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Abstract: The in situ element concentrations and the sulfur (S), and lead (Pb) isotopic compositions
in anglesite were investigated for samples from seafloor hydrothermal fields in the Okinawa Trough
(OT), Western Pacific. The anglesite grains are of two kinds: (1) low Pb/high S primary hydrothermal
anglesite (PHA), which is formed by mixing of fluid and seawater, and (2) high Pb/low S secondary
supergene anglesite (SSA), which is the product of low-temperature (<100 ◦C) alteration of galena
in the seawater environment. The Ag and Bi in the SSA go through a second enrichment process
during the formation of high Pb/low S anglesite by galena alteration, indicating that the SSA and
galena, which may be the major minerals host for considerable quantities of Ag and Bi, are potentially
Ag-Bi-enriched in the back-arc hydrothermal field. Moreover, REEs, S and Pb in the OT anglesite
are likely to have been leached by fluids from local sub-seafloor volcanic rocks and/or sediments. A
knowledge of the anglesite is useful for understanding the influence of volcanic rocks, sediments and
altered subducted oceanic plate in hydrothermal systems, showing how trace metals behave during
the formation of secondary minerals.

Keywords: anglesite; element distribution and mobility; supergene Ag–Bi enrichment; sulfide;
hydrothermal vent

1. Introduction

Anglesite (PbSO4) has been widely identified as a supergene weathering product
of primary galena in oxidation zones in supergene weathering deposits and mine-waste
sites [1–15]. Oxidation and acid-neutralization reactions partially dissociate the galena and
promote the development of secondary supergene anglesite [16], which then surrounds
and directly replaces galena contained within the anglesite [17], and the galena in situ
appears to be directly oxidized and partly or totally replaced by anglesite along its cleavage
planes and grain boundaries [11,18]. For example, in the Sidi Flah mine, Morocco, galena
is locally surrounded by a halo of altered anglesite PbSO4 [19]. Replacement also takes
place at the rim of galena grains as well as along the typical cleavage planes [7], which is
dissolved releasing Pb2+ and SO4

2− ions at high pH (>9) oxidizing environment [20], and
the solution interacting with the galena surface is strongly undersaturated with respect
to both the primary galena and secondary supergene anglesite (PbSO4) [21]. Supergene
weathering of primary galena leads to the formation of thermodynamically more stable
secondary anglesite. Whether or not the anglesite is stable depends on its pH, sulfur and
lead activity, partial pressure of CO2 (PCO2) and temperature in the seawater [7,11]. Under

J. Mar. Sci. Eng. 2022, 10, 35. https://doi.org/10.3390/jmse10010035 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10010035
https://doi.org/10.3390/jmse10010035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-7401-9706
https://doi.org/10.3390/jmse10010035
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10010035?type=check_update&version=2


J. Mar. Sci. Eng. 2022, 10, 35 2 of 23

oxidizing conditions, anglesite is stable between pH values of about 0.4 and 5.0 [22], and
the reported value of the solubility constant for anglesite (Ksp = 10–7.79) indicates that it is
relatively insoluble [23].

However, replacement of galena by anglesite does not produce acid [24]. Locally
occurring iron sulfides undergoing oxidation acidify solutions and provide ferric ions,
which are important oxidizing agents [10], and anglesite preferentially forms in such
microenvironments [3]. In the first phase of this process, oxidation takes place along
cleavage planes and grain boundaries, and galena weathers to anglesite [25]. Moreover, in
the supergene Cu-Pb-Zn-V ores of the Oriental High Atlas, Morocco, anglesite is observed
in fractures and cleavage planes in galena, and as a thin rim around it [26]. It is also found
throughout the waste dumps at Callahan Cu-Zn-Pb mine in the Goose Pond tidal estuary,
Maine, USA, as rims on masses of galena, and inside thin fractures that cut across grains of
galena and surrounding minerals and in veinlets and fracture sets that redistribute Pb [6].

However, anglesite precipitation can effectively control the attenuation process of
fluid Pb concentration [27]. Weathering reactions control the release and transport of Pb
and other metals in acidic and near-neutral conditions in surface environments [6,28]. In
the Butte mining district, Montana, the low Pb levels may be partly explained by the low
solubility of anglesite, especially in more sulfate-rich waters, or by the low solubility of
galena in the sulfidic waters of the flooded West Camp mining district in Butte [29].

Anglesite also acts an important solid-phase control on the aqueous mobility of Pb in
the Santa Lucia mine, Cuba [16]. The main mechanism controlling the mobility of As, Ba
and Pb is the precipitation of secondary supergene anglesite [16]. Geochemical modeling
indicates that leaching solutions are supersaturated with anglesite over the entire pH range,
showing that anglesite controls the As and Pb, and to a lesser degree the Zn and Cu,
unless the pH drops below 3.0 [27]. Furthermore, electron microprobe analyses (EMPA) of
anglesite in the waste rocks of the abandoned Seobo tungsten mine in Korea have shown
notable Cu concentrations up to 4.6 wt.% [27].

Although the mineral characteristics and chemical compositions of anglesite provide
important information about weathering reactions as well as fluid/solid interaction and
supergene processes, little is known about the chemical composition of anglesites from
seafloor hydrothermal systems, since it occurs only as a minor mineral in sulfide samples,
and also due to its secondary supergene genesis in sulfide deposits. The study of element
concentrations and isotopic compositions in anglesite from seafloor hydrothermal systems
is an important means of understanding element enrichment during supergene oxidation
of hydrothermal sulfide deposits, allowing both metal sources and reconstruction of the
physicochemical conditions of their preservation to be inferred. In this study, in situ major,
trace element abundance, sulfur and lead isotopic compositions in anglesite were measured
for the first time in seafloor hydrothermal fields from the back-arc Okinawa Trough (OT)
(Figure 1). The isotopic compositions of S and Pb in the anglesite and the abundance of in
situ elements from seafloor sulfide deposits are described in combination with the chemical
compositions of associated galena and other sulfide minerals. The hydrothermal and
seawater contributions of sulfur and are described in an attempt to reveal the mechanisms
of element enrichment and the isotope variations in the anglesite, as well as the anglesite
formation processes in seafloor hydrothermal systems generally for understanding seafloor
massive sulfide deposit preservation and supergene oxidation processes.
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Figure 1. Locations of seafloor hydrothermal sulfide and sulfate samples from the Yonaguni Knoll
IV, Irabu Knoll and Iheya North Knoll hydrothermal fields in the Okinawa Trough (red rectangle =
location of seafloor hydrothermal field; red star = sulfide and sulfate sampling site).

2. Geological Setting

The OT is at the rifting-to-spreading stage of a back-arc basin, exhibiting the devel-
opment of normal faulting of brittle crustal rocks and frequent magma intrusions. The
OT topography changes markedly from the central to southern parts of the trough, with
deepening of the trough floor and steepening of the continental slope, accompanied by en
echelon intra-trough grabens [30,31]. The tectonic and geophysical properties of the OT
also differ from north to south, with crustal thickness decreasing southwards. The southern
part shows variable gravity and linear magnetic anomalies, with greatest heat flow in the
central part. Most of the crust in the OT is transitional, although oceanic crust probably
appears in some grabens in both the central and southern parts [32]. It provides a favorable
geological environment for the development of seafloor hydrothermal systems [31–34].

As of 2015, the InterRidge Vents Database had recorded at least 15 deep-sea hydrothermal
fields in the OT, including the Minami-Ensei [35]; Iheya North [36–38]; Jade [39,40]; Hakurei [41];
Irabu Knoll [42,43]; Hatoma [44,45]; Yonaguni Knoll IV [46–48] and Tangyin [34,49] hydrother-
mal fields. This study focuses on the Iheya North Knoll and Yonaguni Knoll IV hydrother-
mal fields.

The Iheya North Knoll hydrothermal field (27◦47.2′ N, 126◦53.9′ E) is located in about
1000 m water depth along the eastern slope of a small knoll, which is part of the Iheya North
Knoll volcanic complex [31] (Figure 1). Seismic studies around the Iheya North Knoll have
indicated relatively disordered seismic reflectors as deep as 400–500 mbsf (meters below
seafloor) in the central valley, surrounded by small knolls [50], indicating the presence of
pumiceous volcaniclastic flow deposits beneath hemipelagic surficial sediments, rather
than massive igneous rocks [31]. About 10 active hydrothermal mounds, aligned north
to south, are concentrated in a small region [31], many of which host active fluid vents
and sulfide and sulfate mineralization [31]. A large mound (named North Big Chimney)
more than 30 m high is associated with vigorous venting of clear fluid and with the highest
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temperature of 311 ◦C, and appears to mark the center of hydrothermal activity [36]. The
vent fluids have lower alkalinity (0.5–3.6 mmol l–1), NH4+ (1.9–2.6 mmol kg−1) and Cl-
(441–458 mmol kg−1), indicating phase separation of the fluid beneath the seafloor [37].
Mineralization in the Iheya North Knoll included sulfide and sulfate mineralization [31].
For instance, the main sulfate minerals are barite, gypsum and anhydrite. Sulfide consists
mainly of sphalerite, galena, pyrite, chalcopyrite, marcasite, wurtzite and tennantite–
tetrahedrite. Luzonite, freieslebenite and covellite are also present in small amounts [31].
However, it is possible to use hydrothermal sulfide and its inclusions to trace the deep
circulation processes of fluid in the future.

The Yonaguni Knoll IV hydrothermal field is situated in an elongated valley [48]
(Figure 1). The valley is mostly covered with muddy sediment, except for the active
vent field and volcanic rocks on its northern slope. Suzuki et al. [48] distinguished five
types of mineralization: (1) anhydrite-rich chimneys; (2) massive Zn–Pb–Cu sulfides; (3)
Ba–As chimneys; (4) Mn-rich chimneys and (5) a pavement of silicified sediment. In
addition, diverse styles of fluid venting were found to occur within the hydrothermal field,
including slightly Cl-enriched (614–635 mmol kg−1) and depleted (376–491 mmol kg−1)
fluids associated with the discharge of liquid droplets of CO2 [48]. However, there is a
relationship between the tectonic setting, magmatism, mineralization, fluid–rock interaction
and sedimentary processes in the seafloor hydrothermal system (e.g., Iheya North Knoll
and Yonaguni Knoll IV) and the response, adaptation, record and action of organism, and
it will be interesting to explore the synergetic metallogenic mechanism of magma, fluid,
rock, sediment, seawater and organisms in the seafloor hydrothermal field in the future.

3. Sampling and Methods
3.1. Specimen and Analytical Techniques

Anglesite, galena and other sulfide mineral samples from seafloor hydrothermal
sulfide deposits were collected in 2014 and 2016 during the HOBAB 2, 3 and 4 cruises
of hydrothermal fields in the OT. Samples were taken from the Iheya North (samples
H2-R1-2-a4, -b3, -d4), and the Yonaguni Knoll IV (samples H4-TVG10-2-1, and H3-T9-10-2)
hydrothermal fields (Figures 1 and 2).

Figure 2. Photographs of hand specimens.

The anglesite, associated galena and other sulfide mineral samples from selected
seafloor sulfide and sulfate deposits were analyzed using thin sections to determine the
content of major and trace elements and S and Pb isotopic compositions. Reflected and
transmitted light microscopy techniques were used to reveal the external morphology
and internal structure of samples. Anglesite, associated galena and other sulfide minerals
and microstructures were determined using back-scattered electron (BSE) images and an
Oxford Instruments INCA X-Max energy dispersive spectrometer (EDS) on a TESCAN
VEGA 3 LMH scanning electron microscope (SEM) at the Institute of Oceanology, Chinese
Academy of Sciences.
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3.2. In Situ Major Element Determination

The major element compositions of the anglesite, associated galena, pyrite, sphalerite
and chalcopyrite were determined using a JXA-8230 electron microprobe analyzer (EMPA)
at the State Key Laboratory of Continental Dynamics, Northwest University, Xian, China.
The instrument was operated at a 15 kV acceleration voltage, 10 nA beam current and 2 µm
beam diameter. The following reference materials were used for wavelength dispersive
spectrometry measurements and calibrations: pyrite (for S and Fe); chalcopyrite (for Cu);
sphalerite (for Zn); galena (for Pb) and skutterudite (for As). Pure metals were Au, Ag, Cd,
Sb, Se, Ni, Co and Cr, and the silicates were diopside (for Ca, Mg and Si); albite (for Al);
bustamite (for Mn); rutile (for Ti); apatite (for Sr) and barite (for Ba). The test accuracy for
major elements in the sulfides and sulfates was better than 5%. The detection limits for
selected trace elements were approximately within the range of 0.01 to 0.12 wt.% (Table S1).

3.3. In Situ Trace Element Determination

In situ measurements of trace elements in the anglesite, associated galena, pyrite,
sphalerite and chalcopyrite were determined using a laser-ablation inductively coupled
plasma mass spectrometer (LA-ICP-MS) at the State Key Laboratory of Biogeology and
Environmental Geology, China University of Geosciences, Wuhan. A GeoLas Pro 193 nm
ArF excimer laser was applied to analyze the samples. Laser energy was 80 mJ, and
frequency was 6 Hz with a 44 µm diameter ablation spot. Acquisition of ion-signal intensity
was performed using an Agilent 7500x ICP-MS instrument. Helium was used as the carrier
gas, which was mixed with argon via a T-connector before entering the ICP-MS. Each
measurement incorporated a background acquisition of approximately 30 s (gas blank)
followed by 50 s of data acquisition from the sample, using ICPMSDataCal software to
quantitatively calibrate trace element contents [51,52]. Fe, Cu, Zn and Pb were selected as
the internal standards for data reduction. NIST 610 glass was used as the external standard,
which was analyzed every 10 spots to monitor for any instrument drifts. The accuracy was
determined with respect to the NIST 610 reference glass and was assessed to be better than
10% (1σ).

The rare earth element (REE) contents were normalized to Cl-chondrites (subscript CN) [53].
The Eu and Ce anomalies were assessed as (Eu/Eu*)CN = EuCN/(SmCN + GdCN)0.5 and
(Ce/Ce*)CN = CeCN/(LaCN + PrCN)0.5.

3.4. In Situ S Isotope Analysis

In situ measurements of S isotope ratios of the anglesite and associated galena, pyrite,
sphalerite and chalcopyrite were conducted on double-sided-polished slices (DSPSs) of
these minerals using a 193 nm femtosecond laser-ablation multi-collector inductively
coupled plasma mass spectrometer (fs-LA-MC-ICP-MS) at the State Key Laboratory of
Continental Dynamics (SKLCD), Northwest University, Xian, China. The equipment
consisted of a 193 nm NWRfemto (RESOlution M-50, ASI) laser ablation system coupled
with a Nu Plasma II MC-ICP-MS (NU Instruments Ltd., Wrexham, UK). The ablated
materials were transported into the plasma using He as a carrier gas. In a cyclone coaxial
mixer, Ar gas was mixed with the carrier gas before being transported into the ICP torch.
The energy fluence of the laser was approximately 3.5–4 J/cm2. The beam diameter was 35
µm with a laser repletion rate of 3–4 Hz for single spot analysis. Standard PSPT-3 (sphalerite;
δ34SV-CDT = 26.5 ± 0.2‰) was used as certified reference material. Detailed analysis
parameters are described in Bao et al. [54], Chen et al. [55] and Yuan et al. [56]. In this study,
the S isotope ratios of the anglesite and associated galena, pyrite, sphalerite and chalcopyrite
are given in standard notation (per mil) relative to Vienna Canyon Diablo Troilite.
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3.5. In Situ Pb Isotope Analysis

In situ measurements of Pb isotope compositions of the anglesite and galena were
analyzed on DSPSs using a 193 nm fs-LA-MC-ICP-MS at the SKLCD. To remove potential
contamination, anhydrous ethanol was used to carefully clean the surfaces of the DSPSs
prior to laser ablation analysis. Analytical spots were carefully selected to prevent the
possible influence of inclusions and impurities. High-temperature-activated carbon was
used to filter Hg contained in the carrier gas, which lowered both the Hg background
and the detection limit. An internal Tl isotope reference NIST SRM997 in conjunction
with an external reference NIST SRM 610 were used to correct for fractionation and mass
discrimination effects, where the Tl solution is introduced through the CETAC Aridus II
desolvation nebulizer system. The exponential law correction method for Tl normalization
with optimally adjusted Tl ratio was used to obtain Pb isotopic data with high precision
and accuracy [57]. The measured isotopic ratios were in agreement with the reference and
published values within 2σ measurement uncertainty [54,56–58].

4. Results
4.1. Occurrence and Major and Trace Element Concentrations of Anglesite

Most seafloor hydrothermal sulfide and sulfate samples from the middle OT (MOT)
Iheya North (samples H2-R1-2-a4, b3, d4) and from the southern OT (SOT) Yonaguni
Knoll IV (samples H4-TVG10-2-1, and H3-T9-10-2) consist of major (>15 vol%) sphalerite,
chalcopyrite, galena, pyrite and barite, with minor (<15 vol%) anglesite (Figure 3). The
anglesite minerals occur as infills and veins with low Pb and high S contents in the host
sulfide, as crusts with high Pb and low S contents around the margin of the relict galena,
as in situ replacement or as euhedral crystals in cavities of the former, partially dissolved
galena (Figures 4 and 5). This implies that low Pb and high S and high Pb and low S
grains may be primary hydrothermal anglesite (PHA) and secondary supergene anglesite
(SSA), respectively.

Figure 3. (a) Sphalerite forming large porous structures in sample H4-TVG10-2-1. Sphalerite with
“dust” chalcopyrite disease condensing into larger particles. Pore centers with anglesite and galena
infill indicates their later formation. (b) Intergrowth of subhedral to euhedral pyrite and spha-
lerite forming large porous structures in sample H4-TVG10-2-1; pore center filled with anglesite.
Relict galena surrounded by anglesite indicates secondary origin of anglesite replacing galena.
(Ang = anglesite; Sph = sphalerite; Py = pyrite; Ccp = chalcopyrite; Gn = galena).
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Figure 4. (a) SEM back-scattered electron (BSE) images of selected anglesite and sulfide minerals
hosting Ag and Bi in seafloor hydrothermal sulfide deposits, Okinawa Trough. (a) Sample H3-T9-10-2:
Intergrowth of large subhedral to euhedral barite, anglesite, sphalerite and galena forming porous
structures. (b) Sample H4-TVG10-2-1: Anglesite replacing galena. Fluid channels with sphalerite infill
indicate their later formation. (c) Sample H2-R1-2-a4: Intergrowth of sphalerite and pyrite forming
large porous structures. Some pores filled with anglesite minerals indicate their later formation.
(d) Sample H2-R1-2-b3: Intergrowth of sphalerite, pyrite and chalcopyrite forming porous structures.
Relict galena surrounded by anglesite indicates a secondary origin of anglesite replacing galena
(Ang = anglesite; Brt = barite; Sp = sphalerite; Py = pyrite; Ccp = chalcopyrite; Gn = galena).

Moreover, the PbO and SO3 concentrations in the anglesite samples from the Iheya
North hydrothermal field are more variable than those from the Yonaguni Knoll IV fields
(Table S1; Figure 6a), suggesting that two types of anglesite occur in the OT back-arc basin:
a high-Pb/low-S secondary supergene anglesite type (PbO > 72.50 wt.%, SO3 < 27.00 wt.%)
in the Iheya North hydrothermal field and a low-Pb/high-S type primary hydrothermal
anglesite (PbO < 72.00 wt.%, SO3 > 29.00 wt.%) in the Yonaguni Knoll IV hydrothermal
fields (Figure 6a).
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Figure 5. (a) BSE image of Ag–Bi-enriched anglesite and galena. X-ray elemental distribution maps
after EPMA of BSE image, showing compositional heterogeneity of anglesite crystals in (b) Pb; (c) S;
(d) galena with Ag-enriched anglesite rim and veins.
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Figure 6. Plots of anglesite minerals in samples H2-R1-2-a4, b3, d4 (MOT hydrothermal field) and
samples H3-T9-10-2 and H4-TVG10-2-1 (SOT hydrothermal field): (a) PbO vs. SO3; (b) Ag vs. Bi; (c)
Ag vs. Bi in sample H2-R1-2-d4; (d) Ag vs. Bi in sample H2-R1-2-b3. PHA—primary hydrothermal
anglesite; SSA—secondary supergene anglesite.



J. Mar. Sci. Eng. 2022, 10, 35 9 of 23

Generally higher U, Cu, Th, Ni, Co and V with HREE concentrations are found in the
high Pb and low S anglesites from the Iheya North than in the low Pb and high S anglesites
from the Yonaguni Knoll IV hydrothermal fields (Tables S1 and S2). In addition, the Bi
concentrations in the high Pb and low S anglesite samples (H2-R1-2-b3) from the Iheya
North hydrothermal field are markedly more variable (0.04–3112 ppm) than for the low Pb
and high S anglesite samples from the SOT hydrothermal fields (Table S2; Figure 6b). Most
of the high Pb and low S anglesite from the MOT contain notably higher concentrations
of both Ag and Bi than those in the high Pb and low S anglesite from the SOT (Table S2;
Figure 6b). Notably, the Ag content showed a remarkable positive correlation with Bi in the
anglesite in seafloor hydrothermal sulfide deposits (Figure 6b). The Mo concentrations in
high Pb and low S anglesite from the Iheya North Knoll hydrothermal field are generally
higher than those in the low Pb and high S anglesite from the Yonaguni Knoll IV field
(Table S2; Figure 7b).
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The Bi and Cu concentrations in galena associated anglesite in the Iheya North and
Yonaguni Knoll IV hydrothermal fields are variable, covering the widest range (0.02–616 to
2.83–2895 ppm) (Table S2). The Sb and Ag concentrations in galena (sample H3-T9-10-2)
associated anglesite from the Yonaguni Knoll IV hydrothermal field is considerably more
variable (53.3–5843 and 11.4–3515 ppm) than those in the galena associated anglesite from
the Iheya North hydrothermal fields (Table S2). However, most of the anglesite samples
have higher Ag and Bi concentrations than the associated sulfide minerals in the OT (Ta-
ble S2; Figures 6 and 7), and most of the Ag and Bi concentrations in anglesite and associated
galena are considerably higher than in pyrite, chalcopyrite and sphalerite (Figures 6 and 7).
The Bi/Sb ratios of galena in samples from Yonaguni Knoll IV hydrothermal field are low
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than 1. In contrast, the Bi/Sb ratios of galena in samples from Iheya North hydrothermal
field are much greater than 1 (Table S2).

4.2. Rare Earth Element Compositions in Anglesite

The total REE concentrations (∑REEs) in the anglesite from the OT hydrothermal
fields are highly variable (0.01–30.3 ppm) (Table S2). Most of the ∑REEs in the high Pb and
low S anglesite from the MOT are higher than those in the low Pb and high S anglesite from
the SOT (Figure 8a). Of the high Pb and low S anglesite in the present study, those from
the MOT hydrothermal fields exhibited the highest ∑REEs (30.3 ppm, sample H2-R1-2-a4,
point 12-6; Table S2). However, most of the ∑REEs in the OT anglesite were higher than
those in the OT associated galena (0.01–0.33 ppm) and other sulfide minerals (Table S2;
Figure 8a).
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primary hydrothermal anglesite; SSA—secondary supergene anglesite.

The C1-chondrite-normalized REE distribution patterns of the anglesite from the OT
hydrothermal fields are shown in Figure 9. The REE patterns of most of the anglesite
show evidence of LREE enrichment (LREE/HREE ratios of 0.39–233), variable LaCN/LuCN
ratios between 0.32 and 10.7, Eu anomalies ((Eu/Eu*)CN ratios of 0.49–11.0) and minor Ce
anomalies ((Ce/Ce*)CN ratios of 0.05–3.37) (Figure 8b,c). Most of the (Eu/Eu*)CN (0.49–4.21)
and (Ce/Ce*)CN (0.05–3.37) ratios of the high Pb and low S anglesite from the MOT are
lower and higher than those (3.45–11.0, 0.06–1.07) in the low Pb and high S anglesite from
the SOT, respectively. In comparison, the Eu and Ce anomalies in the galena and other
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sulfides associated anglesite have a (Eu/Eu*)CN ratio of 0.83 and (Ce/Ce*)CN ratios of
0.06–1.38.
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4.3. In Situ S and Pb Isotopic Compositions of the Anglesite and Sulfides

Anglesite forming in the MOT (Iheya North, 11.04–17.42‰) and SOT (Yonaguni Knoll
IV, 12.84–22.86‰) hydrothermal fields exhibits a range of δ34S values of 11.04 to 22.86‰
(Table S3; Figure 10). Moreover, in the Okinawa Trough, the galena, pyrite, sphalerite and
chalcopyrite have much lower sulfur isotope ratios than those in the associated anglesite
(δ34S values from –5.01 to 11.33‰, avg. 7.48‰, n = 60) (Table S3). Most of these are within
the previously reported range 0.0–9.6‰ from previous analyses of seafloor hydrothermal
sulfides [59,60]. In addition, the pyrite–sphalerite, sphalerite–chalcopyrite and sphalerite–
galena pairs in samples H2-R1-2-a4, -b3 and -d4 display a sulfur isotopic equilibrium,
according to known temperature-dependent fractionation factors, characteristic of most
seafloor hydrothermal systems [61]. The formation temperatures of coexisting sulfide
mineral pairs from the Iheya North Knoll hydrothermal field, as calculated by the sulfur
isotope geothermometer formula [61,62], range from 248 to 333 ◦C (Table S4).
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Shanks [66]. Seawater data from Rees et al. [67].

The anglesite in the OT hydrothermal fields have similar Pb isotopic compositions,
and the Pb isotopic compositions lie within a narrow range (Table S3; Figure 11). In
the Okinawa Trough, the Pb isotopic compositions of the low Pb and high S anglesite
and associated galena samples from the Yonaguni Knoll IV hydrothermal fields are more
radiogenic than those of the high Pb and low S anglesite and associated galena from the
Iheya North hydrothermal field (Table S3; Figure 11). In addition, the 207Pb/204Pb and
208Pb/204Pb ratios of OT anglesite and associated galena are within or close to the range
for the corresponding OT volcanic rocks and sediments (Figure 11).
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H3-T9-10-2, H4-TVG10-2-1): (a–c) 208Pb/204Pb vs. 206Pb/204Pb; (d) 207Pb/204Pb vs. 206Pb/204Pb.
PHA—primary hydrothermal anglesite; SSA—secondary supergene anglesite. Data for NOT, MOT
and SOT volcanic rock, sediment, and altered oceanic crust basalt from Shu et al. [68].

5. Discussion
5.1. Variable REE Compositions, Origin of Eu Anomalies and Sources of REEs

The ∑REEs in the anglesite in the present study vary considerably (0.01–30.3 ppm)
(Table S2). They exhibit no systematic variation with Pb or S. The extent of fractionation of
the LREEs and HREEs is highly variable in the anglesite from the OT hydrothermal fields
(Table S2). The substitution of REEs into anglesite, analogous to the substitution of REEs
into pyrite, chalcopyrite and sphalerite, appears to be strongly influenced by the larger ionic
radii of the REEs [69,70]. Thus, greater LREE enrichment takes place in Pb-rich anglesite
and associated galena than in pyrite, chalcopyrite and sphalerite minerals because of the
similar ionic radii of Pb2+ (119 pm) and La3+ (103.2 pm) compared to the much smaller
ionic radii of Fe2+ (55 pm), Cu2+ (73 pm) and Zn2+ (74 pm) [71,72].

Most of the REE patterns in low Pb and high S anglesite from the SOT hydrother-
mal fields (samples H3-T9-10-2, points 7-73, 2-1-18, 3-1-34, 8-1-82) exhibit positive Eu
anomalies of 3.34 to 9.98 (Table S2; Figure 8b), similar to the values in the vent fluids at
the Yonaguni Knoll IV, the East Pacific Rise near 13◦ N and the Logatchev hydrothermal
fields [73–77]. These similarities suggest that this low Pb and high S anglesite is primary
hydrothermal anglesite, which precipitated and inherited positive Eu anomalies from the
vent fluids [70,78,79].

Most of the REE patterns in the high Pb and low S anglesite from the MOT hydrother-
mal fields are characterized by a negative or negligible Eu anomaly of 0.49 to 1.01 (Table S2;
Figure 9), which is considered to signal low-temperature seawater [80]. This implies that



J. Mar. Sci. Eng. 2022, 10, 35 14 of 23

the high Pb and low S anglesite is formed under low-temperature conditions. Furthermore,
the accumulation of Eu2+ in anglesite that formed at low-temperatures is also consistent
with the fact that negative or negligible Eu anomalies are related to lower Eu content in
the anglesite (<0.51 ppm) (Table S2). Consequently, the negligible or negative Eu anoma-
lies in the anglesite have been interpreted as the result from low temperatures and a less
Eu-enriched environment [73,79]. Seafloor hydrothermal recrystallization (i.e., zone re-
fining) and secondary enrichment of Bi and Ag may also have caused remobilization of
REEs, particularly Eu2+, producing negligible or negative Eu anomalies in the anglesite
(Figure 8b; [70]). This suggests that high Pb and low S anglesite in the MOT can be formed
by a secondary supergene process.

The REEs in the anglesite may reflect the sources and evolution of hydrothermal
fluids [70]. Comparisons show that the REE patterns of the low Pb and high S anglesite
from the SOT Yonaguni Knoll IV hydrothermal fields are similar to those of Yonaguni
Knoll IV vent fluids, with the anglesite also exhibiting LREE enrichment and positive Eu
anomalies (Figure 9; [76]). Thus, the REEs in the low Pb and high S anglesite are likely to
have all been derived from hydrothermal fluids that leached REEs from local sub-seafloor
volcanic rocks and/or sediments [76] and incorporated them into the low Pb and high
S anglesite [81,82]. Furthermore, the anglesite from the MOT and SOT exhibit markedly
low Nd/Pb and Ce/Pb ratios (Figure 12), and Ce/PbO ratios show notable negative and
positive correlations with BaO/La and Nd/PbO ratios (Figure 12). This might indicate the
effect of fluid–sediment interaction [83–85].
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Figure 12. Plots of (a) Ce/PbO vs. BaO/La; and (b) Ce/PbO vs. Nd/PbO in anglesite minerals from
the MOT (samples H2-R1-2-a4, b3, d4) and SOT (samples H3-T9-10-2, H4-TVG10-2-1) hydrothermal
fields. PHA—primary hydrothermal anglesite; SSA—secondary supergene anglesite.

5.2. Sulfur Sources of Anglesite

It is known that the hydrothermal activity on the MOT and SOT hydrothermal fields
is hosted by pumiceous volcaniclastic flow, sediment deposition [31], basaltic lava [42,43]
and volcanic breccia [48]. The δ34S values in anglesite from the OT hydrothermal fields are
spread over a broad range (11.04–22.86‰; Table S3; Figure 10), which falls between the vent
fluid δ34S values for SO4 (20.6–25.7‰), sediments (δ34S values similar to seawater sulfate,
+21‰; [67] and the vent fluid δ34S values for H2S (−0.2 to 12‰) [36,37,60,65,67,86–90],
island-arc andesites and rhyolites (+4–+5‰; [91–94]), basalts (+0.1 ± 0.5‰; [63–66]) and
Ryukyu Arc volcanic rocks (7.0 ± 1.9–12.9 ± 2.1‰; [91]). This suggests that the sulfur
isotopic compositions in anglesite from the OT hydrothermal fields exhibit contributions
of sulfur from seawater and/or sediment SO4 and volcanic sulfur are likely to have been
influenced by the mixing of seawater and/or sediment SO4 and volcanic sulfur during
anglesite formation.
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However, the δ34S values in the anglesite from the MOT hydrothermal fields are higher
than in the associated sulfide minerals (Table S3; Figure 10), as the higher the oxidization
state the more fractionation between different S species. Hence, the δ34S values of anglesite
are always heavier than those in the associated sulfide minerals (unless microbes are
involved) and can also be thought to have been influenced considerably by the lowered
seawater sulfate under more oxidizing conditions during anglesite formation [95,96].

5.3. Fluid–Rock and/or Sediment Interaction

Hydrothermal activity in the OT is hosted by volcanic rocks and sediments [31,42,
43,48,97–101]. Most of the Pb isotope ratios in anglesite in the OT hydrothermal fields lie
within, or close to, the range of values for rhyolitic pumices, basaltic andesites, rhyolites and
sediment from the MOT (Iheya North) and SOT (Yonaguni Knoll IV) hydrothermal fields
(Figure 11c,d). This suggests that OT volcanic rocks and/or sediments are the principal
source of Pb in the OT hydrothermal fluids (e.g., [102–108], and the Pb isotopic compositions
in the hydrothermal fluid forming anglesite are similar to those of the fluid forming
associated galena in the OT hydrothermal fields. However, the Pb isotopic composition
in high Pb and low S anglesite is similar to that found in associated galena in the MOT
hydrothermal field, indicating that the Pb in high Pb and low S anglesite may be from the
associated galena. Furthermore, the Pb isotope data for anglesite and associated sulfide
cover a smaller domain than in back-arc basin volcanic rocks and sediments overall. The
mean Pb isotopic compositions of anglesite from the OT hydrothermal fields (Table S3)
are plotted into the ranges of Pb isotopic compositions of volcanic rocks in the different
hydrothermal fields. In turn, this suggests that the Pb isotopic composition in the anglesite
signifies the Pb isotopic composition of the crust and hydrothermal fluid locally. The Pb
isotopic ratios of anglesite from the MOT (Iheya North) hydrothermal field appear to be
comparable with the average values for volcanic rocks in the MOT (Figure 11c,d), implying
that seawater is not a possible source of the Pb in the MOT anglesite.

However, comparing the more radiogenic Pb isotope composition in anglesite and
associated galena from the SOT hydrothermal fields with those from the MOT hydrothermal
field (Table S3) suggests that the Pb in the SOT anglesite and associated galena is possibly
related to volcanism and/or sediment containing a more radiogenic Pb isotope composition.
Additionally, as the Bi/Sb ratios of galena are sensitive to the host rock with Bi/Sb ratio > 1
in basic and < 1 in felsic host rocks [15], the very low Bi/Sb ratios of galena in samples
from the SOT (Yonaguni Knoll IV) hydrothermal field (Table S2) suggest it was hosted
by felsic rocks. This is consistent with the geological background of the hydrothermal
field, which was hosted by rhyolite [101] characterized by a more radiogenic Pb isotope
composition [99]. This implies that the relatively high Pb isotope ratios of low Pb and high
S anglesite in the SOT are due to less seawater–volcanic rock and/or sediment interaction,
which resulted in variation in hydrothermal fluid Pb isotope ratios.

Furthermore, the Pb isotopic ratios in the OT anglesite and associated galena appear to
lie within or close to the range in sediments or altered oceanic crust basalts in the Philippine
Sea plate ([68]; Figure 11d). This implies that subducted sedimentary and oceanic crust
components are also a possible source of the Pb in the OT anglesite and associated galena
by means of fluid–sediment and/or oceanic crust interaction.

5.4. The Secondary Enrichment of Bi and Ag in Secondary Supergene Anglesite

The Ag and Bi concentrations of anglesite have large ranges (Table S2), covering
the range 1709 to >2000 ppm of Ag enrichment in anglesite from the oxide zone of the
Prairie Creek Deposit, NW Territories, Canada [109]. The Bi and Ag concentrations of
associated galena are variable (Bi: 0.02–340 avg. 57.4 ppm, n = 11; Ag: 11.4–3515 avg.
1308 ppm, n = 13) and are considerably higher than those of the vent fluid (Bi 0.000647
ppm) in the OT [87] and seawater (Bi 0.00002 ppm, Ag 0.00028 ppm) [110], which is
the initial enrichment of Bi and Ag in the associated galena (Table S2, Figures 5, 6d and 7).
However, the anglesite is observed to partially replace and form rims around galena crystals
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(Figures 4d and 5) resulting from the alteration of galena, the reaction being PbS (s) + 2O2
(aq)→ PbSO4 (s), and the Bi and Ag concentrations in the secondary supergene anglesite
(SSA) are generally higher than in neighboring galena (Table S2; Figures 3, 6d, 7a–b and 13),
exhibiting secondary enrichment of Bi and Ag (Table S2; Figures 5, 6d, 7a–b and 13),
resulting in most of the Ag and Bi concentrations in the high Pb and low S secondary
supergene anglesite in the MOT being higher than in the low Pb and high S primary
hydrothermal anglesite (Bi <200 ppm, Ag <600 ppm), which was formed by the reaction
Pb2+ (aq) + SO4

2− (aq) → PbSO4 (s) (Figures 6 and 7). The implication is that back-arc
hydrothermal sulfide deposits may be a potential source of enriched Ag and Bi due to
supergene processes (i.e., oxidization) of seafloor hydrothermal sulfides. However, in the
prevailing acidic environment (pH ≈ 5.8), the fluid reacts with the galena with increasing
lead activity and decreasing pH until the anglesite stability field is reached [7]. This explains
the commonly observed in situ transformation of galena to anglesite in textural coexistence
(Figures 4 and 5). The fluid precipitates anglesite that is influenced by the low PCO2 of
seafloor hydrothermal vent fluid and the higher fluid/mineral ratios [7].
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Furthermore, the Pb isotopic compositions in the secondary supergene anglesite (SSA)
are similar to those of associated galena in the MOT hydrothermal field (Figure 11a),
suggesting that the SSA inherited the Pb isotopic compositions of galena during anglesite
formation by galena alteration. However, a notable positive correlation is observed between
Bi and Ag and between Mo and Cu concentrations (up to 8144 ppm) in the anglesite
from the MOT hydrothermal fields (Figure 14). Cu-enriched sulfates (e.g., atacamite) are
characteristic of oxidation of Cu-sulfide minerals by seawater [111], implying that Bi and
Ag become enriched in anglesite in low-temperature (<100 ◦C) conditions. Most of the
Ag, Cu, Ni, V and HREEs with Pb concentrations of SSA from the MOT (Iheya North)
were generally higher than those of primary hydrothermal anglesite (PHA) from the SOT
(Yonaguni Knoll IV) hydrothermal fields (Table S2), also indicating that the formation
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temperature of the SSA in the MOT is lower than those of the PHA in the SOT. Furthermore,
the Bi and Ag in anglesite from the OT hydrothermal fields are positively correlated with
Cu and Mo (Figure 14), which might indicate that Bi and Ag are incorporated into the
PHA at higher temperatures, possibly 300 ◦C or more. The Ag concentrations also show
positive correlations with Sr, Cr, Cu and Bi concentrations in SSA and neighboring galena
from the MOT hydrothermal field (Figure 13). Most of Bi (<100 ppm), Ag (<600 ppm), Se
(<60 ppm) and Sb (<180 ppm) concentrations in the PHA are significantly smaller than the
concentrations in SSA, which perhaps suggests that Sr, Cr, Cu, Bi, Tl, Se, Sb and Ag are
incorporated into the SSA from the neighboring galena during its alteration.
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6. Conclusions

There are two types of anglesite minerals in the OT seafloor hydrothermal fields,
high Pb/low S secondary supergene anglesite and low Pb/high S primary hydrothermal
anglesite. The primary hydrothermal anglesite occurs in the pores precipitated from
hydrothermal fluid and intergrowth with pyrite and sphalerite in the SOT hydrothermal
field. The secondary supergene anglesite is formed by the low-temperature alteration of
galena, surrounding the relict galena in the MOT hydrothermal field. The galena alteration
results in most of the Sr, Cr, Cu, Bi, Se, Sb and Ag being incorporated into the secondary
supergene anglesite from the neighboring galena, and most of the Sr, Cr, Se, Sb, Pb with Bi
and Ag concentrations in the primary hydrothermal anglesite being considerably lower
than in secondary supergene anglesite. However, the secondary supergene anglesite
exhibits notably higher Ag and Bi concentrations than in primary hydrothermal anglesite,
galena, pyrite, sphalerite and chalcopyrite, resulting in a redistribution of Ag and Bi in
seafloor sulfide deposits. Furthermore, the Ag and Bi concentrations in the galena (initially
from Ag and Bi enrichment of hydrothermal fluid during galena deposition) are higher
than in the primary hydrothermal anglesite. This suggests that Bi and Ag enrichment in
the seafloor hydrothermal sulfide deposits is the result of Bi and Ag twice enrichment
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during ore-forming processes, which also offered new evidence for the element multi-
enrichment hypothesis of global hydrothermal sulfide deposits. Thus, it is possible that a
valuable Bi- and Ag-enriched anglesite and associated galena will be discovered in back-arc
seafloor hydrothermal sulfide deposits, and it is necessary to explore Bi and Ag deposits in
those locations.

However, anglesite from the OT seafloor hydrothermal fields contains a wide and
varying range of ∑REEs. Most of the secondary supergene anglesite contains lower ΣREE
concentrations than the primary hydrothermal anglesite. They are notably more enriched in
LREEs than in HREEs. The REEs in the low Pb and high S anglesite, which exhibit positive
Eu anomalies, similar to the values in the vent fluids, are likely to have all been derived
from hydrothermal fluids that leached REEs from local volcanic rocks and/or sediments.
The negative or negligible Eu anomalies of the REE patterns in the high Pb and low S
anglesite from the MOT hydrothermal fields are considered to signal low-temperature
seawater. However, secondary enrichment of Bi and Ag during secondary supergene
anglesite formation may also have caused remobilization of Eu2+, resulting in negligible or
negative Eu anomalies in the secondary supergene anglesite.

The sulfur isotopic compositions in anglesite in the OT hydrothermal fields vary
between 11.04 and 22.86‰ for δ34S. These are higher than the corresponding values in asso-
ciated sulfide minerals in the same hydrothermal field and are similar to those for seawater
and/or sediment sulfates. This may be an indication that the sulfur in the OT anglesite sam-
ples was derived mainly from a mixing of seawater and/or sediment sulfate and volcanic
sulfur. In addition, the pyrite–sphalerite, sphalerite–galena and sphalerite–chalcopyrite
pairs of sulfide minerals in the OT hydrothermal fields lie within the equilibrium temper-
ature range, suggesting that the formation temperature of pyrite, sphalerite, galena and
chalcopyrite is between 248 and 333 ◦C.

In contrast to the mixed-origin source of S in the anglesite, most of the Pb isotopic
compositions in the anglesite are identical to OT volcanic rock values, falling within or
close to the range of Pb isotopic compositions found in sediments and altered oceanic crust.
This suggests that the Pb in the anglesite has mainly been leached from local volcanic rocks
and/or sediments that host the sub-seafloor hydrothermal systems in the OT back-arc basin.
However, the Pb isotope composition of the SSA was found to be consistent with that of
the associated galena, suggesting that it inherited the Pb isotopic composition during the
galena alteration process. Furthermore, the Pb isotopic compositions in the anglesite from
the OT hydrothermal fields are very homogeneous and cover a narrow range within, or
close to, the scope of the large dataset of Pb isotopic compositions in the OT volcanic rocks,
subducted sediments and altered oceanic crustal basalts. This emphasizes the importance
of determining Pb isotopic compositions in anglesite from the seafloor hydrothermal sulfide
deposits and implies a new means of understanding the influence of plate subduction in
back-arc hydrothermal and magmatic systems. Additionally, the crystallographic difference,
if any, between primary and secondary anglesite is an interesting subject to be studied
in the future by X-ray diffraction due to the non-stoichiometric balance between sulfur
and lead.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jmse10010035/s1, Table S1: Electron microprobe analyses of anglesite and sulfide minerals in
seafloor hydrothermal sulfide samples from the Yonaguni Knoll IV and Iheya North hydrothermal
fields (wt.%) and their atoms per formula unit for elements, Table S2: LA-ICP-MS trace element
concentrations in anglesite and sulfide minerals in seafloor hydrothermal sulfide samples from the
Yonaguni Knoll IV and Iheya North hydrothermal fields (ppm), Table S3: LA-MC-ICP-MS sulfur
and lead isotopic compositions of anglesite and sulfide minerals in seafloor hydrothermal sulfide
samples from the Yonaguni Knoll IV and Iheya North hydrothermal fields, Table S4: Sulfur isotopic
compositions of coexisting sulfide mineral phases in seafloor hydrothermal sulfide samples from the
Iheya North hydrothermal fields, and corresponding temperature (◦C) calculated by geothermometers
based on equilibrium sulfur isotope fractionation factors (A) of sulfides with respect to H2S (after
Ohmoto and Rye, [62]).
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