EMPE with the one
obtained by the source image method reveals the discrepancy of the curves at distances
x > 2 km.

In Figure 4, we estimate the dependence of the meansquare errors of calculations from
the bottom shear speed, when cs = 0–500 m/s. We considered it along wedge propagation
for the wedge angle ≈ 2.86◦ (left) and for the wedge angle ≈ 1.14◦ (right). One can see that
in both cases of EMPE, taking into account the weak elasticity of the bottom provides better
accuracy for cs < 270 m/s compared with the simple MPE without such consideration.
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Acoustic field on plane XZ, Modes: 1-44, f=25 Hz.
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Figure 2. Transmission loss in the x−z plane obtained by the EMPE method for cs = 350 m/s and
bottom attenuation 0.5 dB/λ (top). The first 10 modes in this case at distance X = 1000 m from the
source (bottom).
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Figure 3. Transmission loss obtained by the elastic mode parabolic equation method compared with
the source images method. Shear waves velocity cs = 350 m/s (top) and cs = 500 m/s (bottom),
attenuation is 0.5 dB/λ.
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Figure 4. Dependence of the errors of calculations from the bottom shear speed, when cs = 0–500 m/s.
Along wedge propagation for the wedge angle ≈ 2.86◦ (left) and for the wedge angle ≈ 1.14◦ (right).

In Figure 5, we investigate the influence on the accuracy of calculations by an addi-
tional small attenuation at the bottom, which could be useful for future work. Moreover,
we illustrate the influence of the type of the boundary condition (Dirichlet or Neumann) at
the lower boundary of the area on the accuracy of calculations.
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Figure 5. Influence on the accuracy of calculations by an additional small attenuation at the bottom
for cs = 350 m/s, zero bottom attenuation (left), and 0.5 dB/λ (right).

9. Discussion

In the the case of cross-wedge propagation, we discovered discrepancies at large
distances between solutions obtained by the source image method and by EMPE that can
be explained by the narrow-angle nature of the derived EMPE, which leads to additional
errors. These errors can be significantly reduced by using wide-angle equations that take
into account the elastic properties of the bottom (e.g., similar to the ones discussed in [10]).
Moreover, such equations can be derived within the framework of the formalism presented
in this study by considering terms arising at higher powers of a small parameter ε. This
can be a matter for future work.

The calculation time for the classical ASA wedge benchmark problem with 44 propaga-
tion modes was about 426 s on the one core of the Intelr Core™ i5-4690 K CPU, 3.50 GHz.
Out of this time, 59 s were required to calculate all 44 modes along the 4 km trace with the
horizontal step of 4 m (1000 steps). the vertical step was 1 m with the overall waveguide
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depth H = 1.5 km (1500 dots). For calculations of modes, we used the method of the inverse
iteration with the first order Richardson extrapolation to increase the accuracy. To calculate
the wavenumbers along the trace, the bisection algorithm was used. Of course mode
calculations can be significantly accelerated with the use of parallel computing. The EMPE
System (14) was solved numerically by the Crank–Nicholson implicit difference scheme
in combination with the Gauss–Seidel iteration method. The step on variable y was 3 m,
with the width of the waveguide being 3 km, so the calculation grid was 1000× 1000 nodes.
To prevent reflections from the boundaries, we used transparent boundary conditions at
y = ±1500 m. As transparent boundary conditions, we used the perfectly matched layers
from [28]. Reflections from the bottom were suppressed by the artificially absorbing layer
beginning from the depth of 1 km. The time of calculation for the EMPE system was about
367 s. Unfortunately, at this stage, calculations are hard to parallelize.

The above examples show that the elastic mode parabolic Equation (14), despite the
relatively small influence of the shear modulus, has a solution different from the purely
acoustic case. The derived equations are applicable in our test cases up to a shear velocity
≈300 m/s.

In our opinion, the MPEs used for the case of a weak elastic bottom developed in
this study are the most computationally efficient tool for solving 3D sound propagation
problems in shallow-water acoustics. This opinion may be justified by the fact that MPEs
can be considered a result of model order reduction procedure as compared with 3D
parabolic equations known from the literature (see, e.g., [29–31] and references therein).

Although one should expect that sound propagation models based on ray theory or
Gaussian beams are even more efficient [3,4], they can be somewhat less accurate for low
frequencies and relatively small water depth.

10. Conclusions

• In this work, with the use of the approach in articles [9,13,24], a mode parabolic
equation method for resonantly interacting modes accounting for weak elasticity at
the bottom was developed.

• The proposed method is numerically validated. The test calculations carried out for
the ASA wedge benchmark prove to be in excellent agreement with the source image
method [14] for shear wave speeds up to cs ≈ 300 m/s at the bottom and a rather
good agreement of up to cs ≈ 400 m/s.

• We have developed the software package [32] for the modeling of sound propagation
in 3D waveguides based on the derived equations.

• This software package has been successfully used to plan and analyze the results of
the acoustic experiments on the propagation of sound in a shallow sea [33].

Funding: The work was supported by the Russian Science Foundation (project no. 22-11-00171),
while the numerical experiments were conducted using a high-performance computing cluster at the
Il’ichev Pacific Oceanological Institute operating in the framework of the state assignment program
No. 121021700341-2).
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Appendix A. Derivation of the Main Ansatz

Here, we derive ansatz for our problem from the general form of displacement compo-
nent expansion.

Eef = λ + 2µ , Eef = E0(X, z) + εE1(X, Y, z) , µ = εµ1(X, Y, z) ,

1
ρ
= γ0(X, z) + εγ1(X, Y, z) ,
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U =
∞

∑
j=0

εj/2Uj/2(X, Y, z, η, ζ) ,

where U = (U, V, W) is the vector of displacements, η = ξ(X, Y, z)/
√

ε, and ζ = θ(X, Y, z)/ε.
Now, we expand the equations of elasticity and consider terms at the different powers of ε.

At O(ε−2), O(ε−3/2), we have:

W : O(ε−2) : γ0E0W0,ζζ θ2
z = 0 ,

V : O(ε−3/2) : γ0E0W0,ζζθYθz = 0 .

To satisfy the equations at ε−2 and at ε−3/2, we can choose θz = 0; thus, now
θ = θ(X, Y).

At O(ε−1), O(ε−1/2), we have:

V : O(ε−1) : γ0E0(V0,ζζ θY + W0,ηζ ξz)θY = 0

W : O(ε−1) : γ0E0(V0,ηζ θY + W0,ηηξz)ξz = 0 ,

U : O(ε−1/2) : γ0E0(V0,ζζ θY + W0,ηζ ξz)θX = 0 .

From the equation at ε−1 for V, we can conclude that θY = 0. Consequently θ = θ(X),
and note that shear waves essentially depend on ξ, and ξz 6= 0 in all cases. At ε−1/2 in the
equation for U and at ε−1 in equation for W, we obtain W0,η = 0, so W0 = w0(X, Y, z, ζ).

W : O(ε−1/2) : γ0E0(U0,ηζθX + W1/2,ηηξz + V0,ηηξY)ξz = 0

V : O(ε0) : γ0E0(U0,ηζ θX + W1/2,ηηξz + V0,ηηξY)ξY

+ γ0µ1V0,ηηξ2
z + ω2V0 = 0 .

From the equation for W at ε−1/2, we can conclude that U0,ηζ θX +W1/2,ηηξz +V0,ηηξY =

0. Using this result, from the equation for V at ε0, we have γ0µ1V0,ηηξ2
z + ω2V0 = 0, i.e.,

the Helmholtz equation for the elastic shear waves. However, in our problem, we generate
by the point source only compressional waves in the liquid, without any independent shear
waves in the bottom. So, we can postulate that V0 = 0. Thus, we drop out the solutions with
dominating shear waves. Now, we should require

U0,ηζ θX + W1/2,ηηξz = 0 .

To resolve the equations at different powers of ε with respect to ζ, we can seek variables
Uj in the form

Uj(X, Y, z, η, ζ) = Ũj(X, Y, z, η) exp(iζ) , j = 0, 1/2, 1, 3/2, . . . .

This is also true for Vj and Wj, and further tildes are omitted. Integrating the above
equation by η, we obtain U0 = −W1/2,ηξz/(iθX) + u0(X, Y, z), where u0(X, Y, z) is the
integration constant. Denote uS0(X, Y, z, η) = −W1/2,ηξz/(iθX) and integrate this equality
by η. As a result, we have

W1/2 = wS1/2(X, Y, z, η) + w1/2(X, Y, z) ,

where w1/2 is also the integration constant and wS1/2,η = −iθXuS0/ξz.
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At O(ε0), O(ε1/2), we have:

U : O(ε0) : iθXγ0E0(w0,z + iθXU0) + iθXγ0E0W1/2,ηξz

+ γ0µ1U0,ηηξ2
z + ω2U0 = 0

W : O(ε0) : γ0[E0(w0,z + iθXu0)]z

+ γ0E0(iθXU1/2,η + W1,ηηξz + V1/2,ηηξY)ξz + ω2w0 = 0

V : O(ε1/2) : γ0E0(w0z + iθXu0)Y + γ0µ1V1/2,ηη + ω2V1/2

+ γ0E0(iθXU1/2,η + W1,ηηξz + V1/2,ηηξY)ξY = 0 .

The consideration of the equations for U at ε0 gives two equations:

iθXγ0E0(w0z + iθXu0) + ω2u0 = 0 , γ0µ1uS0ηηξ2
z + ω2uS0 = 0 . (A1)

The last equation is the Helmholtz equation for the SV elastic shear waves. However,
in our problem, we can postulate uS0 = 0 and also wS1/2 = 0. Thus, we drop out solutions
with dominating shear waves.

The consideration of the equations for W at ε0 also gives two equations:

γ0[E0(w0z + iθXu0)]z + ω2w0 = 0 , iθXU1/2,η + W1,ηηξz + V0,ηηξY = 0 . (A2)

The last equation here eliminates the last term in the equation for V at ε1/2. Thus,
from the equation for V at ε1/2, we obtain two separate equations:

γ0E0(w0z + iθXu0)Y + ω2v1/2 = 0 , γ0µ1vS1/2,ηηξ2
z + ω2vS1/2 = 0 .

The equation for V at ε1/2 thus (regarding the above results) leads to V1/2 = v1/2(X, Y, z)
+vS1/2(X, Y, z, η), where ω2v1/2 = −γ0E0(w0z + iθXu0)Y, and γ0µ1vS1/2,ηη + ω2vS1/2 = 0.
Again, the last equation is the Helmholtz equation for the SH elastic shear waves. However,
in our problem, any independent shear waves in the main order are absent. So, we can
postulate that vS1/2 = 0. Moreover, from the second equation in (A2), we can conclude
that U1/2 = u1/2(X, Y, z) + uS1/2(X, Y, z, η) and W1 = wS1(X, Y, z, η) + w1(X, Y, z), where
wS1,η = −iθXuS1/2/ξz.

Introduce value P0 = −E0(w0,z + iθXu0). From the first equations in (A1) and (A2),
we obtain the equation for P0:

(γ0P0,z)z + γ0

(
ω2

γ0E0
− θ2

X

)
P0 = 0 .

With the appropriate boundary and interface conditions for P0, this equation consists
of a typical acoustic Sturm–Liouville problem, with the spectral parameter θ2

X depending
on the slow variable X.

From the equations for U at ε1/2, we have two equations:

iθXγ0E0(w1/2,z + iθXu1/2) + ω2u1/2 = 0 , γ0µ1uS1/2,ηηξ2
z + ω2uS1/2 = 0 .

Additionally, from the equation for W at ε1/2, we have:

γ0[E0(w1/2,z + iθXu1/2)]z + ω2w1/2 = 0 .

Combining the above equations and introducing value P1/2 = −E0(w1/2,z + iθXu1/2),
we obtain the equation for P1/2:

(γ0P1/2,z)z + γ0

(
ω2

γ0E0
− θ2

X

)
P1/2 = 0 .
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This equation exactly coincides with the one for P0. Without loss of generality, we can
put P1/2 = 0, and also w1/2 = 0 and u1/2 = 0. Because w1/2, u1/2, and, related with them,
v1 are absent in the equations for U, V at ε1, we can introduce the following representation
of displacements, which gives us the final parabolic equation.

u = [u0(X, Y, z) + εu1(X, Y, z)]eiθ(X)/ε

+ [ε1/2uS1/2(X, Y, z, η) + εuS1(X, Y, z, η)]eiθ(X)/ε + . . . , (A3)

v = [ε1/2v1/2(X, Y, z) + ε3/2v3/2(X, Y, z)]eiθ(X)/ε

+ [εvS1(X, Y, z, η) + ε3/2vS3/2(X, Y, z, η)]eiθ(X)/ε + . . . ,

w = [w0(X, Y, z) + εw1(X, Y, z)]eiθ(X)/ε

+ [εwS1(X, Y, z, η) + ε3/2wS3/2(X, Y, z, η)eiθ(X)/ε + . . . .

Thus, the obtained ansatz contains two groups of members: describing compressional
waves in the water and at the bottom and describing shear waves at the bottom.
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