
����������
�������

Citation: Sohn, J.M.; Kim, J.W.;

Kim, S.H. Experimental and

Numerical Studies on Fluid-Structure

Interaction for Underwater Drop of a

Stone-Breaking Crusher. J. Mar. Sci.

Eng. 2022, 10, 30. https://doi.org/

10.3390/jmse10010030

Received: 2 December 2021

Accepted: 27 December 2021

Published: 29 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Experimental and Numerical Studies on Fluid-Structure
Interaction for Underwater Drop of a Stone-Breaking Crusher
Jung Min Sohn 1,2,*, Ji Woo Kim 1 and Sang Ho Kim 3

1 Department of Naval Architecture and Marine System Engineering, Pukyong National University,
Busan 48513, Korea; 201512707@pukyong.ac.kr

2 Department of Marine Design Convergence Engineering, Pukyong National University, Busan 48513, Korea
3 Green-Ship Research Division, Research Institute of Medium and Small Shipbuilding, Busan 46757, Korea;

shk@rims.re.kr
* Correspondence: jminz@pknu.ac.kr; Tel.: +82-51-629-6618

Abstract: There are many methods for crushing seabed rock such as a using a free-falling crusher,
blasting, and chemical liquid expansion. Blasting and chemical liquid expansion can lead to environ-
mental destruction, noise pollution, and civil complaints. Therefore, a free-falling crusher is generally
recommended for use. Understanding the characteristics of a crusher in water and the impact force
on the ground is helpful for designing a crusher and dredge work. In this study, drop tests of 50 and
70 ton crusher models that were scaled down by 15 times were investigated. The tests were conducted
in a water basin by the Research Institute of Medium and Small Shipbuilding (RIMS) in Korea. Four
water depths were considered with different falling locations: water surface and air. Moreover, a
numerical study on Fluid-Structure Interaction (FSI) analysis for a free-falling crusher was conducted
by applying the Arbitrary Lagrangian-Eulerian (ALE) element and the Grüneisen Equation of State
(EoS) to fluid models. The crusher and ground were modeled as Lagrangian elements to estimate
the impact force on the ground. Before comparing the crusher model, a free-falling sphere model
was used to develop FSI technologies by comparing past Computational Fluid Dynamics (CFD) and
experimental results. Moreover, the recommended mesh size and fluid domain for FSI analysis are
provided to achieve good results via convergence tests. Comparison between experimental and
numerical methods demonstrated a similar tendency such that impact force increased at a higher
depth. Certain numerical results agree with average values of experimental results; however, multiple
numerical cases exhibit a moderate difference. This is because of angular rotation between the crusher
and ground when the crusher hits the ground during experiments.

Keywords: stone-breaking crusher; drop test; Fluid-Structure Interaction analysis; Arbitrary
Lagrangian-Eulerian

1. Introduction

Currently, there are multiple types of dredging methods available for use: Pump-type,
which inhales soil using a pump; and grab-type, which uses a grab bucket [1]. However,
these methods can be ineffective when rock removal is necessary. To crush underwater
rock, the blasting method and a method that expands rock by adding chemical fluid are
commonly used; however, these methods can cause damage to surrounding structures and
result in civil complaints because of noise or environmental pollution [2,3]. A crusher is
recommended when blasting and expansion methods are not suitable. There are two types
of crushers depending on how seabed rocks are broken apart: a central-type crusher uses
the impact force generated by the free-falling of the crusher at an appropriate height and
an impact-type crusher repeatedly hits rock with compressed air. The free-falling crusher is
easier to use and is less expensive. Previously, studies have been conducted on crushers
used for removing rocks. The performance of the impact crusher was determined by the
rotor radius, angular velocity, feed rate, and feed size distribution functions was tested by
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Nikolov et al. [4]. Cleary et al. examined the performance of a cone-type crusher based on
crusher material characteristics and operating conditions [5]. However, most studies have
focused on crushers that were used on land. In this study, a crusher that operates in water
is analyzed.

It is important to estimate the capabilities of a crusher in the early stage of design to
determine crusher size and strength. The best approach to verify crusher performance is
the experimental approach; however, experiments have several limitations such as space,
cost, and time restrictions. A numerical simulation approach is an alternative approach to
confirm the crusher behavior. Fluid-Structure Interaction (FSI) analysis has an advantage
when it is used to contemplate the effect of a surrounding fluid on a structure because it
accounts for the interrelation effect between fluids and structures. Especially, underwater
collision studies have been actively undertaken through FSI analysis in marine research
areas. Kim et al. [6] emphasized on considering multi-physics simulations for collision or
grounding events because of the influence of hydrodynamic restoring forces. Lee et al. [7]
used FSI to determine the extent of damage to a transport vessel and container under
collision and stranding. Furthermore, Song et al. [8] examined the effect of forwarding
velocity and mass of a struck ship and the impact angle on ship collisions using FSI analysis.

Table 1 highlights the several research for dropping an object using different methods.
Most studies were performed based on Computational Fluid Dynamics (CFD) analysis to
evaluate the underwater behavior of an object. However, it is not able to assess the structural
response of the ground when an object hits the ground. For evaluating structural response,
such as impact force, FSI analysis is an alternative method by considering water resistance,
which is an important factor that decreases impact force. Therefore, the surrounding fluid
has to be included in the entire numerical analysis while the object moves into the water.
For this purpose, it is important to develop numerical techniques by confirming their results
with experiments. However, only a simple sphere structure was tested experimentally. A
scaled-down crusher model was developed and an impact force test was performed to
assess crusher performance.

Table 1. Various studies on dropping object.

References Object
Method Result

Remark
Exp. CFD FSI Dis. Vel. Acc. Pres. Force

[9] Sphere o o o
[10] Sphere Anchor, Rocket pile o o o o CEL method
[11] Control rod assembly o o o
[12] Sphere o o o RANS model
[13] Sphere o
[14] Aircraft Structure o o o o o o SPH model
[15]
[16]

Present study Crusher o o o ALE method

Figure 1 represents two main steps of this study. Tests for dropping the crusher in the
water were performed in a water basin by the Research Institute of Medium and Small
Shipbuilding (RIMS) in Korea. In the experimental case, two different mass crushers were
dropped in four different water depths from water and air levels. Numerical models for
the vertical falling of the crusher through fluid (air and water) were generated to compare
impact force with experimental results using FSI analysis in ANSYS/LS-DYNA [17]. For
setting numerical techniques, two types of validation were performed by comparing the
results with the FSI analysis method using ANSYS/LS-DYNA for a free-falling rigid sphere
in air–water fluids (experiment) and water (CFD). Additionally, the convergence tests of the
fluid domain and element size are included to increase the accuracy of analysis. Numerical
results are somewhat different from experimental data at one depth; however, a similar
trend was obtained, which demonstrated the impact force increased with increase in depth.
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where E is the internal energy, ρ0 is the density at the nominal/reference state (usually a 
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cient of the slope of the νp–νs curve, γ0 is the Grüneisen gamma, and a is the first order 
volume correction to γ0. The coefficients of EoS were obtained from Khazraiyan et al. [20] 
and Olovssn et al. [18] and are summarized in Table 2. 
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Figure 1. Framework of the present study.

2. Validation for FSI Modelling

The aim of validation is to set FSI techniques on the free-falling structure in water
by minimizing numerical error. Two types of rigid sphere-dropping models were used:
Dropping an object in water using CFD and the experiment of vertical falling in water
from air.

2.1. Equation of State

The hydrostatic behavior of fluids was determined using the Equations of State (EoS)
by calculating pressure as a function of density and energy. For non-gaseous materials, the
most common EoS forms were used, as shown in Equation (1):

P = Pc(µ) + PT(µ, eV0) (1)

where Pc(µ) is the cold pressure hypothetically evaluated along a zero-Kelvin isotherm
and PT(µ, eV0) is the thermal pressure component, which depends on both volumetric
compression and thermal state of the material [18]. The EoS of the Grüneisen is defined as
Equation (2) in ANSYS/LS-DYNA [19]:

p =
ρ0C2µ[1 + (1 − γ0

2 )µ − a
2 µ2]

[1 − (S1 − 1)µ − S2
µ2

µ+1 − S3
µ3

(µ+1)2 ]
2 + (γ0 + aµ)E (2)

where E is the internal energy, ρ0 is the density at the nominal/reference state (usually
a non-stress or non-deformed state), C is the intercept of the νs–νp curve, S1–S3 is the
coefficient of the slope of the νp–νs curve, γ0 is the Grüneisen gamma, and a is the first
order volume correction to γ0. The coefficients of EoS were obtained from Khazraiyan
et al. [20] and Olovssn et al. [18] and are summarized in Table 2.

Table 2. Coefficients of the Grüneisen EoS for water and air.

Material C (m/s) S1 S2 S3 γ0 a E

Air 343.7 0 0 0 1.4 0 0
Water 1647 1.921 −0.096 0 0.35 0 0

2.2. Comparison with CFD Model

CFD analysis obtained for a water-dropping sphere in a narrow cylinder using the
ADINA engineering simulation software program was compared with ANSYS/LS-DYNA
computation. Modeling information, such as sphere dimensions, boundary constraints,
computational time, was obtained from the reference [9–11]. Figure 2 shows the ANSYS/LS-
DYNA FE model. The water domain was performed using an Arbitrary Lagrangian-
Eulerian (ALE) with an eight-node element to describe the 56 mm diameter and 1500 mm
height of a narrow cylinder water tank. The 30 mm diameter sphere was located at a height
of 1450 mm above the ground. The 0.11 kg sphere is composed of steel having a density of
7795 kg/m3 and was modeled as a rigid Lagrangian with an eight-node solid element.
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Figure 2. FE model for the water-dropping sphere.

A 3 mm-sized mesh size was used for the sphere while the mesh size for the water
was varied from 2 to 5 mm from the inner to outer line. The sphere and water domain
contain 8000 and 138,000 elements, respectively. All external surfaces and bottom of the
water tank were fixed. The only force of gravity that was considered was in the z-direction.
Constraining the sphere to the x and y directions allowed for motion in the z-direction. The
Lagrangian model of the sphere overlaps with the ALE water meshes. Their intersection
should be detected and their interactions can be attributed to the Lagrangian element
remapping on the moving ALE mesh.

The movement and velocity of the sphere in the z-direction were compared between
CFD and ANSYS/LS-DYNA. The overall difference can be observed in Figure 3. For
movement in the z-direction, the same values are observed for until reaching 0.4 s, after
which the gap between models increased. The difference at 0.8 s is about 9.75%. Velocity
in the z-direction has a slight difference from the starting point, though a similar trend
is observed between methods that became constant after 0.4 s and the difference at the
termination time is about 9.05%. There appears to be a difference between the different
simulation methods. However, similar trends are observed overall between methods and
the difference is less than 10% and the computations used the same ALE model and EoS
information for water.
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2.3. Comparison with Experimental Model

Many studies focused on a sphere falling in two fluids (air and water) [13,14,21].
Troesch and Kang [13] performed an experimental test to examine the hydrodynamic impact
of a falling sphere. They compared the acceleration of the falling body with a theoretical
model. Bisagni and Pigazzini [21] conducted numerical simulations of a vertical drop of
a rigid sphere into water [13] using the Lagrangian, Smoothed Particle Hydrodynamics
(SPH), and a hybrid Lagrangian—SPH model. Among the investigated models, ALE
demonstrated a similar trend as experimental results, although it underestimated the first
acceleration peak. Toso [14] examined multiple numerical techniques as a function of the
mesh size effect, water tank size, and the effect of symmetry conditions. As per the work of
Toso, there was no acceleration difference between full, half, and quarter-scale in the sphere
drop analysis. As shown in Figure 4, the same modeling extents, boundary conditions, and
element size of that work were adopted.
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A rigid sphere with a radius of 109 mm and a 3.76 kg-sized mass was modeled by the
Lagrangian model with a 10 mm-sized mesh size. The sphere was dropped in water in the
vertical direction with an initial velocity of 11,800 m/s. The fluid was modeled using an
eight-node solid ALE model with a 3 mm-sized mesh size. Water and air were described
using EoS and including hydrostatic pressure. The bottom of the water was constrained,
and symmetric conditions were applied to x-z and y-z planes. The dropping sphere was
superimposed in water and air domain. Moreover, the two fluids shared the same nodes on
their common boundary surfaces by applying the ALE multi-material option in ANSYS/LS-
DYNA. The number of elements in air and water was 752,643; moreover, the number of
elements in the sphere was 14,000.

Figure 5 shows a comparison of the time acceleration of a sphere moving via two fluids.
The sphere touched ground at around 0.01 s. A difference in values between both methods
is observed for the entire time; however, the methods have similar trends, including two
peak values wherein the second peak is slightly higher than the first. Moreover, the
calculated values both decrease after the second peak. The difference in the slope of the
first peak predictably describes the fluid using the EoS equations. Furthermore, it seems
that the particle approximation of the water domain in the ALE model exhibits slightly
stiffer behavior compared to the experiment. In terms of peak values, the discrepancy of
the maximum accelerations compared with the experiment were 5.08% and 7.72% for first
and second peaks, respectively. Based on the two types of validation, multiple analytical
options are utilized in Section 4.
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3. Experiment for the Underwater Drop of a Crusher
3.1. Stone-Breaking Crusher

In this test, two different mass models of the crusher were used to confirm that the
impact loads linearly increase with increase in mass. Table 3 shows the mass and volume of
each crusher. The detailed 15-times scaled-down crusher models are presented in Figure 6.
The dimension is noted as a-f and values are summarized in Table 4. A mass of 14.81 kg
is a scaled-down 50 ton crusher and a 20.74 kg model is for a scaled-down 70 ton crusher.
Generally, 5–50 ton crushers were used and the 70 ton model was re-drawn based on the
50 ton results. In this study, the 14.81 and 20.74 kg crushers are referred to as A and B,
respectively.
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Table 4. Dimensions of crusher models.

Model
Dimension (mm)

a b c d e f

A 1330 2100 2100 2670 3405 R75.00
B 1609 2541 2541 3230 4120 R90.75

3.2. Experimental Conditions

The RIMS in Korea conducted 15-times down-scaled drop tests for a breaking crusher
in a water basin (28 × 22 × 3 m3), as shown in Figure 7a. The aim of this experiment
was to evaluate the performance of the stone-breaking crusher in water and measure the
impact force on ground. Experimental conditions included a temperature of 24 ◦C and
relative humidity of 74.6%. All tests were conducted by considering conditions that were
downscaled by 15 times with respect to the original conditions. Approximate Lowest Low
Water (ALLW) was used as Datum Level (DL) in the test.
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A total of 16 cases were tested; actual and scaled-down test information are summa-
rized in Table 5 and Figure 8. Four different water depths were evaluated—0.779, 1.112,
1.445, and 1.579 m. Moreover, air and water levels were described by having different
falling positions—0.0 and 0.2 m. For each depth, tests were conducted three times. Impact
force was measured using a sensor plate with an embedded load cell (max. capacity of
50,000 N and output of 500 Hz, ±5 V), as shown in Figure 7b. The sensor outputs a value
using a strain gage via displacement, and the impact force is generated by the elasticity of
strain gage. Figure 7c shows the load cell and crusher installed at the water basin.

Table 5. Experimental scenarios.

Drop Level Case
Actual Sea Model Test

Drop Point Water Depth Drop Point Water Depth

Water

1
M.S.L

(DL(+)1.678 m)

DL(−) 10 m

0.0 m

0.779 m
2 DL(−) 15 m 1.112 m
3 DL(−) 20 m 1.445 m
4 DL(−) 22 m 1.579 m

Air

5
On the surface 3 m

(DL(+)4.678 m)

DL(−) 10 m

0.2 m

0.779 m
6 DL(−) 15 m 1.112 m
7 DL(−) 20 m 1.445 m
8 DL(−) 22 m 1.579 m
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Above the water

0.2m

1.678m

Figure 8. Actual and 1/15 scale-down experimental conditions.

3.3. Test Results

Figure 9 shows an example of the time–force history of the third run of B-4. It is
observed that the force sharply increases when the crusher hits the sensor plate. Moreover,
there was a fluctuation of load after contact. Table 6 summarizes the impact force when it
shows the maximum value for all conditions. This suggests that the impact force generally
tends to increase with increase in depth and weight of the crusher. As per Table 5, there is a
gap between values at the same experimental condition. This discrepancy was attributed to
a slightly different contact angle of the crusher when it struck the ground. Cases with data
variability can be easily distinguished using the Coefficient of Variation (CoV; i.e., a high
CoV means the experimental case lacks reliability by not demonstrating a consistent value).
Therefore, numerical analysis was compared with the average of experimental values for
each case.
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Table 6. Experimental results for all scenarios.

Model Scenario No.
Water Level Air Level

1 2 3 4 5 6 7 8

A
(N)

S1 21,315 18,956 21,792 20,558 20,898 19,849 23,023 22,552
S2 14,655 22,146 19,515 24,104 24,069 23,804 21,890 21,174
S3 16,859 21,788 22,106 23,430 19,020 21,786 16,749 21,429

Min. 14,655 18,956 19,515 20,558 19,020 19,849 16,749 21,174
Max. 21,315 22,146 22,106 24,104 24,069 23,804 23,023 22,552
Ave. 17,613 20,964 21,138 22,697 21,329 21,813 20,554 21,718

CoV (%) 15.7 6.8 5.5 6.8 9.8 7.4 13.3 2.8

B
(N)

S1 27,244 22,605 23,780 27,617 29,017 26,558 21,548 28,435
S2 26,498 25,900 32,430 25,378 26,380 26,467 30,980 31,506
S3 23,690 26,468 27,362 26,384 25,079 27,753 25,744 30,256

Min. 23,690 22,605 23,780 22,927 25,079 26,467 21,548 28,435
Max. 27,244 26,468 32,430 27,617 29,017 27,753 30,980 31,506
Ave. 25,811 24,991 27,858 26,460 26,825 26,926 26,091 30,066

CoV (%) 5.9 6.8 12.7 3.5 6.1 2.2 14.8 4.2

4. FSI Analysis for the Underwater Drop of a Crusher
4.1. Model Description and Analysis Settings

Numerical models for vertical falling of the crusher through fluid (air and water)
were generated to compare impact force with the experimental results using FSI analysis
in ANSYS/LS-DYNA [19]. Generally, the continuum motion description method used in
FSI analysis is the ALE method [22–24]. The ALE method is a combination of Lagrangian
and Eulerian techniques, which address the individual disadvantages of each method by
maintaining advantages of both methods [10,25]. In this study, air and water were defined
as an ALE multi-material, which tracks the interface of two materials in each element.

The same crusher geometry and water depth were used to describe experimental
conditions for a vertical drop of the crusher into water. Figure 10 shows additional details
on the numerical FE model and boundary and loading conditions. The fluid domain
comprises B, L, and D as breadth, length, and depth, respectively. The crusher model
was created by Hypermesh [26], whereas a FE model was generated after transferring all
geometry information to ANSYS/LS-DYNA. The surrounding fluid domain was modeled
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as a rectangular parallelepiped in ANSYS/LS-DYNA. Moreover, a flat plate was attached
at the bottom of the fluid to represent the ground.
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The crusher and ground were assumed to be a rigid material. As described in
Section 2.1, the Grüneisen EoS model was used for water and air with the same coeffi-
cients. Air and water were considered one-point ALE multi-material elements. The crusher
and ground were defined as Lagrangian, the crusher was a constant-stress solid element,
and a four-node shell element was used for the ground. Common nodes on the boundaries
of connecting ALE parts should be merged when one part of mesh flows to another. A
coupling mechanism for FSI was implemented by defining the constrained Lagrange in
solids, which was used to couple Lagrangian structures to ALE structures [18]. A crusher
was assigned as slave part and ALE materials were set as master part.

Gravitational acceleration was added for representing the free fall of the crusher at
the water level. The crusher allows only z movement by constraining the other degrees-of-
freedom (DoF). When the crusher was vertically dropped in water, the contact angle of the
crusher remained perpendicular to the ground. To show infinite fluid fields, symmetric
boundary conditions in x-z and y-z planes of these two fluids were included. The ground
was bonded to the fluid domain and all bottom nodes were fixed in six DoF. The surface-
to-surface contact condition of the crusher and ground was defined. The Control_ALE
command was used to set global control parameters for ALE. This command is required
when using the ALE solid element. The use of default advection logic, the number of
advection cycles, the advection technique, and the ALE smoothing weight factor were all
set in Control_ALE.

4.2. Fluid Mesh Determination

The ALE model must have a smaller mesh size to decrease the numerical error;
however, as the size of the elements decreases, the number of elements and analysis time
increase. Therefore, the element size must be adequate and a fluid mesh convergence test
is important for this analysis. At the bottom edge of the crusher, the mesh size was set as
0.015 m. Fluid domain was constrained at B (or L) of 0.8 m and water depth of 0.779 m.
The mesh in the fluid was varied from 0.01 to 0.03 m. Table 7 shows the number of nodes
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and elements (C/F is the ratio of element size for crusher (C) to fluid element size (F)).
The computational time was not linearly increased by increasing C by F. Figure 11 shows
the results of the mesh convergence test. The impact velocity decreased until C/F was
0.75 and then began to converge when it reached 1.00 because of the fluid element size
convergence test. Consequently, the fluid element size was determined to be equal to the
crusher element size.

Table 7. The different mesh size in fluid.

C/F

0.5 0.6 0.75 1.0 1.2 1.5
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4.3. Fluid Domain Determination

A fluid modeling area may be importantly influenced by the dimension of the crusher.
As per Toso [14], the width of water tank should be at least twice the diameter of the falling
model. To consider four water depths, the water domain was varied with water depth. To
determine the size of water domain, several ratios of B(or L)/D (0.25 to 1.25) by D were
examined at a water depth of 0.779 m. The defined fluid mesh size of 0.015 m was used
in entire simulation. Table 8 shows the number of nodes, elements, modeling extent, and
computational time for each analysis. As shown in Figure 12, the contact force and crusher
velocity at the ground were compared. The impact force increases until B (or L)/D is 0.76,
and then tends to converge from 1.03. To summarize, the fluid area size (B, L) was selected
to be equal to the height of the fluid (D).
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Table 8. The various domain size of fluid.

B(or L)/D

0.27 0.53 0.76 1.03 1.29 1.56
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J. Mar. Sci. Eng. 2022, 9, x FOR PEER REVIEW 12 of 19 
 

 

4.3. Fluid Domain Determination 
A fluid modeling area may be importantly influenced by the dimension of the 

crusher. As per Toso [14], the width of water tank should be at least twice the diameter of 
the falling model. To consider four water depths, the water domain was varied with water 
depth. To determine the size of water domain, several ratios of B(or L)/D (0.25 to 1.25) by 
D were examined at a water depth of 0.779 m. The defined fluid mesh size of 0.015 m was 
used in entire simulation. Table 8 shows the number of nodes, elements, modeling extent, 
and computational time for each analysis. As shown in Figure 12, the contact force and 
crusher velocity at the ground were compared. The impact force increases until B (or L)/D 
is 0.76, and then tends to converge from 1.03. To summarize, the fluid area size (B, L) was 
selected to be equal to the height of the fluid (D). 

Table 8. The various domain size of fluid. 

B(or L)/D 

0.27 0.53 0.76 1.03 1.29 1.56 

      
B, L m) 0.2 0.4 0.6 0.8 1.0 1.2 

No. of element 18,502 68,782 138,642 246,612 391,502 569,908 
Computational 

time 2 h 4 h 30 min 7 h 13 h 30 min 18 h 30 min 27 h 

 
Figure 12. The effect of fluid domain size. 

4.4. Results of Numerical Analysis 
Figure 13 shows the movement in the vertical direction of the crusher and the flow 

change in fluid depending on time for the B-2 condition. The crusher reaches the ground 
at roughly 0.52 s. Additionally, it can be confirmed that the movement at touching time is 

J. Mar. Sci. Eng. 2022, 9, x FOR PEER REVIEW 12 of 19 
 

 

4.3. Fluid Domain Determination 
A fluid modeling area may be importantly influenced by the dimension of the 

crusher. As per Toso [14], the width of water tank should be at least twice the diameter of 
the falling model. To consider four water depths, the water domain was varied with water 
depth. To determine the size of water domain, several ratios of B(or L)/D (0.25 to 1.25) by 
D were examined at a water depth of 0.779 m. The defined fluid mesh size of 0.015 m was 
used in entire simulation. Table 8 shows the number of nodes, elements, modeling extent, 
and computational time for each analysis. As shown in Figure 12, the contact force and 
crusher velocity at the ground were compared. The impact force increases until B (or L)/D 
is 0.76, and then tends to converge from 1.03. To summarize, the fluid area size (B, L) was 
selected to be equal to the height of the fluid (D). 

Table 8. The various domain size of fluid. 

B(or L)/D 

0.27 0.53 0.76 1.03 1.29 1.56 

      
B, L m) 0.2 0.4 0.6 0.8 1.0 1.2 

No. of element 18,502 68,782 138,642 246,612 391,502 569,908 
Computational 

time 2 h 4 h 30 min 7 h 13 h 30 min 18 h 30 min 27 h 

 
Figure 12. The effect of fluid domain size. 

4.4. Results of Numerical Analysis 
Figure 13 shows the movement in the vertical direction of the crusher and the flow 

change in fluid depending on time for the B-2 condition. The crusher reaches the ground 
at roughly 0.52 s. Additionally, it can be confirmed that the movement at touching time is 

J. Mar. Sci. Eng. 2022, 9, x FOR PEER REVIEW 12 of 19 
 

 

4.3. Fluid Domain Determination 
A fluid modeling area may be importantly influenced by the dimension of the 

crusher. As per Toso [14], the width of water tank should be at least twice the diameter of 
the falling model. To consider four water depths, the water domain was varied with water 
depth. To determine the size of water domain, several ratios of B(or L)/D (0.25 to 1.25) by 
D were examined at a water depth of 0.779 m. The defined fluid mesh size of 0.015 m was 
used in entire simulation. Table 8 shows the number of nodes, elements, modeling extent, 
and computational time for each analysis. As shown in Figure 12, the contact force and 
crusher velocity at the ground were compared. The impact force increases until B (or L)/D 
is 0.76, and then tends to converge from 1.03. To summarize, the fluid area size (B, L) was 
selected to be equal to the height of the fluid (D). 

Table 8. The various domain size of fluid. 

B(or L)/D 

0.27 0.53 0.76 1.03 1.29 1.56 

      
B, L m) 0.2 0.4 0.6 0.8 1.0 1.2 

No. of element 18,502 68,782 138,642 246,612 391,502 569,908 
Computational 

time 2 h 4 h 30 min 7 h 13 h 30 min 18 h 30 min 27 h 

 
Figure 12. The effect of fluid domain size. 

4.4. Results of Numerical Analysis 
Figure 13 shows the movement in the vertical direction of the crusher and the flow 

change in fluid depending on time for the B-2 condition. The crusher reaches the ground 
at roughly 0.52 s. Additionally, it can be confirmed that the movement at touching time is 

J. Mar. Sci. Eng. 2022, 9, x FOR PEER REVIEW 12 of 19 
 

 

4.3. Fluid Domain Determination 
A fluid modeling area may be importantly influenced by the dimension of the 

crusher. As per Toso [14], the width of water tank should be at least twice the diameter of 
the falling model. To consider four water depths, the water domain was varied with water 
depth. To determine the size of water domain, several ratios of B(or L)/D (0.25 to 1.25) by 
D were examined at a water depth of 0.779 m. The defined fluid mesh size of 0.015 m was 
used in entire simulation. Table 8 shows the number of nodes, elements, modeling extent, 
and computational time for each analysis. As shown in Figure 12, the contact force and 
crusher velocity at the ground were compared. The impact force increases until B (or L)/D 
is 0.76, and then tends to converge from 1.03. To summarize, the fluid area size (B, L) was 
selected to be equal to the height of the fluid (D). 

Table 8. The various domain size of fluid. 

B(or L)/D 

0.27 0.53 0.76 1.03 1.29 1.56 

      
B, L m) 0.2 0.4 0.6 0.8 1.0 1.2 

No. of element 18,502 68,782 138,642 246,612 391,502 569,908 
Computational 

time 2 h 4 h 30 min 7 h 13 h 30 min 18 h 30 min 27 h 

 
Figure 12. The effect of fluid domain size. 

4.4. Results of Numerical Analysis 
Figure 13 shows the movement in the vertical direction of the crusher and the flow 

change in fluid depending on time for the B-2 condition. The crusher reaches the ground 
at roughly 0.52 s. Additionally, it can be confirmed that the movement at touching time is 

J. Mar. Sci. Eng. 2022, 9, x FOR PEER REVIEW 12 of 19 
 

 

4.3. Fluid Domain Determination 
A fluid modeling area may be importantly influenced by the dimension of the 

crusher. As per Toso [14], the width of water tank should be at least twice the diameter of 
the falling model. To consider four water depths, the water domain was varied with water 
depth. To determine the size of water domain, several ratios of B(or L)/D (0.25 to 1.25) by 
D were examined at a water depth of 0.779 m. The defined fluid mesh size of 0.015 m was 
used in entire simulation. Table 8 shows the number of nodes, elements, modeling extent, 
and computational time for each analysis. As shown in Figure 12, the contact force and 
crusher velocity at the ground were compared. The impact force increases until B (or L)/D 
is 0.76, and then tends to converge from 1.03. To summarize, the fluid area size (B, L) was 
selected to be equal to the height of the fluid (D). 

Table 8. The various domain size of fluid. 

B(or L)/D 

0.27 0.53 0.76 1.03 1.29 1.56 

      
B, L m) 0.2 0.4 0.6 0.8 1.0 1.2 

No. of element 18,502 68,782 138,642 246,612 391,502 569,908 
Computational 

time 2 h 4 h 30 min 7 h 13 h 30 min 18 h 30 min 27 h 

 
Figure 12. The effect of fluid domain size. 

4.4. Results of Numerical Analysis 
Figure 13 shows the movement in the vertical direction of the crusher and the flow 

change in fluid depending on time for the B-2 condition. The crusher reaches the ground 
at roughly 0.52 s. Additionally, it can be confirmed that the movement at touching time is 

B, L (m) 0.2 0.4 0.6 0.8 1.0 1.2
No. of element 18,502 68,782 138,642 246,612 391,502 569,908

Computational time 2 h 4 h 30 min 7 h 13 h 30 min 18 h 30 min 27 h

J. Mar. Sci. Eng. 2022, 9, x FOR PEER REVIEW 12 of 19 
 

 

4.3. Fluid Domain Determination 
A fluid modeling area may be importantly influenced by the dimension of the 

crusher. As per Toso [14], the width of water tank should be at least twice the diameter of 
the falling model. To consider four water depths, the water domain was varied with water 
depth. To determine the size of water domain, several ratios of B(or L)/D (0.25 to 1.25) by 
D were examined at a water depth of 0.779 m. The defined fluid mesh size of 0.015 m was 
used in entire simulation. Table 8 shows the number of nodes, elements, modeling extent, 
and computational time for each analysis. As shown in Figure 12, the contact force and 
crusher velocity at the ground were compared. The impact force increases until B (or L)/D 
is 0.76, and then tends to converge from 1.03. To summarize, the fluid area size (B, L) was 
selected to be equal to the height of the fluid (D). 

Table 8. The various domain size of fluid. 

B(or L)/D 

0.27 0.53 0.76 1.03 1.29 1.56 

      
B, L m) 0.2 0.4 0.6 0.8 1.0 1.2 

No. of element 18,502 68,782 138,642 246,612 391,502 569,908 
Computational 

time 2 h 4 h 30 min 7 h 13 h 30 min 18 h 30 min 27 h 

 
Figure 12. The effect of fluid domain size. 

4.4. Results of Numerical Analysis 
Figure 13 shows the movement in the vertical direction of the crusher and the flow 

change in fluid depending on time for the B-2 condition. The crusher reaches the ground 
at roughly 0.52 s. Additionally, it can be confirmed that the movement at touching time is 

Figure 12. The effect of fluid domain size.

4.4. Results of Numerical Analysis

Figure 13 shows the movement in the vertical direction of the crusher and the flow
change in fluid depending on time for the B-2 condition. The crusher reaches the ground
at roughly 0.52 s. Additionally, it can be confirmed that the movement at touching time
is coincident with the considered water depth of 1.112 m. The analysis results of the z-
direction displacement, velocity, acceleration, and impact force of the B-2 condition were
seen in Figure 14. According to Figure 14a,b, there was a rebound after hitting the ground,
the direction was opposite around 0.52 s. It is slower than 0.476 s which is the time before
hitting the ground if it is vacuum condition. Both graphs are compared with free-falling
equations considering constant drag coefficient, as follows;

d =
m
k

ln(cosh(t

√
kg
m
)) (3)

v =

√
mg
k

tanh

(
t

√
kg
m

)
(4)
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1
2

Cdρω A (5)
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where m is the difference between the mass of the crusher and the mass of water, g is the
gravitational acceleration, ρw is the density of the water, A is the cross-sectional area of the
crusher, t is the time. Cd of the drag coefficient was 0.668 based on the L by H of Model B
using reference [27].
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The gap is increasing around 0.3 s, which is the time that most parts of crusher were
submerged underwater. It is obvious that it makes large difference because of considering
constant drag coefficient, projected area and mass difference regardless of their position. It
is difficult to set the drag coefficient for complex geometry model, like as the crusher. In
addition, the velocity of FSI analysis at 0.52 s is −3.65 m/s. It is less than the value of −4.84
obtained from the equation. It is because that water resistance makes it slow. Figure 14c,d
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show acceleration and impact force. For acceleration, it shows the gravitational acceleration
at the beginning, it remarkably increases when the crusher touches ground. Additionally, it
is noted that it changes the direction when it rebounds. Impact force was measured from
the contact force between the crusher and ground in time history curves. The acquired
maximum value of contact force was dealt with impact force between the crusher and
sensor plate in experimental models. For rigid ground, there is no penetration on the
ground, the higher impact force was observed. In addition, it bounces back, the impact
force is even greater because of the greater change in momentum.

4.5. Comparison between Experimental and Numerical Results

Table 9 shows the impact force of numerical and experimental results for 16 different
cases. For numerical computations, the impact force gradually increased by increase in
water depth and crusher model. Moreover, the impact force of a crusher dropping from air
level is slightly larger than that at water level; however, this increase in trend was gradual
with increase in water depth. For model B, the impact force does not linearly increase with
increase in weight; there is a different ratio in each case; however, the average value is
~38% and is less than the weight increase of 40%. Therefore, the impact force of the original
model does not have 15 times the impact force of the 15-times scaled-down model. An
exact impact force should be measured from the original model size and water depth.

Table 9. Summary of experimental and numerical analysis results.

Model Water Level Air Level

A (N)

Case 1 2 3 4 5 6 7 8
Experiment 17,613 20,964 21,138 22,697 21,329 21,813 20,554 21,718

ANSYS/LS-DYNA 18,683 21,093 22,990 23,590 20,911 22,605 23,885 24,724
Error (%) 6.08 0.62 8.76 3.93 1.96 3.63 16.21 13.84

B (N) Experiment 25,811 24,991 27,858 26,460 26,825 26,926 26,091 30,066
ANSYS/LS-DYNA 25,735 28,999 31,634 32,576 29,286 31,010 33,227 33,986

Error (%) 0.29 16.04 13.55 23.11 9.17 15.17 27.35 13.04

Figure 15 shows a comparison between experimental data and numerical values for
impact force model A has much better agreement between experimental and numerical
values compared to model B. This is because all numerical settings were determined for
the model A condition; therefore, a higher error was recorded for model B. Certain cases,
such as A-7, B-3, and B-7, have a higher COV and lead to larger errors. For A-7, A-8, B-2,
B-4, and B-7, the average impact force was lower at lower water depth. In particular, the air
level dropping case for A-7, A-8, and B-7 show lower impact force than for that at the water
level. The increase in water depth has a higher probability to change the angle of attack of
the crusher when it hits the ground, thus producing greater variability between each test
and leads to an increase in difference between numerical and experimental data. However,
the error could be dramatically reduced by comparing the maximum value of experimental
and numerical values, for example, the error is 7.25% for B-7 (i.e., a reduction of ~20%). If
comparison is assumed to be changed to maximum and compared to the LS-DYNA result,
the error could be 7.25% for B-7. Therefore, the test should confirm the angle of impact of
hitting the object for improved comparison. This is our next step for examining the effect
of the angle of impact on the impact force.
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Figure 15. Comparison between experimental and numerical impact force: (a) Model A—water level;
(b) Model A—air level; (c) Model B—water level; (d) Model B—air level.

An additional graph was drawn for combining all numerical results in Figure 16. The
axis of X represents the vertical distance from ground regardless of water depth. Therefore,
drop point of air level has 0.2 m longer distance than water level. They show a linear
relationship in the case of same model size. The linear equation was marked at the graph.
It means that the impact force for specific shallow water depth could be predicted if the
model is the same. But, it is not suitable for deeper water depth owing to increases of water
resistance. Therefore, it is needed to find the critical depth which transits from linear to
nonlinear tendency.
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5. Conclusions

This study aimed to understand the characteristics of a crusher in water and predict
the impact force on ground using experimental and numerical methods. Based on the
study, the following conclusions can be obtained:

1. Experimental tests for two different scaled-down models and multiple water depths
with two different dropping levels were conducted to confirm that the impact loads
linearly increase with increase in mass. In addition, this will be a good reference for
validating numerical methods on dropping object into the water.

2. Numerical techniques using FSI analysis for a free-falling crusher were established
by applying the ALE element and Grüneisen EoS to the fluid models. To increase
accuracy, two validation methods comprising CFD and experiment models for a rigid
sphere were performed. Furthermore, modeling size and extent were determined by
multiple computations.

3. Model size and water depth are the most influential factors to increase impact force
on the ground. The impact force increases as water depth increases. Moreover, the
air-level drop shows typically greater impact force than that of a water-level drop.
Higher impact force was measured for model B than A; however, there is no specific
ratio between them. Therefore, there is no linear relationship based on model weight
or, in other words, there is no dynamic similarity of impact force between the model
and prototype.

4. Similar trends were observed between numerical and experimental data. Certain
cases demonstrate good agreement while others have >20% error because there is
large variance in experimental data. In particular, there is a higher CoV for increase in
water depths. Moreover, certain cases do not show constant results because of angular
rotation between the crusher and ground when the crusher hits the ground.

Further studies will include performing drop tests and measuring the impact force
of simple dropping objects (sphere and cone) in a water tank to examine the effect of the
impact angle on the ground.
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