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Abstract: Many autonomous ship projects have reflected the increasing interest in incorporating the
concept of autonomy into the maritime transportation sector. However, autonomy is not a silver
bullet, as exemplified by many incidents in the past involving human and machine interaction;
rather it introduces new Human Factor (HF) challenges. These challenges are especially critical for
Engine Room Monitoring (ERM) in Shore Control Centre (SCCs) due to the system’s complexity and
the absence of human senses in the decision-making process. A transparent system is one of the
potential solutions, providing a rationale behind its suggestion. However, diverse implementations of
transparency schemes have resulted in prevalent inconsistencies in its effects. This literature review
paper investigates 17 transparency studies published over the last eight years to identify (a) different
approaches to developing transparent systems, (b) the effects of transparency on key HFs, and (c) the
effects of information presentation methods and uncertainty information. The findings suggest that
the explicit presentation of information could strengthen the benefits of the transparent system and
could be promising for performance improvements in ERM tasks in the SCC.

Keywords: Shore Control Centre; Engine Room Monitoring; transparent system; Human Factors;
maritime autonomy; situation awareness

1. Introduction
1.1. Maritime Autonomous Surface Ships

Recent technological breakthroughs, including artificial intelligence, blockchain, and
the internet of things, have accelerated a trend towards the transformation of conventional
industries into smarter, safer, and more efficient business models across the medical, avi-
ation, civil, and maritime sectors. The transformation in the maritime domain is often
referred to as Maritime 4.0, derived from the German government’s initiative to pursue
digital transformation in the manufacturing sector: Industry 4.0. Maritime 4.0 includes
transformations in vessel design, construction, operations, and shipping [1]. This digitaliza-
tion is envisioned as a disruptive opportunity, requiring a high level of cooperation between
regulatory bodies, industrial partners, labor organizations and other stakeholders [2]. One
of its endeavors resides in autonomous ship development, in which the estimated invest-
ment reached USD 5.8 billion in 2020 and is expected to increase up to 14.2 billion by
2030 [3]. As a response to increasing interest in autonomous vessels, the International Mar-
itime Organization (IMO) identified the degrees of autonomy in four classes as a guideline
for Maritime Autonomous Surface Ships (MASS), shown in Table 1. A notable keyword in
their classifications of autonomy is remote operation, specified in Degrees Two and Three,
indicating that the role of SCC will be significant.
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Table 1. The degrees of autonomy [4].

Degree One Ship with automated processes and decision support
Degree Two Remotely controlled ship with seafarers on board
Degree Three Remotely controlled ship without seafarers on board
Degree Four Fully autonomous ship being able to make decisions by itself

1.2. Shore Control Centre

The SCC is envisaged as a central control tower, where remote operators are expected
to receive information about multiple vessels via satellites and engage in various tasks,
such as monitoring, voyage and maintenance planning, and legal and organizational ar-
rangements inshore. The SCC scheme offers economic, environmental and social benefits,
primarily in the removal of the human presence from ships. A ship will no longer necessi-
tate accommodation facilities (i.e., refrigerant and sanitary systems), lowering construction
and maintenance costs. It will be lighter and faster, enabling slow steaming to reduce car-
bon emissions. The sense of isolation, motion sickness and sleep deprivation, the possible
causes of a significant shortfall in seafarers in the future, will no longer be a challenge facing
the industry [5]. The SCC will be beneficial in mitigating human errors that are involved
with the psychological, workplace, external factors, and 75 to 96% of marine accidents in
the conventional navigation systems [6,7]. Labor costs, accounting for up to 30% of the total
operation cost, can be minimized, provided that remote operators successfully monitor
multiple vessels at once [8]. These potential benefits have encouraged many countries,
companies, and universities globally to initiate MASS development with the SCC scheme.
Two past projects, MUNIN (Maritime Unmanned Navigation through Intelligence in Net-
works) and AAWA (The Advanced Autonomous Waterborne Applications), investigated
the feasibility of remotely operated vessels. As a result, they both acknowledged a recovery
of situational awareness due to the loss of ship senses as a major challenge. This implies that
the simple replication of the current ship monitoring systems is not a favorable option [9].
Their insight has been understood in the current MASS projects, and some of the large
projects are described in Table 2.

Table 2. Global MASS projects and their key development areas.

Project Name KASS [10] DFFAS [11] AUTOSHIP [12]

Duration 2020–2025 2019–2025 2020–2023
Domestic or

International Vessel Both Domestic Domestic

Development Areas

Navigation Intelligent Navigation 3D Bird View
(Virtual Reality) Artificial Captain

Engine Room Machinery
Automation System

Berthing and
Unberthing
Automation

Artificial Chief
Engineer

When looking at their projects from the perspective of traditional shipping operations,
the focal development areas can be divided into two primary sectors: navigation-relevant
or engine room-relevant technologies, which shows a different trend in supporting remote
operators. For example, systems that visualize environmental data (i.e., weather, obstacles
and collision levels) and ship states (roll and pitch motions) to enhance situation awareness
are under development in KASS (situational awareness system) and AUTOSHIP (intelligent
awareness system) projects. However, it appears that automation is at the center of engine
room operation, serving as a decision-making tool rather than a decision support system
involving human operators.

It is apparent that data-driven technologies, such as artificial intelligence, would be
highly beneficial for the future of the maritime industry. However, the purely technological
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approach may not guarantee operational safety, as shown by past accidents in the aviation
industry. The two air disasters owing to faulty software in the Boeing 737 MAX model that
a digital twin (DT) failed to ascertain in 2018 and 2019 showed that the sole use of advanced
technologies is not an ultimate solution. Ibrion et al. [13] reviewed these accidents and
suggested a multidisciplinary approach to mitigate the risk of DT implementation in the
maritime industry, such as the integration of expertise and the role of experts. The problems
posed by highly automated processes were discussed by [14], who introduced the ironies
of automation. One of the ironies is manual skill deterioration, which can devastate take-
over performance in case of automation failures, indicating the importance of situational
awareness, which is very likely to be poor considering ERM’s characteristics.

1.3. Engine Room Monitoring and Human Factor Challenges

The conventional engine room system is built and optimized for humans acting as
direct on-site supervisors. This means that current sensor systems alone do not cover the
whole area and are built to inform operators of the general functionality of the machinery
system rather than indicating the exact cause of the problem. For example, bilge alarms are
only installed at certain locations with a high potential for water leakage, such as the ballast
pump room, and only report the presence of liquid. They do not inform remote operators
as to the type of liquid and the cause of the leakage, which are critical in the formulation
of counter-measures. Another example is diesel engines, whose general functionality
is commonly inferred from combustion status. It is challenging to clearly diagnose the
cause of abnormalities with current sensor information (i.e., exhaust gas temperature),
preventing remote operators from pre-planning what is to be replaced or repaired in the
next port. The lack of bodily feelings is another characteristic that limits the operator’s
ability to understand the situation [15]. This includes the loss of visual, haptic and auditory
information, which many operators utilize to understand the status of equipment and
process [16]. These two factors, the limitations of current sensor systems and the lack of
bodily feelings, require more information to be produced from each vessel to decompose
the problem and compensate for the loss of bodily information. With the current industrial
approach towards remote engine room operation, it may be possible to reduce the amount
of information that remote operators should handle and to mitigate human errors, such as
performance degradation due to motion sickness. However, the approach will induce new
forms of human error, called HF challenges [17].

As concluded in the MUNIN project, it is still unknown whether one operator can
control multiple ships, (six were used in the project) with adequate situational awareness
and workload [18]. Man et al. [19] discovered difficulties in developing sufficient situa-
tional awareness and decision-making latencies when SCC operators received information
through ordinary navigation devices such as radar. In addition, Man, et al. evaluated the
SCC prototype system where each operator monitored six vessels and communicated with
a supervisor (coordinator), captains (decision maker), and engineers (technical consultant).
One of the significant findings was that the captains exhibited the worst situation awareness.
These HF challenges, decision-making latency or response time, workload and situation
awareness, are critical in determining crew configurations in the SCC [20]. Trust is another
key HF challenge that is highly relevant to the misuse and disuse of automation and is
expected to be critical for ERMs embedded with data-driven technologies. The question as
to how to calibrate an operator’s trust and system trustworthiness should be addressed to
support both the utilization and verification of automation, consequently leading to high
performance. In response to these challenges, one of the potential solutions is a transparent
system that could ameliorate the decrease in situational awareness resulting from the high
level of automation [21].

1.4. Transparency

The potential of transparency is vital in highly automated control room environments
to provide an understandable overview of their complex work domain. Roundtree et al. [22]
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demonstrated explainability, performance, usability, and trust as direct factors in trans-
parency. Other researchers attempted to address transparency as the observability and
predictability of system behaviour for situation awareness recovery [23]. For example,
Battiste et al. [24] established a preliminary model of human and machine teaming (HAT)
for flight control. In their study, they found that as soon as ground operators engaged
with new tasks, they quickly gained situational awareness through the environmental
and systems data, including reasoning information from the suggestions or actions by
the machine agent. They further described that prompt situational awareness recovery is
likely to reduce the need for continuous monitoring of individual aircraft. It can be one of
the critical aspects of successful SCC operation as it will not be possible to continuously
monitor every system of multiple vessels under the control of a single operator [25].

The most common way of implementing the transparent system is to provide the
information corresponding to the three stages of situational awareness [26]: perception,
comprehension, and the project of the environment. Chen et al. [27] further shaped End-
sley’s concept and developed the Situation Awareness-Based Agent Transparency (SAT)
model by specifying what specific forms of information align with these stages. For ex-
ample, only basic environmental information is provided at the lowest transparency level,
accompanied by reasoning information at the medium level, and predicted outcomes, often
with uncertainty information, at the highest level. Examples of uncertainty information
include time projections [28], uncertain zones in the route [29] and heart rate, implying a
sensor visibility range in fog [30].

Many researchers have also tried to expand the field of transparency. Skraaning and
Jamieson [31] employed verbal and diagnostic feedback in the system behaviour for nuclear
system monitoring, focusing on automation observability. Dikmen et al. [32] implemented
the automation support system for a target identification task that informs its system
limitation (i.e., factors not considered in its suggestions). Panganiban et al. [33] introduced
benevolent transparency, in which the automation exhibits social supports. Other inter-
esting approaches include the presentation of the agent’s strategies during a collaborative
game [34], and of both the robot’s decision-making process and its understanding of the
human’s decision-making process [35] and of normalcy exemplar corresponding to the
detected anomaly [36].

The effects of transparency on the key HF (i.e., trust, workload, situational awareness,
response time, and performance) have been studied in many industries, but mostly in
the aviation and military domains, in which a strong similarity exists between seafarers
and flight pilots [37]. However, it seems that the effects of transparency on key HFs
vary across empirical studies based on how subjects interpret and employ the concept of
transparency, especially in regards to the availability of uncertainty information and the
presentation of reasoning information. Therefore, this paper aims to investigate different
transparency models and their impact on key HFs that are envisioned as critical for the
ERM and operation in the SCC.

2. Materials and Methods

Our meta-analysis was developed by following the guidelines by [38]. A search period
of the past eight years, from 2014 to 2021, was targeted, considering the nature of the
fast-evolving HAT research domain. The initial search was performed in May 2021 to
find publications that met the search term in the databases, which included Scopus, Sage,
Web of Science, and ACM DL. The following search term was chosen to include as many
studies as possible that investigated HF challenges in the HAT environment, to which the
transparent system is a potential solution.

• Search Terms: (Human-Machine OR Human-Agent OR Human-Automation) AND
(Supervis* OR Team*)

Consequently, 2603 articles were identified from these four databases. These articles
included non- and not highly relevant papers, such as papers on information technology
algorithm development. The first screening, of the abstracts, was conducted to find articles
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involving system management, monitoring, and interaction regarding HF challenges in
general. As a result, 657 papers were collected for a full-text review. The second screening
was conducted to differentiate empirical studies investigating the effects of transparency in
the HAT domain and meeting the following inclusion criteria.

• The article should have experiments conducted under the HAT scheme, with at least
one human operator and one agent.

• The article should investigate at least one key HF at varying levels of transparency
regardless of its transparency type.

• The article should be written in English or translated into English.

Consequently, seventeen papers met the inclusion criteria for in-depth investigation
and eighteen experiments were investigated. The flow of information, referred to as a
Preferred Reporting Item for Systematic Reviews and Meta-Analysis (PRISMA), is shown
in Figure 1.

Figure 1. Preferred Reporting Item for Systematic Reviews and Meta-Analysis (PRISMA) flow
of information.

The details of the studies included in the meta-analysis are demonstrated in Table 3.

Table 3. The details of the studies included in the meta-analysis.

Study Year Journal Domain Sample
Size Transparency Level and Corresponding Information Type

[39] 2016
Human Factors
and Ergonomics

Society

Military–
Autonomous

Squad Member
60

L1—Perception (overall map, squad status, etc.)
L2—Comprehension (top motivator for decisions)
L3—Projection (predicted outcome of decisions)
L4—Uncertainty (hazards and field events)

[40] 2016 Ergonomics in
Design

Aviation–
Emergency

Landing Planner
12

L1—Perception (weather and runway characteristics)
L2—Comprehension (logic behind the statement)
L3—Uncertainty (probability of success)

[35] 2019
Human Factors
and Ergonomics

Society

Military–Cordon
and Search Robot 40

L1—Perception, comprehension, and projection (information
about agent’s decision-making)
L2—Perception, comprehension, and projection (information
about agent’s and human’s decision making

[31] 2021 Human Factors
and Ergonomics

Society

Nuclear Power
Plant

16
L1—Traditional control room
L2—Behavioral feedback from automation (program [name]
starting up)

18
L1—Traditional control room
L2—Behavioral and diagnostic feedback (program (name)
starting up due to (reason))
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Table 3. Cont.

Study Year Journal Domain Sample
Size Transparency Level and Corresponding Information Type

[41] 2016 Human Factors
Military–

Unmanned
Vehicle

30
L1—Perception (planned path and vehicles)
L2—Comprehension (speed, capability, and converge)
L3—Uncertainty (weather condition)

[28] 2016
Human Factors
and Ergonomics

Society

Military–
Unmanned

Vehicle
53

L1—Perception and comprehension (speed and map)
L2—Projection (estimated time of arrival in unit)
L3—Uncertainty (uncertain time, fuel and sensor coverage)

[29] 2015
Human Factors
and Ergonomics

Society

Military–
Autonomous

Squad Member
45

L1—Perception (route and current resources)
L2—Comprehension (hazards and affordances)
L3—Projection and Uncertainty (uncertain zones and predicted
resources)

[42] 2019
Human Factors
and Ergonomics

Society

Military–Tank
Identification 26

L1—Information (size of the target)
L2—Information (size and shape of the target)
L3—Information (size, shape and metallic return of the target)

[43] 2019
IEEE Transactions

on
Human–Machine

Systems

Military–
Autonomous

Robotic Squad
Member

56

L1—Perception, comprehension and projection information
(presence of a shooter)
L2—Reasoning of perception, comprehension and projection
information (presence of gunfire)

[30] 2019 Ergonomics Automobile–
Driving 34 L1—Perception (driving information)

L2—Uncertainty (sensors’ reliability)

[44] 2016
International
Federation of

Automatic Control
Aviation–Traffic

Control 9 L1—Perception (aircraft’s speed)
L2—Projection (no-go zones based on speed)

[34] 2019

International
Workshop on
Explainable,
Transparent

Autonomous
Agents and
Multi-Agent

Systems

General–
Collaborative

Game
120 L1—Perception

L2—Comprehension (reasoning of the agent’s strategy)

[45] 2017

Advances in
Human Factors in

Robots and
Unmanned

Systems

Aviation–
Emergency

Landing
13

L1—Perception (runway length, distance)
L2—Comprehension (landing approach, weather)
L3—Uncertainty (probability of success for landing)

[32] 2020

IEEE International
Conference on
Systems, Man,

Cybernetics

Military–Target
Identification 56

L1—Perception
L2—Limitations of the automation (the automation does not
take heading into account when classifying)

[46] 2014

IEEE International
Conference on
Systems, Man,

Cybernetics

Aviation–Traffic
Control 12 L1—Information (heading support)

L2—Information (heading and speed support)

[47] 2020 IEEE Control
System

Military–
Autonomous

Squad Member
221

L1—Information (basic)
L2—Information (potential danger)
L3—Information (thermal images)

[48] 2020
IEEE Transactions

on
Human-Machine

Systems

Military–
Unmanned

Vehicle
53

L1—Perception and comprehension (speed and map)
L2—Projection (estimated time of arrival in unit)
L3—Uncertainty (uncertainty of the suggested plan)

For the data analysis, this study was inspired by the work of [49]. As a first step,
we listed all the HFs used as dependent variables and selected key factors from more
than five samples to describe a general trend in transparency effects over the last eight
years. Next, we ranked the levels of transparency from one for the lowest level (perception)
to three or four for the highest level (projection), according to Endsley’s three stages of
situational awareness.

Some studies separated the highest level of transparency into two levels: future
outcome and uncertainty and provided uncertainty information at the highest transparency
level. In cases were the studies developed their own transparency levels based on different
approaches (i.e., level of information), the levels described in their studies were used for
our analysis. There were no tied ranks in the transparency levels. For key HFs, different
rankings were assigned when there was a significant difference between levels (p < 0.05);
otherwise, they were ranked the same (tied ranks). Most studies (n = 15) employed an
ANOVA test or its variations (ANCOVA and MANOVA), while Akash et al. [47] and
Kunze et al. [30] employed a likelihood ratio test and Satterthwaite’s method, respectively.
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The ranking examples for a study comparing the effects of three transparency levels
(low, medium, and high) on trust is provided in Figure 2. For Example B, the trust was
significantly lower at the low transparency than the other two levels, and there was no
significant difference in trust at medium and high transparency. Therefore, the tied-rank
(2.5) was assigned to trust at medium and high transparency. In Example C, the trust at the
low transparency level was significantly lower than that at the medium transparency level.
However, there was no significant difference between medium and high and low and high
transparency levels. In this case, we assigned tied-ranks to the trust at the low and high
transparency level, since trust at the high transparency level was still lower than that at the
medium transparency level.

Figure 2. A methodology used to rank raw data. In the (A) example, the low transparency (rank:
1) is matched with trust (rank: 1.5), medium transparency (rank: 2) is matched with trust (rank: 3)
and lastly, the high transparency (rank: 3) is matched with trust (rank: 1.5). As there is no significant
difference in trust at low and high transparency, and trust is significantly higher at medium than at
other levels, the tied-rank (1.5) is assigned to trust at low and high transparency. Other two examples
(B,C) are explained above.

We employed Kendall’s tau-b correlation coefficient for each study to investigate the
strength and direction of the association between an independent variable (transparency
level) and dependent variables (key HF). The data could be expressed in rank order (ordinal
variables) and featured tied ranks. A positive value indicated a positive association, and
zero indicated no association. The Kendall’s tau-b coefficient is expressed as

τB =
nc − nd√

(n0 − n1)(n0 − n2)
(1)

where
n0 = n(n − 1)/2 (2)

n1 = ∑
i

ti(ti − 1)/2 (3)

n2 =
i

∑
j

uj
(
uj − 1

)
/2 (4)

n = number of ranks

nc = number of concordant pairs

nd = number of discordant pairs

ti = number of tied values in the ith group of ties for the first quantity

uj = number of tied values in the jth group of ties for the sec ond quantity
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As there are no standard rules to interpret the strength of their association, the coef-
ficients were evaluated according to the guideline proposed by [50]. A similar guideline
is also suggested by [51]. However, it should be noted that this guideline is one of many
perspectives that interpret the strength of the tau-b correlations differently; it is not the
only approach.

• Less than ±0.10: very weak
• ±0.10 to 0.19: weak
• ±0.20 to 0.29: moderate
• ±0.30 or above: strong

When the dependent variables were measured by several means or segmented in
several groups (i.e., level 1 situational awareness and level 2 situation awareness), the
relevant coefficients were aggregated and averaged to describe an overall trend. The
overall tau-b coefficients were tested with one-tailed t tests to find whether they were
significantly different from zero. One-tailed t tests were employed in consideration of a
small sample size. As the last step, we further classified the resultant coefficients in terms
of information presentation methods (implicit or explicit) and transparency conditions
(availability of uncertainty information) to evaluate whether these influenced the general
trend. However, the t tests were not used due to the insufficient number of samples
(e.g., n = 1 for situation awareness in explicit transparency). In the implicit condition, all
information was presented on the screen, requiring operators to search, combine, and
understand critical information. However, in the explicit condition, a clear description
of automation’s rationale was provided to operators along with other information. For
example, Lyons et al. [40] provided a clear statement (i.e., the landing crosswind is too high
for a safe landing) when the automation indicated that the runway was not acceptable,
instead of presenting the crosswind speed somewhere on the screen.

3. Results

We investigated seventeen studies that contained eighteen experiments to identify
(a) different approaches to developing transparent systems in the last eight years, (b) the
general effect of transparency on key HFs, and (c) the effects of information presentation
methods and the availability of uncertainty information on key HFs.

3.1. Overview of Transparency Studies

It was found that the SAT model (n = 9) was widely recognized for employing the
concept of transparency in the HAT environment. While the most of research in our
investigation used conventional SAT models, a few studies attempted to expand the SAT
model further, such as through the agent-and-team SAT [35] or the in-depth SAT model [43].
Other approaches to developing transparent systems that have been employed are shown
in Table 4.

Table 4. Transparency schemes.

Transparency Development Approaches Number of Studies

SAT Model 9
Consultation with SMEs (Subject Matter Experts) 2
EID (Ecological Interface Design) principles 2
System observability 2
LOI (Level of Information) 1
Analytical model of transparency 1
Uncertainty 1

The HFs investigated in the HAT research area from 2014 to 2021 are described in
Table 5.
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Table 5. The HF investigated in the HAT research area from 2014 to 2021.

Human Factors Number of Studies Human Factors Number of Studies

Trust 13 Agreement 1
Performance 11 Acceptance 1
Workload 9 Trust Calibration 1
Response Time 7 Group Identification 1
Situation Awareness 5 Effort 1
Cooperation 3 Interface Utility 1
Usability 2

3.2. Effects of Transparency, Information Presentation Types, and Uncertainty Information
3.2.1. Trust

The general relationship between trust and transparency level was studied in 13 ex-
periments, and a moderate positive association (±0.20 < τB < ±0.29) was found that was
significantly different from zero (p = 0.014). No studies indicated a negative relationship.
Interestingly, the associations from two information presentation groups, implicit without
a clear description and explicit transparency with a clear description, differed noticeably. A
strong positive association (±0.30 < τB) was observed in the explicit transparency studies,
while a weak positive association (±0.10 < τB < ±0.19) was found in the implicit trans-
parency studies. It was also found that five out of seven studies reported a decrease in trust
level when uncertainty information was provided at the highest transparency level.

3.2.2. Performance

Overall, a strong positive association (τB = 0.474) between performance and trans-
parency level that was significantly different from zero (p = 0.004) was found fin 11 experi-
ments, while one study reported a moderate negative relationship. The greatest difference
was observed between the two information presentation groups. The association in ex-
plicit transparency studies was more than three times greater (τB = 0.863) than in implicit
transparency studies (τB = 0.250). It was also found that the presentation of uncertainty
information did not exert negative influences on performance.

3.2.3. Workload

A moderate negative association (τB = −0.222) between workload and transparency
level was observed, indicating a decrease in workload upon increased transparency level.
However, it was not significantly different from zero (p = 0.085), and this result may not
reflect a clear association, since seven out of nine studies demonstrated no association. This
association became stronger in explicit transparency studies (τB = −0.333), while it became
weaker in implicit transparency studies (τB = −0.167). Lastly, only one study reported an
increase in workload when uncertainty information was provided.

3.2.4. Response Time

A weak positive association (τB = 0.117) between response time and transparency
level was observed from 7 experiments. However, it was not significantly different from
zero (p = 0.368). The association became moderate and positive (τB = 0.250) in implicit
transparency studies, while a very weak negative association (±0.01 < τB < ±0.10) was
observed in explicit transparency studies. Only one study reported an increase in response
time upon the presentation of uncertainty information.

3.2.5. Situation Awareness

A very weak negative association (τB = −0.072) between situational awareness and
transparency level was observed in five experiments, suggesting that an increase in sit-
uational awareness related to increased transparency was not statistically significant
(p = 0.274). This association varied little in both information presentation types: a weak
association for implicit transparency studies and no association for explicit transparency
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studies. Two studies reported a negative influence of uncertainty information on situation
awareness, as shown in Table 6.

Table 6. The overall associations (τB coefficients) between key HF and transparency levels, and the
statistics of one-tailed t tests, are represented. The overall associations under different information
presentation conditions (implicit and explicit) denoted as I and E, are demonstrated. Lastly, a number
of experiments that either reported positive or negative effects of uncertainty information on key
HF is shown. For example, two experiments reported positive effects on trust. The positive effects
indicate the increase in trust, performance, and situation awareness, and a decrease in workload and
response time.

Experiments Transparency
Basis Trust Performance Workload Response Time Situation

Awareness

[39] SAT/I 0.236 0 0.139
[40] SME/E 0.333
[35] SAT/I 0

[31] (Exp 1) Observability/I 0 0.5 −1 −1 0
[31] (Exp 2) Observability/E 1 1 −1 −1 0

[41] SAT/E 0.408 0.908 0 0
[28] SAT/E 1
[29] SAT/I 0 0 −0.500

[42] Analytical
Model/I 1 0 1

[43] SAT/I 0 0 0 0
[30] Uncertainty/I 0 0.500 0
[44] EID/I 0 0
[34] SAT/I 0
[45] SME/E 0.333
[32] SAT/I −0.250
[46] EID/I 0
[47] LOI/I 1 1
[48] SAT/E 0 0.544 0 0.817

Overall τB 0.225 0.474 −0.222 0.117 −0.072
t 2.513 3.327 −1.512 0.354 −0.655
p 0.014 0.004 0.085 0.368 0.274

τB By Implicit Transparency 0.155 0.250 −0.167 0.250 −0.090
τB By Explicit Transparency 0.415 0.863 −0.333 −0.061 0

The influence of uncertainty information on the five variables at the highest transparency level (n = a number of experiments)

Positive 2 3 1 1 0
Negative 5 0 0 0 2

4. Discussion

The general transparency effects found in the 18 experiments were mostly in line with
the common belief that the presentation of reasoning information plays a key role in human
and machine interaction. The analysis shows that transparent systems could mitigate HF
challenges at different levels, from weak to strong, and the possibility of amplifying their
positive effects by providing a clear description to human operators. The rationale of these
effects likely stems from the process of human reasoning.

The human reasoning process in complex work environments is similar to solving a
puzzle, in which information elements are puzzle pieces. The transparent system provides
the most relevant pieces to operators, helping them to form the right shape quickly. How-
ever, excessive information creates ambiguity and difficulties in interpreting the machine
agent’s action, which still applies in transparent systems. One of the main issues is that
there may be multiple shapes (interpretations) derived from the same information elements
at different amplitudes (signal strengths). This is especially likely in ERM tasks in the SCC,
which are mostly indeterminate [52].
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For instance, a transparent system may indicate a sudden decrease in the boiler’s water
level to the ERM operators in SCC with the intention of warning the potential feed water
pump breakage. However, the ERM operators may interpret this information as water tube
breakage and decide to stop the boiler. This is a misinterpretation of intentions between
the system and its operators, which can lead to catastrophic disasters. One such accidents
was the oil spill in the Kalamazoo River in Canada, in which operators decided to pump
more oil instead of isolating the system after receiving the low-pressure pipeline alarm [53].
Furthermore, when operators allocate more attention to interpreting information, less is
attention is paid to monitoring and updating information and supporting performance [54].

The presentation of possible interpretations and combinations of critical information
clues may help direct the operator to verify its suggestions or analysis, minimizing the
excessive attention allocated to data interpretation. By contrast, implicit transparency
displaying key information elements on the screen may still require the operator to ana-
lyze information elements and decipher possible interpretations. This difference can be
explained in terms of short-answer and multiple-choice questions. The two-process theory
explains that recall involves more processes such as the formulation of the relation between
memories and retrieval strategies than recognition [55–57]. This is well understood in
the education sector when evaluating students’ performance in different formats. It is
known that multiple-choice questions demand the recognition of the right answer while
short-answer questions demand the recall of the right answer [58], and significantly more
time is required for short-answer questions than multiple-choice questions [59]. Chan
and Kennedy [60] reported that multiple options seem to help students to form answers.
Furthermore, it is possible that the presentation of multiple options may serve as a trigger
to retrieve long-term memories when considering thought as a product of images, sounds,
ideas, and words [61,62]. As in multiple-choice questions, the presentation of possible
interpretations may benefit operators by guiding them to focus on verification; that is, to
recognize a correct interpretation instead of analyzing and forming their own interpretation,
which is a recall of a right interpretation, as shown in Figure 3.

Figure 3. The main role of remote operators according to information presentation types.

The allocation of data interpretation functions is likely to yield stronger associations
between HF (performance, workload, and trust) and transparency levels in explicit models.
A clear description of the current status transforms key information into context-specific
information and mitigates the chances of misinterpreting key information, increasing oper-
ators’ performance, as reflected by the highest positive association between performance
and transparency level in explicit models. The higher association may also be related to
the operator’s preference of information display type, which takes the form of a written
description in explicit models. Wright et al. [63] reported the stronger operator’s tendency
to opt for a simpler display (i.e., a text box) rather than a graph. Operators are likely to
experience less workload, since the transparent system executes a part of the reasoning
process that is the integration of key data. This is in line with the general notion that the
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more functions are executed by automation, the less workload is undertaken by opera-
tors [64]. The stronger positive association of explicit models in the trust dimension may be
relevant to how feedback is described [65]. When the interpretations are addressed in a
similar way to human logical reasoning processes, a series of data are integrated to deduce
the situation, and operators may tend to trust the system more. For example, Skraaning
and Jamieson [31] provided feedback (i.e., a program is starting up due to A) and reported
the highest positive association. Similarly, three written reasons for a suggestion were
presented (i.e., A vehicle will arrive faster than B vehicle because A vehicle follows a direct
flight path) in the study by [41], yielding the second-highest association between trust and
transparency level. Furthermore, when a transparent system interprets critical information,
it is likely to minimize response time and maximize situation awareness, as it mitigates the
burden of being in charge of data analysis and the likelihood of misconstruing key informa-
tion. However, the results showed very weak positive associations for response times, and
no association for situational awareness. This was likely due to the low number of samples
(n = 2 for response time and n = 1 for situation awareness), requiring more empirical studies
to be conducted for a precise evaluation of the explicit transparency concept.

The demonstration of uncertainty information at the highest transparency level, pre-
sented as a percentage of risk, failure and success, has mixed effects on HF. The effect was
not notable in workload and response time, as one study reported. However, negative
effects on trust level and situation awareness and positive effects on performance were
observed. The decrease in trust level and situational awareness may have been because, in
addition to the fact that uncertainty information raises doubts as to the system’s capability,
operators are incapable of understanding how such a value is calculated, preventing them
from attaining a clear picture. The negative effects of uncertainty on trust were also dis-
cussed in the study by [66]. The positive effects of uncertainty information on performance
may be related to how uncertainty information is presented. Kirschenbaum et al. [67] re-
ported that the spatial representation of uncertainty information increased the performance
of submarine officers who engaged with spatial tasks. In addition, the presentation of
uncertainty information followed by operators’ initial assessment is found to increase their
performance from 20 to 45% by guiding them to reconsider their decision [68]. However, it
should be noted that all the studies were based on simulation experiments, in which uncer-
tainty information may not influence operator performance significantly, as an apparent
solution was presented. In fact, the increase in performance may have been due to the
increase in transparency level, requiring further investigations.

5. Conclusions

Many studies have been conducted on fostering and investigating the transparent
system to mitigate HF challenges in the HAT environment. However, it was found that
there are many inconsistencies in the empirical results. This is likely due to the various
implementations of the transparency scheme, and the fact that none of the studies investi-
gated a transparent system considering the ERM tasks in the SCC. We investigated different
transparency models and their impact on key HFs. We found that when the agent provided
a clear description supporting its suggestions, there were stronger associations between
transparency level and certain factors (performance, workload, and trust). We also exam-
ined the positive and negative effects of uncertainty information on performance, trust,
and situational awareness and found that the negative influence is likely to be a problem
of how to present uncertainty information. We acknowledge that our findings are based
on a relatively small sample size, especially when it comes to the effects of uncertainty
information. The role of individual, task, and cultural characteristics in HF research areas
were not considered. Therefore, we propose that transparent system development via a
human-centered design approach is the key to mitigating HF challenges for performing
ERM tasks in the autonomous maritime era, and it can be initiated from an initial under-
standing of which information, for which decisions, and under which circumstances, is
required. Our future research will seek to identify which information is utilized for which
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decisions, and under which circumstances, for maritime engineers to develop an explicit
transparent system for the ERM in the SCC.
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