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Abstract: Characterizing the electrical property of hydrate-bearing sediments is essential for hydrate
reservoir identification and saturation evaluation. As the major contributor to electrical conductivity,
pore water is a key factor in characterizing the electrical properties of hydrate-bearing sediments.
The objective of this study is to clarify the effect of hydrates on pore water and the relationship
between pore water characteristics and the saturation exponent of Archie’s law in hydrate-bearing
sediments. A combination of X-ray computed tomography and resistivity measurement technology
is used to derive the three-dimensional spatial structure and resistivity of hydrate-bearing sediments
simultaneously, which is helpful to characterize pore water and investigate the saturation exponent of
Archie’s law at the micro-scale. The results show that the resistivity of hydrate-bearing sediments is
controlled by changes in pore water distribution and connectivity caused by hydrate formation. With
the increase of hydrate saturation, pore water connectivity decreases, but the average coordination
number and tortuosity increase due to much smaller and more tortuous throats of pore water divided
by hydrate particles. It is also found that the saturation exponent of Archie’s law is controlled by the
distribution and connectivity of pore water. As the parameters of connected pore water (e.g., porosity,
water saturation) decrease, the saturation exponent decreases. At a low hydrate-saturation stage,
the saturation exponent of Archie’s law changes obviously due to the complicated pore structure
of hydrate-bearing sediments. A new logarithmic relationship between the saturation exponent of
Archie’s law and the tortuosity of pore water is proposed which helps to calculate field hydrate
saturation using resistivity logging data.

Keywords: saturation exponent; hydrate-bearing sediments; pore water; resistivity; X-ray computed
tomography

1. Introduction

Gas hydrates are regarded as a potential energy resource in the 21st century due to
its tremendous reserves and clean combustion [1]. The industrial development of gas
hydrates is of great significance in achieving carbon neutralization and researchers have
paid increasing attention to their exploration and exploitation. Gas hydrates, composed
of water and gas molecules, are crystalline, which structures are usually considered to
be non-conductive materials [2]. The resistivity of the bulk sediment rises because of the
existence of gas hydrates [3]. Therefore, characterizing the resistivity of hydrate-bearing
sediments is of significance in hydrate saturation calculation.
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The electrical conductivity of hydrate-bearing sediments mainly depends on ions in
pore water [4]. The resistivity of hydrate-bearing sediments is strongly dependent on both
pore fluid conductivity and fluid volume fraction [5–7]. Hydrates, as solid materials, change
the original pore water distribution and connectivity, which causes a significant change
of resistivity [8]. When hydrates exist in the throat of the pores, blocking the electrical
conductive path, the resistivity of hydrate-bearing sediments will increase significantly [9].
Archie’s law was proposed by Archie in 1942 to describe the relationship between the
resistivity of sediments and pore water saturation in porous rocks [10]. To explain non-
Archie behavior and obtain accurate water saturation information, many researchers have
focused on studying the parameters of Archie’s law. The results show that the parameters
of Archie’s law are not constant and are influenced by pore geometrical factors [11–18].
With respect to gas hydrates, the saturation exponent of Archie’s law calculated from field
logging data changes significantly with the sites [3,19,20]. Different empirical values for
the saturation exponent are reported in different experiments [2,5,21,22]. The value of the
saturation exponent is very difficult to select in hydrate-bearing sediments because of the
complicated pore structure caused by various pore habits of hydrates. Cook and Waite
suggested that the value of the saturation exponent should be 2.5 ± 0.5 if independent esti-
mates are not available [17]. However, studies have revealed that the saturation exponent is
a function of water saturation and pore geometrical factor rather than a constant [5,23,24].

X-ray computed tomography (X-CT), as a non-destructive method, has been exten-
sively used to investigate the micro-distribution of each component in hydrate-bearing
sediments [25–29]. Based on a three-dimensional X-CT image of hydrate-bearing sediments,
pore water geometrical factors (pore size distribution, tortuosity, and coordination number
representing the geometry, distribution, and connectivity of pore fluid) can be obtained
and the volume of each component can be calculated. Therefore, it is possible to investigate
resistivity and the saturation exponent of Archie’s law in hydrate-bearing sediments at the
micro-scale. Dong et al. used X-CT to explore the influence of the micro-distribution of
hydrates on the resistivity of hydrate-bearing sediments [23]. They thought that different
conductive paths would be generated due to hydrate formation. However, the relation-
ship between hydrates and the pore water of hydrate-bearing sediments has not yet been
clarified. Zhang et al. extracted pore area and tortuosity fractal dimensions for effective
pores from CT images of xenon hydrate-bearing alumina ball packings to investigate the
relationship between tortuosity and saturation exponents [24]. Xenon hydrate-bearing
alumina ball packings are only an analog for hydrate-bearing sediments and may not
simulate closely enough the actual pore geometrical factors in hydrate-bearing sediments.

In this study, the joint measurement of X-ray computed tomography and resistivity
is used to determine the micro-distribution of methane hydrates, the pore geometrical
factors of pore water, and the resistivity of hydrate-bearing sediments simultaneously. The
effects of hydrates on resistivity and the saturation exponent are discussed. This study
aims to clarify the resistivity property of hydrate-bearing sediments and proposes a feasible
method to determine saturation exponents.

2. Experiments and Methods
2.1. Experimental Device

The experimental device contains three main parts: an X-ray CT scanner, a low-
temperature high-pressure vessel, and a resistivity measurement system (Figure 1). The
type of X-ray CT scanner is a Phoenix v|tome|xs, GE Sensing & Inspection Technologies,
with a nano-focus X-ray source and a 16-bit digital flat panel detector [30].

The low-temperature high-pressure vessel is made of PEEK material, with an inner
diameter of 35.0 mm. The maximum confining pressure of the vessel is 10.0 MPa. A hollow
cylindrical rubber barrel with an inner diameter of 25.0 mm and a height of 42.0 mm is
arranged in the vessel, which is used to hold sediments. The high-pressure environment
for hydrate formation is simulated by confining fluid outside the rubber and pore fluid
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inside the rubber. A pressure transducer and a temperature probe are used for monitoring
pore fluid pressure and confining fluid temperature.
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Figure 1. Schematic of experimental device.

The resistivity measurement system utilizes a six-electrode probe and quadrupole
method. Six electrode rings, made of stainless steel, are equally spaced and fixed by C-bars.
Four adjacent electrodes, as a group, accomplish the resistivity measurement of a layer.
The resistivity of another layer is collected by changing the measurement electrodes into
current injection electrodes. Therefore, the resistivity of the upper, middle, and lower layers
is collected. The probe can withstand a maximum pressure up to 10.0 MPa.

2.2. Experimental Procedure

Quartz sands with particle sizes of >500 µm are chosen as host sediments in the
hydrate-formation experiments. The pore fluid of sediments is 3.5 wt% NaCl solution.
Methane hydrates are formed in the sediments with initial pore fluid saturation of 100%.
Methane gas (purity > 99.99%) was injected into the sediments to reach the designed
pore fluid pressure. Glycol, as a confining fluid, was injected into the space between the
vessel and the rubber to provide confining pressure. Under the high-pressure condition
provided by pore fluid pressure and confining pressure, the sediments containing NaCl
solution and methane gas are cooled by a temperature controller to generate methane
hydrates. According to the methane hydrate phase boundary [31], six tests are set to
generate hydrates with different saturations. Detailed information about the experiments
is provided in Table 1.

Table 1. Summary of test conditions.

Test Initial Pressure 1/MPa Final Pressure 2/MPa Temperature 3/◦C
Initial Water
Saturation/% Duration 4/h

1 5.18 3.17 0.2 95.04 46
2 5.54 3.45 1.0 82.34 39
3 5.54 4.18 2.8 93.01 24
4 5.54 5.23 3.5 78.42 16
5 4.99 4.32 1.5 81.73 22
6 4.99 4.42 1.4 80.60 43

1 Initial pressure is the pore fluid pressure before the formation of hydrate. 2 Final pressure is the pore fluid
pressure after the formation of hydrate, which is the moment when the temperature and pressure are stable.
3 Temperature is the experimental temperature in sediments which is controlled by temperature controller.
4 Duration is the time taken fore hydrate formation.

According to the sample size, the X-CT scan was operating at a voltage of 120 kV,
a current of 100 µA, and with a detector exposure time of 1000 ms. The size of the flat panel
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detector was 1024 × 1024 pixels. The 3D image resolution of X-CT scanning image was
45 µm, which means the size of each voxel was 45 µm × 45 µm × 45 µm. The magnification
was 4.44. The X-CT scans were conducted when the temperature and pressure were
stable to avoid the blurring of the X-CT image caused by phase changes during hydrate
formation. The measurement of resistivity was conducted at the same time, which can
ensure the consistency between the resistivity and CT image of hydrate-bearing sediments.
We collected resistivity information for only the upper and lower layers due to the circuit
problem. The resistivity measurement of the three layers being independent, the data of
the upper and lower layers are credible.

2.3. X-CT Image Analysis

Various 2D X-ray images of sediments, obtained after the X-CT scan, were analyzed
with VG Studio MAX and Avizo software. The three-dimensional images of the sediments
were reconstructed using the optimized Feldkamp algorithm based on 2D X-ray images.
Components, including gas, water, hydrate, and sand, were discriminated by segmenting
the gray histograms with a threshold value of each component. Then, the distribution
characteristics of hydrate and pore fluid could be observed. Generally, the size of the
representative volume element (RVE) was 8 to 10 times the particle size [32]. We chose
a cube with dimensions of 180 × 180 × 180 pixel3 as our RVE. The size of the cube is
8100 µm × 8100 µm × 8100 µm (180 × 45 µm), which is 10 times greater than the particle
sizes (10 × 500 µm). The volume of each component and the pore water parameters of the
RVE were calculated.

3. Results and Discussion
3.1. Analysis of Resistivity Changes with Hydrate Growth

According to the spatial distribution of the hydrate grains within the host sediment,
the morphology of hydrate in sediments can be generally divided into grain-displacing
or pore fluid-displacng hydrate [33]. For coarse-grained sand, used in our experiments,
pore fluid-displacing hydrate was generated. Hydrates formed from dissolved methane
(Figure 2a) and on a water–gas interface (Figure 2b) are both observed in X-CT images.
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Figure 2. The two types of hydrate formation observed from the X-CT image. The left-hand images
in (a,b) present the initial stage in which hydrate saturation is zero. The right-hand images in (a,b)
present hydrate formation in pores. Hydrates formed from dissolved methane in the quadrilateral
area of (a), and hydrates formed on a water–gas interface in the quadrilateral area of (b).
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The resistivity of hydrate-bearing sediments with different saturations are shown in
Figure 3. The resistivity varies between 1 Ω·m and 4 Ω·m, and the hydrate saturation varies
between 0 and 0.5. Generally, the higher the hydrate saturation is, the bigger the resistivity.
However, resistivity versus hydrate saturation presents various changes, which can be
divided into three cases. The first case is a significant difference in resistivity when hydrate
saturation is similar; for example, the upper and lower layers of test 3 in Figure 3. At the
end of hydrate formation, the pore is almost entirely occupied by hydrates, which means
the current path is blocked. Compared to the situation in which the hydrates are dispersed
in pores, resistivity will obviously increase. In the second case, there is a slight difference
in resistivity change when hydrate saturation undergoes a significant change. Resistivity
varies from 1.16 Ω·m to 1.94 Ω·m when the hydrate saturation changes from 0 to 0.45 in
test 1. We can observe that the methane gas is wholly consumed to form hydrates with
water and is partially converted to hydrates. The rest remains in its initial place or changes
slightly in the pores containing methane gas and water. Methane gas, like hydrate, is a
non-conductive material. The contribution to the resistivity of hydrate-bearing sediments
can be regarded as unchanged when methane gas is converted into hydrate. Hence, there
may be no or only a slight change of resistivity. In the third case, there is a reduction degree
of resistivity in test 6. The effect of “salt removal” during hydrate formation increases the
salinity of pore water [8]. The resistivity of hydrate-bearing sediments will decrease if
the pore water has not been trapped by hydrates. We can conclude that hydrates change
resistivity by changing the distribution and connection of pore water. The conversion of
free methane gas to hydrates results in uncertainty as to resistivity change.
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Figure 3. The resistivity of hydrate-bearing sediments under different hydrate saturations. Different
symbol shapes represent, respectively, the six tests described in Table 1: triangles represent test 1,
pentagons represent test 2, squares represent test 3, circles represent test 4, inverted triangles represent
test 5, and rhombuses represent test 6. Numbers 1 and 2 located at the middle of symbols represent
the upper and lower layers, respectively. Six representative data located at the left x-axis are from the
initial state in which hydrate saturation is zero.

3.2. The Effect of Hydrates on Pore Water Characteristics

Pore water, as the main conductive medium, is analyzed to reveal the relationship
between resistivity and pore water saturation in hydrate-bearing sediments. Pore water of
hydrate-bearing sediments is extracted from the three-dimensional X-CT images. According
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to the topological connection relationship between pore water and other components in
the X-CT image, quantitative information about pore water is provided, including pore
water number, maximum pore water volume, tortuosity, and average coordination number.
Tortuosity is defined as the ratio of the length of the path to the distance between its ends
along the z-axis, which depicts the complexity of the path. Coordination number is defined
as the number of throats connected with a pore body, which describes the interconnection
among pores. The average coordination number is used in this study because the pore
water number is variable.

Results show that pore water gradually decreases with the increase of hydrate satura-
tion (Figure 4). The pore water distribution changes obviously from the three-dimensional
X-CT images below in Figure 3. The initial pore water is replaced by hydrates in some
places and pore water in a pore is divided into several parts. Connected pore water also
decreases gradually in the three-dimensional X-CT images presented above in Figure 3.
In other words, the isolation effect of hydrates on pore water becomes stronger with the
increase of hydrate saturation.
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Figure 4. The content and distribution changes of pore water versus hydrate saturation. Six repre-
sentative data of the initial state (hydrate saturation is zero) are presented. The three-dimensional
X-CT images above show the pore water extracted from the three-dimensional X-CT images of the
hydrate-bearing sediments. The three-dimensional X-CT images below show the distribution of pore
water in a pore before (left) and after hydrate formation (right).

Figure 5 depicts the geometrical factors of pore water under different hydrate satura-
tions, including pore water number, maximum pore water volume, average coordination
number and tortuosity. The linear relationship between the geometrical factors of pore
water and hydrate saturation is observed. Pore water number increases first and then
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decreases gradually as hydrate saturation increases (Figure 5a). Maximum pore water
volume decreases gradually (Figure 5b). When hydrate saturation is less than 0.2, most
hydrates are distributed in the middle of the pore (Figure 5a). Large pore water is divided
into several tiny pores, resulting in an increase in pore water number (Figure 6). However,
when hydrate saturation is more than 0.4, the hydrate completely displaces the pore water,
leading to the increase of pore water number (Figure 5a).
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Figure 6. Comparison of pore water number before (a) and after (b) the formation of hydrates in
two-dimensional X-CT images. Pore water is separated into lots of pores according to the topological
connection relationship between pore water molecules. A pore is divided into five pores which leads
to a greater coordination number and more tortuous paths of pore water.
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Theoretically, the greater the average coordination number of pore water is, the better
the connectivity of pore water. Average coordination number increases with hydrate
saturation, which indicates that the connectivity of pore water gradually becomes stronger
(Figure 5c). However, the connectivity of pore water is reduced due to the existence of
hydrates [8]. The reduction of connected pore water saturation is also observed in Figure 3.
As mentioned earlier in this study, large pore water is divided into several tiny pores, which
leads to a greater number of small throats. As a result, the average coordination number
increase cannot be used to describe the connectivity of pore water in hydrate-bearing
sediments.

Hydrate formation will lead to different enhancement degrees of tortuosity [24]. In
this study, hydrates make the tortuosity of pore water increase, while the changes (<0.4)
are not obvious (Figure 5d). This means that the distribution of pore water becomes a little
complicated. In the quadrilateral area of Figure 5d, there is a discrepancy in tortuosity
when the hydrate saturation is similar. Pore water number is related to the distribution
of pore water. The pore water number of point 1 is less than point 2. That means the
distribution of pore water in point 2 is more complicated than that in point 1. Therefore, the
tortuosity fluctuates a little with the increase of hydrate saturation. The resistivity of the
rock is controlled by the tortuosity of the paths for current flow [34,35]. Compared with the
initial large path, current will pass through a more tortuous and narrower path (Figure 6).
Consequently, the resistivity of hydrate-bearing sediments increases.

3.3. The Effect of Pore Water Characteristics on the Saturation Exponent

According to Archie’s law [10], the relationship between the resistivity and water
saturation of hydrate-bearing sediments can be expressed as:

I =
Rt

R0
=

1
Sn

w
(1)

where I is defined as the resistivity index, dimensionless number; Rt is the resistivity of
hydrate-bearing sediments, Ω·m; R0 is the resistivity of water-saturated sediments, Ω·m;
Sw is the water saturation, fraction; n is the saturation exponent, dimensionless number.

Then, n can be written as:

n = logSw

(
Ro

Rt

)
(2)

We can get the values of the saturation exponent (n) of hydrate-bearing sediments with
different hydrate saturations. The maximum saturation exponent of porous rock recorded
in the literature is 6 [34]. Respecting gas hydrates, previous studies have shown that the
value range of n is between 1 and 6.65 [5,22,23,36]. In this study, saturation exponents
vary from 1.58 to 6.84, almost distributed in the range of less than 6 (Figure 7). This result
illustrates that the saturation exponent is a variable value rather than a constant.

In Section 3.2 of this study, the average coordination number fails to represent pore
water connectivity. Therefore, we extracted connected pore water from three-dimensional
X-CT images and calculated the porosity and saturation of the connected pore water. The
expressions are written as:

ϕc =
Vc

V
(3)

Sc =
Vc

Vϕ
(4)

where ϕc is defined as the porosity of the connected pore water, fraction; Vc is the volume
of the connected pore water; V is the whole volume of sediment; Sc is the connected pore
water saturation, fraction; Vϕ is the volume of pores in sediments.

We observe that the saturation exponent increase linearly with the increase of the
porosity and saturation of the connected pore water (Figure 8). This indicates that the
saturation exponent is dependent on the connectivity of pore water. Tao et al. proposed
that the saturation exponents of porous rocks are a function of pore water saturation and
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porosity [37]. Dong et al. concluded that the relationship between the saturation exponent
and pore water saturation in hydrate-bearing sediments could be expressed in a logarithmic
form [23]. The increase of the saturation exponent with pore water saturation was also
observed in this study (Figure 9).
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It is evident that the saturation exponent changes a little at stages of high hydrate
saturation and changes significantly at low hydrate saturation stages. This phenomenon is
discovered in Chen’s result [38]. As hydrates distribute in the middle of pores and pore
water number increases, more complicated pore structures and pore water distributions are
generated at low hydrate saturation stages. When hydrate saturation is greater than 0.3,
the hydrates occupy almost the whole pore. Meanwhile, the pore water number is less
than the initial pore water number. The change of pore structure will become slower with
the increase of hydrate saturation. Therefore, the distribution of pore water may be the
reason why the saturation exponent changes significantly at low hydrate saturation levels
and changes a little at high hydrate saturation stages. Previous research also suggests
that the saturation exponent is significantly dependent on the distribution of fluids in the
pore space [39,40]. It is a challenge to acquire hydrates with high saturation in a physical
simulation experiment, which makes it impossible to analyze the evolution of the saturation
exponent with pore water saturation from 0 to 100% on this basis.

Tortuosity is a geometric parameter related to electrical properties [16]. Zhang et al.
concluded that the tortuosity evolution behavior of effective pores controls the saturation
exponent of hydrate-bearing sediments [24]. There is a logarithmic relationship between the
saturation exponent and tortuosity of pore water in hydrate-bearing sediments (Figure 10a).
The pore water saturation calculated by an experimental fitting model is consistent with
pore water saturation from three-dimensional X-CT images (Figure 10b).
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Figure 10. The experimental fitting mode of the saturation exponent and tortuosity in this study (a)
and the comparison between the pore water saturation calculated by the experimental fitting model
and from X-CT images (b). The relative errors are almost less than 5%.

Figure 11 shows the comparison of the experimental data generated in this study
or the experimental data of previous research and two marine, coarse-grained reservoirs
(Figure 11). The experimental data in this study generally fall within a range of 2–5 of the
saturation exponent, which is higher than that of previous experimental results. However,
it matches well with the logging data from Gulf of Mexico Holes WR313-H and GC955-H,
especially at the low water saturation. Therefore, the fitting model in this study is a suitable
method to derive the saturation exponent for calculating field hydrate saturation using
resistivity logging data. The pore habits of hydrates are diverse, which leads to complicated
pore water characteristics. Meanwhile, the influence of capillary effects and grain size on
the relationship between the resistivity index and saturation exponent becomes manifest
when water saturation is below 40% [5]. More physical simulation experiments are needed
to acquire high hydrate saturation and investigate the effect of pore water characteristics
on the saturation exponent.
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4. Conclusions

The joint measurement of X-ray computed tomography and resistivity provides a
feasible approach to characterize the electrical properties and investigate the saturation
exponent of Archie’s law of hydrate-bearing sediments at the micro-scale. Pore water
characteristics and their effect on saturation exponents are analyzed in this study. The main
conclusions are as follows:

The resistivity of hydrate-bearing sediments varies with the change of pore water
characteristics caused by hydrate formation. Pore water distribution and the proportion
of connected pore water changes with hydrate saturation. With the increase of hydrate
saturation, initial large pore water is divided into several small pores, result in a greater
number of small and tortuous throats. Both the tortuosity and average coordination
number gradually increase. Compared with the initial large path, current will pass through
a smaller and narrower path, which leads to an increase in the resistivity of hydrate-bearing
sediments.

The saturation exponent of Archie’s law is controlled by the distribution and connec-
tivity of pore water. The saturation exponent increases with the porosity and saturation
of connected pore water. Complicated pore structures at low hydrate saturation levels
result in a significant change in saturation exponents. There is a logarithmic relationship
between the saturation exponent and the tortuosity of pore water. The saturation expo-
nent calculated by tortuosity of pore water is consistent with the results based on the
logging data.
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