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Abstract: This paper presents a frequency-domain Rankine source method based on a biquadratic
B-spline scheme with an improved radiation mechanism. The improved radiation mechanism, based
on the introduction of spatially varying Rayleigh artificial damping in addition to the simplified Seto’s
radiation boundary conditions, is considered for modeling radiation of generated waves at various τ

conditions, where τ = ωU/g including the undercritical condition (τ < 0.25); this condition is present
when a ship undergoes slow translation or low oscillatory frequency. In evaluations, the proposed
method yields accurate solutions for unsteady flows produced by an oscillating, translationally
moving submerged singularity. The radiation problem induced by a RIOS bulker is solved to have
the resultant added mass and damping coefficients for further comparisons with the experimental
data and the public numerical prediction by a simplified combined method at a wide τ region.

Keywords: Rankine source method; radiation boundary condition; Rayleigh artificial damping;
radiation problem; hydrodynamic coefficients

1. Introduction

Green function and Rankine source methods are commonly used to solve flow prob-
lems in marine engineering. The advantages of the Green function method are twofold:
first, the boundary integral equation is constructed from only the wetted body surface,
and second, the free surface boundary condition and the radiation boundary condition at
infinity are automatically satisfied. The research studies in [1–3] have successfully applied
the Green function method to seakeeping problems. However, a converged and efficient
numerical way to evaluate the Green function singularity and the proper numerical treat-
ment of the waterline integral are critical to Green function method; meanwhile they are
thought of as limitations in usage of Green function implementation. To address these
limitations, the Rankine source method, where the Rankine source is used as the singularity,
is considered. The Rankine source method facilitates effective evaluation of the employed
singularity and there is no need for treatment of the waterline integral; this method is thus
thought to be promising in practical applications.

The pioneer work for use of the Rankine source method is from Dawson [4] for
predicting the resistance of a body sailing in calm water. Dawson’s success in solving this
steady flow problem began the prevalent use of the Rankine source method for solving
unsteady flow problems. Bai and Yeung [5] are the pioneers credited for application of
the frequency-domain Rankine source method in solving unsteady flow problems, and
achieving good prediction of two axi-symmetric three-dimensional bodies, such as sphere
and ellipsoid, with the existing results. As illustrated by Bai and Yeung [5], in addition to
the infinite-depth case, the Rankine source method can be applied in the finite-depth case
by constructing the relevant boundary equation with the additional Rankine singularity
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distribution over the bottom and taking the finite-depth dispersion relation into account
for determining the corresponding wave number and wave length at constant finite depth.

Since then, frequency-domain analyses of the realistic ship’s unsteady flow prob-
lems using the Rankine source method have been reported by Nakos [6], Bertram [7],
Yasukawa [8], Iwashita and Ito [9], Yang et al. [10], Söding [11,12], Lyu and Moctar [13],
Kim and Kim [14] and others. Furthermore, the time-domain Rankine source method
using the linear, weakly nonlinear or weak scatter assumption on free surface boundary
conditions are considered by Kring [15], Kim and Kim [16], Huang [17], Singh and Sen [18]
and Datta et al. [19], for attempts to deal with the flow problem induced by the ship in
large amplitude motion. To handle the full nonlinearity existing in interaction between the
body and water, the method of mixed Eulerian-Lagrangian, in which the evolution in the
dynamic and kinematic free surface boundary conditions are considered, is introduced by
Longuet-Higgins and Cokelet [20] to simulate the two-dimensional wave profile variation
in time. Its succeeding application in the three-dimensional problems are investigated by
Cao [21], Beck [22,23], Kashiwagi [24] and Abbasnia [25]. However, even though these
variants of the time-domain Rankine source methods are proposed and have progressed
in past decades, the frequency-domain method is considered to be the most mature and
efficient way of dealing with various flow conditions in engineering practices. For this
reason, the present paper aims to use the frequency-domain Rankine source method for
wider applications in the marine field.

To satisfy the free surface boundary condition, the computation domain required for
constructing the boundary integral equation covers the body surface and the extent of the
free surface. Although the allocation of the free surface implies more computational cost, it
provides good flexibility in satisfying the variant of the free surface boundary condition.
However, the accompanying problems of wave distortion due to free surface discretization
and avoidance of wave reflection must be addressed. Jensen et al. [26] and Sclavounos [27]
have improved the method by reducing numerical dispersion and dissipation. To ensure
that the radiation boundary condition is satisfied on the free surface, Dawson [4] employed
the upwind differential, Raven [28] analyzed the source shift, Sclavounos [27] applied
the rigid-lid condition and Yasukawa [8] suggested introduction of the Rayleigh artificial
damping term. However, these numerical studies focused on solving the flow problem
under overcritical conditions, in which τ(= ωU/g) > 0.25 and all the generated wave
systems propagate backward; their proposals may not be appropriate for the flow problem
under undercritical conditions, where τ < 0.25 and part of the generated wave system
scatters ahead of the translating vessel. Herein, τ is the oscillatory frequency of the vessel,
U is the forward speed, and τ is thought of as an index for interpreting the generated
wave system.

Das and Cheung [29] and Yuan et al. [30] have attempted to address the aforemen-
tioned limitation by formulating an extended Sommerfeld radiation boundary condition
derived from the forward-speed-induced Doppler shift in circular waves at an additional
control surface. In a recent study by Iwashita et al. [31,32], the joint conditions for describ-
ing wave radiation are proposed to be blended with the Rankine source method. These
joint conditions, derived based on the concept of a combined domain, were employed at
the control surfaces and defined as the induced velocity potential and its normal derivative
simulated by the allocation of Green function singularity. Furthermore, the joint condition
is suggested as the resultant ratios of the normal derivatives to velocity potential, and
such a technique, which is called the simplified combined method, is used for seakeeping
prediction of ship, e.g., the studies in [32,33]. However, implementation of the extended
Sommerfeld radiation or joint conditions requires good control surface allocation and
increases the number of unknowns and computational cost.

In order to have the continuous description of flow and pressure fields, the velocity
potential modeled in spline form is considered in constructing the boundary integral equa-
tion; this lies at the heart of the so-called higher-order method. Hsin et al. [34] constructed
a model using B-splines for a two-dimensional flow problem. Scholars such as Nakos [6],
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Maniar [35], Coaxley [36], and Kim and Kim [37] have extended this insight to three-
dimensional steady and unsteady flow problems. Furthermore, Nakos and Sclavounos [38]
discuss the stability analysis, which is based on the dispersion relation in continuous and
discretized problems, for the B-spline scheme and propose the stability criterion.

The present study presents a frequency-domain Rankine source method that is based
on a B-spline scheme. This method can be used to solve unsteady flow problems regardless
of the τ condition (making this method practical for use). This method contrasts with
the unsteady Rankine source approaches in the literature that are applicable only to the
overcritical condition. Specifically, the present study constructs the resultant boundary
integral equation by employing simplified Seto’s explicit conditions and Rayleigh artificial
damping to accommodate wave radiation. In evaluation of its effectiveness, the proposed
method was successfully used to solve for the flow field generated by a single submerged
disturbance source under undercritical and overcritical conditions [39]. The present bi-
quadratic B-spline scheme is taken into account for predicting the hydrodynamic forces and
moments induced by forced motion of a realistic bulk carrier; its predicted coupled added
mass and damping coefficients are compared with the experimental data and the numerical
result of the simplified combined method to investigate applicability of the present method
in a broader region of τ.

2. Mathematical Formulation
2.1. Boundary Value Problem

Figure 1 illustrates the boundary problem of an oscillating vessel translating at steady
forward speed U in deep calm water. The oscillatory frequency is represented as ω. The
adopted right-handed Cartesian coordinate frame o− xyz undergoes translational motion
with the vessel on the positive x-axis, pointing to bow; its positive z-axis points upward
with the frame origin o located on the gravity center of the vessel at still water. As presented
in Figure 1, the finite computation extents conducted for the Rankine source panel scheme
includes the free surface and wetted surface of the vessel, and herein are denoted by ΣF
and ΣH , respectively.
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The unsteady motion response of the vessel in calm water and the associated ambient
flow are considered to be periodical with the ship oscillating frequency given by ω. The
forced motion responses of the vessel are described in the six degrees of freedom oscillatory
amplitudes of the vessel in calm water and are denoted by ξ j(j = 1~6), which stands for
surge, sway, heave, roll, pitch and yaw movement, respectively.
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The fluid throughout the domain in deep water, in which the Laplace equation is
satisfied, is inviscid, incompressible flow and irrotational. Thus, the flow field can be
described in the framework of velocity potential in the present study. Let t denote time and
→
p = (x, y, z) means the position vector. The total induced flow potential Ψ

(→
x , t
)

by the
translating vessel in calm water is expressed as

Ψ
(→

p , t
)
= U

[
Φ
(→

p
)
+ φ

(→
p
)]

+ ϕ
(→

p
)

eiωt (1)

where i =
√
−1; Φ is the double-body flow and is considered as the basis flow resulting

from the presence of the translating vessel in rigid water plane. The velocity potential φ
and ϕ stand for the steady and unsteady flow. Furthermore, the radiation flow component
of unsteady potential flow reads as follows

ϕ
(→

p
)
=

6

∑
j=1

ξ j ϕj

(→
p
)

(2)

in which ϕj(j = 1~6) stands for the velocity potential per unit j-mode motion displacement.
In direct methodology of the Rankine source scheme, the unsteady velocity potential in

fluid domain is expressed in terms of a normal dipole distribution of moment ϕ and a source
distribution of strength ϕ/∂n distributed over the boundary surfaces of ΣF and ΣH , with
the Rankine source as the kernel singularity, as in the following boundary integral equation:

2πϕ
(→

p
)
=

x

ΣF+ΣH

[
G
(→

p ,
→
q
)∂ϕ

∂n

(→
q
)
− ∂G

∂n

(→
p ,
→
q
)

ϕ
(→

q
)]

ds (3)

where ϕ stands for either one of ϕj, (j = 1~6),
→
p = (x, y, z) and

→
q = (x′, y′, z′) represents

the field point in the fluid and the source point over the boundary surfaces, respectively.
G
(→

p ,
→
q
)

represents the induced velocity potential at point
→
p by the unit strength Rankine

source at point
→
q and equals 1/r; in which r =

√
(x− x′)2 + (y− y′)2 + (z− z′)2. In the

present study, the velocity potential is generally approximated in the B-spline form as
ϕ
(→

q
)
≈ ∑M

m=1 B(2,2)
m

(→
q
)

σm; in which σm denotes the spline coefficients of M control units

corresponding to the basis function B(2,2)
m that is a product of two univariate quadratic

polynomials described in more detail in the later section. Therefore, the spline coefficients
σm are the unknowns in the present solving of the boundary value problem.

A series of boundary integral equations raised at various field points
→
p collocated on,

and end conditions around, the boundary surfaces ΣF and ΣH are collected to construct a
linear system of simultaneous equations for solving the spline coefficients for approximat-
ing velocity potential over the boundary surfaces. Once the solution of spline coefficients is
obtained, we can have the flow potential, the spatial derivatives and the hydrodynamic
forces acting on the vessel accordingly.

2.2. Boundary Conditions

To completely construct the unsteady wave flow problem, the flow disturbance due to
the steady translation of the body is considered in the derivations of relevant boundary
conditions and should be solved prior to solving the unsteady flow problem.

As mentioned in the preceding section, the velocity potentials Φ and φ denote the
double-body flow and the steady flow, which are induced due to the presence of the body
on free surface and the steady translation. Normally, the steady potential is disregarded in
solving an unsteady flow problem because the double-body flow is considered to be the
basis flow and is the dominant term. Hence, the relevant velocity vector due to the body
steady translation is written as by ∇Φ, normalized by forward speed U. The phenomenon
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of no flow flux penetrating through the boundary surface gives the boundary conditions
for the double-body flow as:

∂Φ
∂z

= 0 z = 0 (4)

∂Φ
∂n

= n1 ∈ SH (5)

where n1 denotes the x-component of normal vector on the hull.
On the exact free surface, the fluid flow is required to satisfy kinematic and dynamic

boundary conditions—that is, the normal velocities of the fluid and of the boundary surface
must be equal, and the pressure on the free surface must be equal to atmosphere. The
single form of the boundary condition can be given by taking a substantial derivative
of the dynamic boundary condition and combining the kinematic boundary condition
to eliminate the wave elevation term. It is further linearized with respect to the basis
double-body flow by neglecting the higher order terms and with Taylor series expanding at
the still water plane z = 0, we can have resultant linearized free surface boundary condition
for unsteady flow as follows

∂ϕ

∂n

(→
q
)
=



κ − iτ
(
Φxx + Φyy

)
−
[
2iτΦx +

2
κ0

(
ΦxΦxx + ΦyΦxy

)
+ 1

κ0
Φx
(
Φxx + Φyy

)]
∂

∂x

−
[
2iτΦy +

2
κ0

(
ΦxΦxy + ΦyΦyy

)
+ 1

κ0
Φy
(
Φxx + Φyy

)]
∂

∂y

− 1
κ0

(
Φx

∂
∂x + Φy

∂
∂y

)2


ϕ
(→

q
)

z = 0 (6)

where the parameters shown in Equation (6) are defined as κ = ω2

g , κ0 = g
U2 and τ = ωU

g .
With regard to the boundary condition at the body surface, the kinematic condition,

in which the normal component of the fluid velocity is equal to the component of body
velocity, is considered in aspect of the space-fixed coordinate. It is further considered that
the unsteady force due to the oscillatory movement of the body is balanced by the unsteady
flow. The linearization manipulation is taken by the Taylor series expanding with respect to
the equilibrium position of the body and dropping higher order terms, and the linearized
body boundary condition for the radiation problem is expressed in the form

∂ϕj

∂n
= iωnj + mj j = 1 ∼ 6∈ SH (7)

in which (n1, n2, n3) =
→
n , (n4, n5, n6) =

→
x ×→n ;

→
n denotes the normal vector and points

inwards of the hull. The so-called m-term represents the disturbance effects due to the
steady flow in unsteady flow problem, and its components are defined by

mj =

−
(→

n · ∇
)
∇Φ j = 1, 2, 3

−
(→

n · ∇
)(→

x ×∇Φ
)

j = 4, 5, 6
∈ SH (8)

2.3. Hydrodynamic Coefficients

Once the unknown double-body flow and the unsteady flow potentials, due to the
oscillatory motion, are solved, the resultant wave elevation on free surface and the pressure
on the vessel can be evaluated. The wave elevation and the resultant linear hydrodynamic
pressure can be expressed as Equations (9) and (10), respectively.

ζ(x, y) = − 1
g
(iω +∇Φ · ∇)ϕ z = 0 (9)

p
(→

p
)
= −ρ(iω +∇Φ · ∇)ϕ∈ SH (10)
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in which ρ is the fluid density. The pressure integration over the mean wetted surface of
the vessel gives the hydrodynamic forces and moments, which can be further classified
as the radiation force and wave excitation force. The radiation force, associated with the
monochromic oscillatory motions of vessel in six degrees of freedom, is derived from the
radiation potential as

Di = −ρ∑6
j=1 ξ j

x
ΣH

(iω +∇Φ · ∇)ϕjnids

 = ∑6
j=1 ξ j

(
ω2aij − iωbij

)
i = 1 ∼ 6 (11)

where the terms aij and bij represent the added mass and damping coefficients, respectively
(extracted from the real and image part in Di). Here the subscript ij indicates that the
coupled coefficient of added mass or damping acting at the ith degree of freedom is induced
by the forced motion of the jth mode. Furthermore, aij and bij can be written in the form of
the integral as Equations (12) and (13), respectively.

aij = −
ρ

ω2R

x

ΣH

(
iωϕj +∇Φ · ∇ϕj

)
nids

∈ SH (12)

bij =
ρ

ω
F

x

ΣH

(
iωϕj +∇Φ · ∇ϕj

)
nids

∈ SH (13)

2.4. Radiation Boundary Condition

The present study is conducted based on the spline Rankine source scheme with
collocation method, and the resultant linear algebraic system is an underdetermined system
since the equations raised on one collocation point per panel are insufficient to adequately
solve the unknowns of spline coefficients. Thus, the additional end conditions are required
to make the system determined and be solvable.

Among end conditions imposed around the extents of the free surface and vessel, the
upstream truncation of free surface extent is considered of most dominant and it should be
treated carefully. As illustrated in Figure 2, the generated wave systems by the forward-
moving vessel at a two-dimensional aspect can be classified into two major wave groups,
which are referred to as the A-wave and B-wave, respectively. A-wave is generated behind
the moving vessel and propagates downward, which is grouped by the shorter a1-wave
and the longer a2-wave. By contrast, B-wave propagates at the forward direction, which
consists of b1-wave and b2-wave at different group velocities.
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The associated group velocities can be determined by the following equations.
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Ca1
g

Ca2
g

}
=

√
2U

2
√(

1 + 2τ ±
√

1 + 4τ
) (14)

Cb1
g

Cb2
g

}
=

√
2U

2
√(

1− 2τ ±
√

1− 4τ
) (15)

It is worth noting that Cb2
g > U and concludes that the b2-wave can propagate ahead

of the vessel only when undercritical condition τ < 0.25. Therefore, this significant
phenomenon of the b2-wave leads to demand for appropriate radiation boundary conditions
as the end conditions upstream for both overcritical and undercritical conditions.

Based on the authors’ previous study [39], the explicit radiation boundary conditions
set, derived from the conditions proposed by Seto [40], at upstream truncation are found.
However, to avoid the overdetermined system resulted from the triple conditions for
undercritical condition in numerical implementation, a common formula is simplified to be
as follows, (

∂

∂x
+ ik2 cos δ

)(
∂

∂x
− iκ0τ

)
ϕ ∼ 0 (16)

(
∂

∂x
+ ik2 cos δ

)(
∂

∂x
− iκ0τ

)2
ϕ ∼ 0 (17)

In Equations (16) and (17), k2 and δ stand for the local wave number and the prop-
agation direction of b2-wave through the outward boundary, and both have variation
with the local position change. It is noted that k2 is directly regarded as zero for the
overcritical condition.

Due to the induced effect by the body’s forward translation, the generated b2-wave
system consists of the shorter wave ahead of the body and the longer waves behind the
body, as illustrated in Figure 3 for the undercritical condition. At the translating coordinate
frame coinciding with the body at speed U, when the waves reach point B, the propagation
direction rotates from the radial axis by a counterclockwise angle θ.
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The research of Das and Cheung [29] or Yuan, et al. [30] gives Equation (18) to link the
local characteristics of the wave number k2, the scattered frequency ωs and the propagation
angle δ(= Θ− θ) corresponding to the point in the outward boundary.

U
Vp

= sin θ
sin Θ

Vp = ωs
k2

ωs = ω + Uk2 cos(Θ− θ) =
√

gk2

(18)

Equation (18) is a nonlinear equation set, in which the first equation is derived from
the law of sines and the condition of AO/U = AB/Vp, the second one calculates the
local phase velocity Vp at B, and the last one is the local dispersion relationship in deep
water. An iterative method can provide the local solution of k2 and δ at the outward
boundary point from Equation (18), for satisfying the radiation boundary condition in
Equations (16) and (17).

2.5. Rayleigh Artificial Damping

As proposed in the proceeding section, the simplified Seto’s radiation boundary
condition is imposed upstream for all the flow conditions. However, to supplement the
insufficiency of imposed upstream boundary conditions, the Rayleigh artificial damping is
considered to see its effectiveness, especially for the undercritical conditions (τ < 0.25).

As explained in Nakos [6], introducing Rayleigh viscosity results in an infinitesimal
shift of the poles of the linearized free surface boundary condition in complex Fourier plan,
and leads to energy dissipation, accordingly. It transforms the encountered oscillatory
frequency ω to (ω− iε), in which ε is a positive and small value. Furthermore, we can have

ω2 → ω2 − 2iωε + O
(

ε2
)
≡ ω2 − iµω (19)

Here, the coefficient µ = 2ε is called the Rayleigh artificial damping. The linearized
free surface boundary condition in Equation (6) is modified with Rayleigh artificial damping
to have expression as follows

∂ϕ
∂n

(→
q
)
=
{

κ − iτ
(
Φxx + Φyy

)
− iµκ

−
[
2iτΦx +

2
κ0

(
ΦxΦxx + ΦyΦxy

)
+ 1

κ0
Φx
(
Φxx + Φyy

)
−µτΦx]

∂
∂x

−
[
2iτΦy +

2
κ0

(
ΦxΦxy + ΦyΦyy

)
+ 1

κ0
Φy
(
Φxx + Φyy

)
−µτΦy

]
∂

∂y −
1
κ0

(
Φx

∂
∂x + Φy

∂
∂y

)2
}

(20)

In the present study, Rayleigh artificial damping µ is assumed to be the spatial varying
of the free surface extent for avoiding excessive energy dissipation near the vessel. The
formula proposed by Iwashita [32] for µ(τ, R) reads as follows:

µ(τ, R) = µc f1(τ) f2(R) (21)

Here, µc presents the critical damping level; and f1(τ) and f2(R) are formulated as the
polynomials. The formula of f1(τ) is expressed as follows:

f1(τ) =


1 τ ≤ τs

6t5 − 15t4 + 10t3 τs ≤ τ ≤ τe

0 τ ≥ τe

(22)
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where t = 1− (τ− τs)/(τe − τs) and τs = 0.4 and τe = 0.5. The formula of f2(R) reads
as follows:

f2(R) =

{
a4u4 + a3u3 + a2u2 0 ≤ u < 1
1 u ≥ 1

(23)

The coefficients in Equation (23) can be determined by applying the constraints of
f2(0) = f

′
2(0) = f2(1) = f

′
2(1) = 0 and f2(0.5) = 0.32.

3. Numerical Implementation
3.1. Quadratic B-Spline Scheme

In the present study, all values and derivatives of flow velocity potential are expressed
in the biquadratic B-spline scheme, in which the associated basis function B(2,2)

j is designed

in terms of coordinates with local reference frame at the jth quadrilateral panel as the
product of two quadratic functions:

B(2,2)
j

(→
q
)
≡ b(2)j (ξ)× b(2)j (η) (24)

where ξ = x− xj and η = y− yj, in which
(
xj, yj

)
is the horizontal coordinate of origin of

the local coordinate system at the jth panel. In Equation (24), the definition of quadratic
function b(2)j (ξ) or b(2)j (η) has the expression as follows,

b(2)j (υ) =


1
2

(
3
2 + υ

hυ

)2
− 3hυ

2 ≤ υ < − hυ
2

1
2

(
3
4 −

(
υ
hυ

)2
)
− hυ

2 ≤ υ < + hυ
2

1
2

(
3
2 −

υ
hυ

)2
+ hυ

2 ≤ υ < + 3hυ
2

(25)

The symbol υ (whether for the variable or as the subscript index) in this equation
represents either ξ or η. hv presents the panel size along the local ξ-axis or η-axis of the
jth panel and provides the nominal length scale. Considering the characteristics of the
quadratic basis function, the value and first derivative of the basis function are continuous
over the span 3hv. Because the supports span over the three panels in the ξ and η directions,
the variation in characteristics in the jth panel depends not only on the spline control
coefficient of this panel but also on the spline control coefficients of the eight neighboring
panels jk( k = 1 ∼ 4, 6 ∼ 9), as illustrated in Figure 4.
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Through the present numerical spline scheme, the velocity potential at the point
→
q on

the jth panel can be approximated in terms of the highest degree of the two as follows:

ϕ
(→

q
)
= ∑9

k=1

(
∑2

m=0 ∑min(m,2)
n=max(m−2,0) β

(n,m−n)
jk

ξnη(m−n)
)
σjk∈ SF ∪ SH (26)

Here, β
(n,m−n)
jk

represents the spline coefficients of an intermediate ξnη(m−n) for all
neighboring panels with respect to the velocity potential. Their values can be extracted
from the associated spatial derivatives: ∂ϕ

∂x

(
= ∂ϕ

∂ξ
∂ξ
∂x + ∂ϕ

∂η
∂η
∂x

)
and ∂ϕ

∂y

(
= ∂ϕ

∂ξ
∂ξ
∂y + ∂ϕ

∂η
∂η
∂y

)
for

the further derivation of the normal dipole. As a result, the normal dipole ∂ϕ
∂n in Equation (6)

or (20) can be written in the spline form as follows,

∂ϕ

∂n

(→
q
)
= ∑9

k=1

(
∑2

m=0 ∑min(m,2)
n=max(m−2,0) γ

(n,m−n)
jk

ξnη(m−n)
)
σjk∈ SF (27)

where γ
(n,m−n)
jk

stands for the spline coefficients of an intermediate ξnη(m−n) for the normal
dipole expression.

3.2. Linear System Construction

The linear complex system for solving unknown splined coefficients is conducted
by collecting the resultant discrete boundary integral equations at the collocated points
and the employment of end conditions at the extent of truncations and boundaries in the
present study.

In practice, the computation extents are to be discretized into the quadrilateral pan-
els for numerical implementation. Herein, those quadrilateral panels over the free sur-
face and the vessel’s wetted hull are modeled along the I-and J-directions, so we can
write NF = N(I)

F × N(J)
F and NH = N(I)

H × N(J)
H , in which NF and NH account for the

number of panels over the free surface and vessel’s wetted hull, and the superscript
indicates that panel’s modeling direction. The numbers of spline coefficients for ap-
proximating the flow variation are determined by MF =

(
N(I)

F + 2
)
×
(

N(J)
F + 2

)
and

MH =
(

N(I)
H + 2

)
×
(

N(J)
H + 2

)
, based on the present biquadratic spline scheme. Hence,

total MT(= MF + MH) spline coefficient unknowns are to be solved in the present problem.
By discretizing the computation extents into (NF + NH) quadrilateral panels, we

can rewrite the boundary integral equation into a discrete form. Let one field point
→
p be

collocated in the lth panel. The discrete boundary integral equation is formulated as follows:

2π ∑9
k=1D

(l)
k σ

(i)
lk

+ ∑NF+NH
j=1 ∑9

k=1

(
G(j)

k −H
(j)
k

)
σ
(i)
jk

= ∑NF+NH
j=NF+1Rj i = 1 ∼ 6 (28)

where the above-mentioned coefficients are defined below.

D(l)
k =

2

∑
m=0

min(m,2)

∑
n=max(m−2,0)

β
(n,m−n)
lk

ξnη(m−n) (29)

G(j)
k =

2

∑
m=0

min(m,2)

∑
n=max(m−2,0)

β
(n,m−n)
jk

Q(n,m−n)
j

(→
p
)

(30)

H(j)
k =


2
∑

m=0

min(m,2)
∑

n=max(m−2,0)
γ
(n,m−n)
jk

P(n,m−n)
j

(→
p
)

j = 1 ∼ NF

0 j = NF + 1 ∼ NF + NH

(31)

Rj = iω
x

Γj

niG
(→

p ,
→
q
)

ds +
x

Γj

miG
(→

p ,
→
q
)

ds (32)
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In Equations (30) and (31), P(m,n)
j and Q(m,n)

j are the influence coefficients induced

by the Rankine source G and the normal dipole ∂G/∂n over the jth panel Γj, and defined
as follows:

P(m,n)
j

(→
p
)
=

x

Γj

ξmηnG
(→

p ,
→
q
)

ds (33)

Q(m,n)
j

(→
p
)
=

x

Γj

ξmηn ∂G
∂n

(→
p ,
→
q
)

ds (34)

In the evaluation of the influence of the m-terms in right-hand side of Equation (34),
the relation holds as follows

x

Γj

miG
(→

p ,
→
q
)

ds = −
x

Γj

ni

(
∇Φ

(→
q
)
· ∇G

(→
p ,
→
q
))

ds (35)

This is derived from Stokes’ theorem with incorporation of the double-body flow
as the basis flow in the present study. Details can be found in Nakos [6]. This approach
suggests manipulation of the first-order spatial derivatives to replace the second-order
spatial derivatives in m-terms to raise evaluation accuracy for the m-terms. Hence theRj is
further recast by

Rj =
x

Γj

ni

(
iωG

(→
p ,
→
q
)
−∇Φ

(→
q
)
· ∇G

(→
p ,
→
q
))

ds i = 1 ∼ 6 (36)

The collection of the equations of the discrete boundary integral raised at the panel
centroids and corresponding end conditions at the boundaries of extents gives the set of
simultaneous equations in matrix form as follows

[A]MT×MT
[σ]MT

= [B]MT
(37)

where [A] is a square coefficient matrix; [σ] and [B] are the column vectors containing all
the unknowns of spline coefficients and force terms of the right-hand side in Equation (28).
Once the solution is determined from Equation (37), the flow potential and its normal
derivative can be obtained for the subsequent hydrodynamic pressure calculation.

3.3. End Conditions

To introduce the appropriate radiation condition for handling the problem of non-
unique solution and remedy the underdetermined problem caused by the collocated points
on panels, the end conditions are imposed at the truncation of finite extents in free surface
and boundary of the vessel’s hull.

In the allocation of end conditions, except for the longitudinal truncation at free
surface extent, the remaining truncations are imposed with a symmetry condition that
makes the flow variation at truncation smooth. As illustrated in Figure 5, the flow vari-
ation at truncation point p = 0.5 hξ , which is the local coordinate relative to the (l + 1)th

panel, is symmetric for both sides and therefore the relation of continuous derivative:
∂ϕ
∂ξ (p+) = ∂ϕ

∂ξ (p−) → ∂2 ϕ

∂ξ2 = 0, is obtained. At the present spline scheme, we employ the
single quadratic spline function, and have σl − 2σl+1 + σl+2 = 0.
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Regarding the end conditions at the longitudinal truncation, only upstream truncation
is considered due to its dominance over flow development. Because the technique of the up-
wind difference or the collocation point shifting is absent from the present B-spline scheme,
the radiation conditions proposed in Equations (16) and (17) are employed upstream, and
can be expressed in spline form as

9

∑
k=1
L(1)lk

σlk = 0 (38)

9

∑
k=1
L(2)lk

σlk = 0 (39)

where the associated coefficients L(1)lk
and L(2)lk

are defined by

L(1)lk
≡

2

∑
m=0

min(m,2)

∑
n=max(m−2,0)

[
β
(n,m−n)
lk

(
∂

∂x
+ ik2 cos δ

)(
∂

∂x
− iκ0τ

)
ξnη(m−n)

]
(40)

L(2)lk
≡

2

∑
m=0

min(m,2)

∑
n=max(m−2,0)

[
β
(n,m−n)
lk

(
∂

∂x
+ ik2 cos δ

)(
∂

∂x
− iκ0τ

)2
ξnη(m−n)

]
(41)

3.4. Solving Characteristics of Local Scattered Waves

An efficient way to obtain local wave characteristics, including the wave number k2
and the local propagating direction δ required in Equations (16) and (17), is proposed to
replace the traditional iteration way of solving Equation (18). Stationary phase method on
Bessho three-dimensional translating-pulsating Green function, which is a single integral
form satisfying the linearized free-surface boundary condition and radiation condition at
infinity, is considered to have the set of parametric equations for the constant-phase curves
as Equation (42). The detailed formulation of the Bessho Green function can refer to the
works in [41,42]. 

κ0x =
.

k2 sin ϑ+k2 cos ϑ
k2

2
ψ(k2, ϑ)

κ0y = k2 sin ϑ−
.

k2 cos ϑ
k2

2
ψ(k2, ϑ)

(42)

where ψ(k2, ϑ) is the phase function of the wave number k2 and variable ϑ. Both k2 and its
derivative

.
k2 are the functions of ϑ. Here ϑ is the integral variable used in the Bessho Green

function for the integral of −π ≤ ϑ ≤ 0 for the undercritical condition (τ < 0.25).

k2 =
κ0

2 cos2 ϑ

(
1 + 2τ cos ϑ−

√
1 + 4τ cos ϑ

)
(43)

Let (x, y) represents the point B at outward boundary in Figure 3, which is the gen-
erated wave pattern by a translating body at undercritical condition. As indicated in the
top diagram of Figure 6, it presents the generated wave patterns, including the circular
waves (b2-waves) and two sets of divergent and transverse waves (a1- and a2-waves), for



J. Mar. Sci. Eng. 2022, 10, 1337 13 of 28

the undercritical condition (τ < 0.25). When the circular wave approaches the point B, at
which the local wave direction deflects from the radial axis with the angle of θ, due to the
Doppler-shifting effect. We can correct the circular wave propagating direction to angle
of δB(= ΘB − θB). ΘB corresponds to the polar angle at B, and it can be obtained by the
resultant relationship of (κ0y/κ0x):

tan Θ =
k2 sin ϑ−

.
k2 cos ϑ

.
k2 sin ϑ + k2 cos ϑ

(44)
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The propagating direction δ can be obtained from Equation (18) by

cos δ =

√
gk2 −ω

Uk2
(45)

The consequence from Equations (44) and (45) can be expressed in function of ϑ to
construct the relationship between the wave number k2 and propagating direction δ at
local position Θ, as presented in bottom diagram of Figure 6. Substituting ϑ varying
from −π to 0 into the Equations (44) and (45) could have a relationship as the diagram in
Figure 6. Once specific ϑ, which corresponds to ΘB, is pointed out, the associated solution
of k2 and δ succeeds. Compared to the iteration method, the proposed alternative is
explicit, and apparently efficient to determine the radiation boundary condition at various
upstream points.

3.5. Induced Flow by the Submerged Source

The flow field induced by an oscillatory source translating under water has been
evaluated by the present Rankine source method with the proposed radiation technique to
investigate its feasibility under overcritical and undercritical conditions. The associated
computation configuration is presented in Figure 7, in which the source is moving at the
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speed U and the depth of d. The investigation arises by comparing the present evaluation
against the analytic solution obtained using the Bessho form three-dimensional translating-
pulsating-source Green function, in which the steepest descent numerical integration
proposed by [42] is utilized to obtain the analytic solution in this paper.
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Let field point
→
p be allocated in the lth quadrilateral panel. The associated discrete

boundary integral followed by Equation (28) is expressed as
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in which the right-hand side presents the velocity potential induced by the Rankine source
→
q0 at

→
p . Once the spline coefficients in Equation (46) are solved, the unsteady velocity

potential ϕ over the free surface can be evaluated. The induced unsteady flow field by an
oscillating and translating singularity at (0, 0, -L/10) with Froude number of Fr = 0.2 is
simulated by the present method. For convenience, only real part of the unsteady velocity
potential is considered in the following discussion.

The associated comparison for the evaluated flow field by present Rankine source
scheme without Rayleigh damping (µc = 0.0) against the analytical solution at the un-
dercritical condition of τ = 0.2, attributing from the oscillatory frequency at ω = 1.0, is
shown in Figure 8, and the counter solution, introducing the Rayleigh damping (µc = 0.6),
is presented in Figure 9. The improvement in comparing Figures 8 and 9 can be observed
at the pattern of circular waves ahead of the disturbance, and it reveals that the Rayleigh
damping supplies the energy dissipation that is insufficient by Seto’s radiation boundary
condition only. Furthermore, the employed technique of radiation condition with Rayleigh
artificial damping yields a complete and accurate flow around the disturbed singularity at
this undercritical condition, although the crests are less or more damped.

Figure 10 presents the flow patterns by the Rankine source scheme and the analytical
solution at τ = 0.347, which attributes from oscillatory frequency of

√
3 and Froude number

of Fr = 0.2. The associated comparison on the generated divergent wave and transverse
wave is at high agreement. Therefore, the good results in Figure 9 (τ = 0.2) and Figure 10
(τ = 0.347) conclude that the proposed Rankine source scheme, based on Rayleigh artificial
damping in additional to simplified Seto’s radiation boundary condition, is acceptable
for the undercritical and overcritical conditions and can be further applied to the real
ship analysis.



J. Mar. Sci. Eng. 2022, 10, 1337 15 of 28J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 15 of 28 
 

 

 
Figure 8. ℝ 𝜑  by Green function and Rankine source methods at κL = 1.0, Fr = 0.2, τ = 0.2 and with-
out Rayleigh damping μc = 0.0 [39]. 

 
Figure 9. ℝ 𝜑  by Green function and Rankine source methods at κL = 1.0, Fr = 0.2, τ = 0.2 and with 
Rayleigh damping μc = 0.6 [39]. 

Figure 8. R[ϕ] by Green function and Rankine source methods at κL = 1.0, Fr = 0.2, τ = 0.2 and
without Rayleigh damping µc = 0.0 [39].

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 15 of 28 
 

 

 
Figure 8. ℝ 𝜑  by Green function and Rankine source methods at κL = 1.0, Fr = 0.2, τ = 0.2 and with-
out Rayleigh damping μc = 0.0 [39]. 

 
Figure 9. ℝ 𝜑  by Green function and Rankine source methods at κL = 1.0, Fr = 0.2, τ = 0.2 and with 
Rayleigh damping μc = 0.6 [39]. 

Figure 9. R[ϕ] by Green function and Rankine source methods at κL = 1.0, Fr = 0.2, τ = 0.2 and with
Rayleigh damping µc = 0.6 [39].



J. Mar. Sci. Eng. 2022, 10, 1337 16 of 28J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 16 of 28 
 

 

 
Figure 10. ℝ 𝜑  by Green function and Rankine source methods at κL = 3.0, Fr = 0.2, τ = 0.347 and 
with Rayleigh damping μc = 0.6 [39]. 

Due to the attempt to have an appropriate 𝑅  for Rayleigh artificial damping distri-
bution, we investigated the difference between the solutions by the present Rankine 
source scheme and analytical method. The mean difference between both solutions is de-
noted by e, and has the definition in Equation (47), in which 𝜙 and φ denote the corre-
sponding evaluated and analytical flow potential at arbitrary point 𝑝�⃗� in free surface and 
M points are considered in total. The superscript * stands for the conjugate of complex 
number. Because the surrounding flow field of disturbance singularity 𝑞0⃗ is our major 
concern, the specified region taken into account of the flow solution difference investiga-
tion is at a rectangular extent, bounded by L to −2L in longitudinal and from 0 to L in 
transversal direction, with respect to 𝑞0⃗. 

𝑒 = 100%𝑀 (𝜑 − 𝜙 )(𝜑 − 𝜙 )∗𝜙 𝜙∗  (47)

The induced flow fields at the undercritical condition of 𝜏 = 0.2 are solved with var-
ious parametric sets of critical Rayleigh damping (𝜇 ) and critical radial distance (𝑅 ), 
against the corresponding analytical solution. The resultants of mean difference at various 
(𝜇 ,𝑅 ) are summarized in Figure 11, in which the employed 𝜇  covers from 0.0 to 0.9, 
and 𝑅 𝐿⁄  is given at 1.5, 2.0 and 2.5. As presented in Figure 11, the value of mean differ-
ence obviously decreases with the increasing Rayleigh damping and trends around the 
level of e = 30%~35%, even at different 𝑅 𝐿⁄ = 1.5, 2.0 or 2.5. The optimal parametric set 
in this investigation is found to have 𝜇 = 0.6 and 𝑅 𝐿⁄ = 2.0, and the comparisons of 
evaluated velocity potentials against the analytic one along several longitudinal lines at 
y/L = 0.06, 0.18, 0.30 and 0.42 are considered. As shown in Figure 12, good agreement be-
tween the evaluated and analytic solutions in both real and image parts is noted, espe-
cially at the area ahead of the disturbance. Therefore, this parametric set of (𝜇 ,𝑅 ) can 
then be further employed for solving a radiation flow problem resulting from a real ship. 

Figure 10. R[ϕ] by Green function and Rankine source methods at κL = 3.0, Fr = 0.2, τ = 0.347 and
with Rayleigh damping µc = 0.6 [39].

Due to the attempt to have an appropriate Rc for Rayleigh artificial damping distribu-
tion, we investigated the difference between the solutions by the present Rankine source
scheme and analytical method. The mean difference between both solutions is denoted
by e, and has the definition in Equation (47), in which φ and ϕ denote the corresponding
evaluated and analytical flow potential at arbitrary point

→
pi in free surface and M points are

considered in total. The superscript * stands for the conjugate of complex number. Because
the surrounding flow field of disturbance singularity

→
q0 is our major concern, the specified

region taken into account of the flow solution difference investigation is at a rectangular
extent, bounded by L to −2L in longitudinal and from 0 to L in transversal direction, with
respect to

→
q0.

e =
100%

M

M

∑
i=1

√
(ϕi − φi)(ϕi − φi)

∗

φiφ
∗
i

(47)

The induced flow fields at the undercritical condition of τ = 0.2 are solved with
various parametric sets of critical Rayleigh damping (µc) and critical radial distance (Rc),
against the corresponding analytical solution. The resultants of mean difference at various
(µc, Rc) are summarized in Figure 11, in which the employed µc covers from 0.0 to 0.9, and
Rc/L is given at 1.5, 2.0 and 2.5. As presented in Figure 11, the value of mean difference
obviously decreases with the increasing Rayleigh damping and trends around the level of
e = 30%~35%, even at different Rc/L = 1.5, 2.0 or 2.5. The optimal parametric set in this
investigation is found to have µc = 0.6 and Rc/L = 2.0, and the comparisons of evaluated
velocity potentials against the analytic one along several longitudinal lines at y/L = 0.06,
0.18, 0.30 and 0.42 are considered. As shown in Figure 12, good agreement between the
evaluated and analytic solutions in both real and image parts is noted, especially at the
area ahead of the disturbance. Therefore, this parametric set of (µc, Rc) can then be further
employed for solving a radiation flow problem resulting from a real ship.
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4. Results and Discussion

The attempt to investigate the applicability of present biquadratic B-spline Rankine
source scheme on both undercritical and overcritical conditions, the RIOS (Research Ini-
tiative on Ocean Ships) bulker is selected as the numerical model for calculations and
the results are compared with the experiment data and numerical prediction by Iwashita,
et al. [32]. The ship model seakeeping tests of RIOS bulker were conducted in the Research
Institute for Applied Mechanics, Kyushu University and its principal dimensions of the
model are shown in Table 1.
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Table 1. Principal dimensions of model.

Length L 2.400 (m)

Breath B 0.400 (m)
Draft D 0.128 (m)

Displacement 5 0.0983 (m3)
Center of gravity (x-axis) xG 0.051 (m)
Center of gravity (z-axis) yG −0.020 (m)
Gyration radius in pitch Kyy/L 0.250

In addition to the capacity of the facility (such as carrier, load cell and so on), the
available experiment data range in a seakeeping test is mainly restricted by the size of the
test basin, because the near wave field around the ship model might be interfered with by
the wave reflection from the side wall of the basin, especially for the longer wave lengths.
This wave interference causes inaccuracy in measurement, and it is difficult to avoid for
cases at τ ≤ 0.25. Therefore, the existing associated numerical results are taken into account
in validation of the author’s proposed method.

Figure 13 shows the modeled panels representing the hull surface under still water,
and 1258 quadrilateral panels in half hull surface are employed in the computation. Under
the satisfaction of stability requirement, the total 6498 quadrilateral panels allocated on
the free surface computation domain are adopted, which is a rectangular extent bounded
by −2.5L ≤ x ≤ 1.5L in x-direction and 0 ≤ y ≤ 4.5L in positive y-direction, as shown in
Figure 14. The truncation distance in y-direction is chosen to allow for sufficient space for
developing the wave system such that the edges of the sector do not intersect the transverse
outward boundary.

The resulting comparison for the coupled hydrodynamic coefficients induced by the
oscillating model in heave and pitch modes translating at Fr = 0.18 are presented in
Figures 15–18, where two axes of abscissa using κL (dimensionless wave number) and τ are
adopted for convenient reading. In calculating the results, the oscillatory wave numbers
of κL ranging from 0.4 to 40.0 are considered to cover the flow conditions corresponding
to τ < 0.25 and τ > 0.25. The critical Rayleigh damping µc = 0.6 and critical distance
Rc = 2.0 are adopted in the calculations at various flow conditions.
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It is worth noting that the explicit radiation boundary condition imposed upstream is
an essential implementation for producing wave radiation in the present scheme structure.
The calculations with and without damping are shown to investigate the contributions due
to Rayleigh artificial damping in additional to inherent radiation boundary conditions.

In Figures 15 and 16, due to the forced heave oscillating motion, the heave-induced-
heave and heave-induced-pitch added mass and damping coefficients are presented, re-
spectively. Generally good agreement of the present method in comparison with either the
experiments or the other numerical solutions based on the simplified combined method [32]
are found. Only some discrepancies occurring in heave-induced-heave added mass, i.e., A33
in Figure 15, at low wave number around κL = 3.0 and in heave-induced-pitch damping,
i.e., B53 in Figure 16, at κL < 10.0, which indicates that numerical solutions are overes-
timated against the experiment. Furthermore, the high similarity of trend and quantity
reveals that the present method is capable of providing a reasonable solution as the sim-
plified combined method does. The apparent difference between the solutions with and
without Rayleigh damping is only found at the region of low wave number, i.e., τ < 0.25,
which indicates Rayleigh artificial damping indeed makes the results more stable than
those without imposing Rayleigh artificial damping which generally show large fluctua-
tion phenomena.

The numerical solutions and experimental data for the coupled pitch-induced-pitch
and pitch-induced-heave added mass and damping coefficient by the forced pitch oscil-
lating motion are presented in Figures 17 and 18, respectively. Excellent agreement is
generally seen in comparison with the experiment, although some overestimated pitch-
induced-heave, i.e., B35, at κL < 10.0 is noted. Because no experiment is available, vali-
dation of the present method at low τ is specifically compared with the existing results
from the simplified combined method. As shown in Figure 17, the differences among the
pitch-induced-pitch results by numerical methods are small. Furthermore, it is noted that
the drop-down phenomenon near τ = 0.25 in pitch-induced-pitch damping coefficient, i.e.,
B55, by the present method without damping is improved as smooth one. The effectiveness
of the damping is that the coupled pitch-induced-heave results (Figure 18) is also found,
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since the oscillation at low τ is depressed in the result with damping. At τ = 0.25, a peak
in the pitch-induced-heave added mass, i.e., A35, result by the simplified combined method
is noted. It is also seen in the results by the present method, although its peak value is
higher. Generally, the same conclusions can be drawn for the hydrodynamic coefficients
for the forced pitch oscillating motion mode, like the previous observation in forced heave
motion mode.

From the above comparisons either with experiment and other numerical method [32]
in vertical motion modes, the validity of the present method by constructing the resultant
boundary integral equation by employing simplified Seto’s explicit conditions and Rayleigh
artificial damping to accommodate wave radiation has been confirmed and application on
the rest motion modes i.e., surge, sway, roll and yaw, may also be regarded to be workable
although no related data can be compared. Some benefits on the calculation results by
applying the present technique for these modes are shown in Figures 19–26 for reference.
The comparisons in Figures 19–22, in which the induced diagonal added mass and damping
coefficient at motion modes of surge, sway, roll and yaw are presented, illustrate that
introducing Rayleigh artificial damping suppresses the fluctuation phenomena of results
without damping in low frequency regions and makes the solutions more stable, i.e.,
τ < 0.25. A similar conclusion can also be drawn for the coupled horizontal motion
modes, i.e., roll-induced-sway, roll-induced-yaw, sway-induced-roll and yaw-induced-roll,
as presented in Figures 23–26, respectively.
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5. Conclusions

The radiation of generated waves, which caused by an oscillating and translating body
on a free surface, must be modeled accurately in the Rankine source model to avoid the
flow field from the influence of wave reflection around the outward boundary. Specifically,
under the overcritical condition (τ > 0.25), the generated waves propagate backward
behind the body, whereas under the undercritical condition (τ < 0.25), the generated waves
(especially the circular waves) scatter ahead of the body; this different feature indicates that
proper numerical means must be chosen when modeling flow on a free surface.

In this paper, a frequency-domain Rankine source method based on a biquadratic
B-spline scheme is presented; it involves an improved radiation mechanism and solves the
flow problem with no restriction to τ, making it have broader applicability and practical
usefulness. Regarding the improved radiation mechanism in the present method, the
simplified Seto’s radiation boundary conditions are employed upstream and the introduc-
tion of spatially varying Rayleigh artificial damping over the free surface is incorporated.
Both means are explicit and efficient and do not require control surface allocation in the
boundary integral equation.

In evaluations conducted for cases with an oscillating and translating submerged
source singularity, the proposed method is compared against the analytic solution obtained
from the translating-pulsating-source Green function. The improved radiation boundary
mechanism derives accurate wave radiation modelling, especially for the undercritical
condition. The hydrodynamic forces induced by the forced oscillating movement of a
translating bulker vessel are solved by the present method, and the obtained results, based
on with and without introducing Rayleigh artificial damping, have good agreement in com-
parison with experimental data and public numerical prediction. Further investigation on
the results with and without damping illustrates that proposed improved radiation mech-
anism, i.e., introducing Rayleigh artificial damping in additional to the simplified Seto’s
radiation boundary condition, can provide wider feasibility in various flow conditions.

In conclusion, the present B-spline Rankine source method, incorporating simplified
Seto’s radiation boundary condition and Rayleigh artificial damping, provides accurate flow
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solutions under various τ conditions, and affords flexibility and computational efficiency.
It can thus be useful to naval engineering in offshore and deep-water applications.
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