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Abstract: The limit state function is important for the assessment of the longitudinal strength of
damaged ships under combined bending moments in severe waves. As the limit state function cannot
be obtained directly, the common approach is to calculate the results for the residual strength and
approximate the limit state function by fitting, for which various methods have been proposed. In
this study, four commonly used fitting methods are investigated: namely, the least-squares method,
the moving least-squares method, the radial basis function neural network method, and the weighted
piecewise fitting method. These fitting methods are adopted to fit the limit state functions of four
typically sample distribution models as well as a damaged tanker and damaged bulk carrier. The
residual strength of a damaged ship is obtained by an improved Smith method that accounts for the
rotation of the neutral axis. Analysis of the results shows the accuracy of the linear least-squares
method and nonlinear least-squares method, which are most commonly used by researchers, is
relatively poor, while the weighted piecewise fitting method is the better choice for all investigated
combined-bending conditions.

Keywords: limit state function; longitudinal strength; least-squares method; moving least-squares
method; radial basis function neural network method; weighted piecewise fitting method

1. Introduction

Ship safety is a major concern to researchers, and the number of damaged ships in
accidents has been decreasing with advances in technology. According to the statistics
of the International Association of Dry Cargo Shipowners, the loss of bulk carriers over
10,000 DWT has decreased from more than 500 in 1994–2003 to 202 in 2008–2017, and the
number of casualties has also decreased from more than 200 to 53. In order to further
reduce the casualties and property losses, researchers have continued their effort on the
improvement of ship safety. When the ship is subjected to collision and grounding, which
are the major types of accidents [1], the longitudinal strength will decrease and the wave
load will change as well. Owing to the damage-induced change in floating state of the dam-
aged ship, the wave load behavior is more complicated than the intact ship. Chen et al. [2]
investigated the wave load of a damaged RO-RO ship and found the horizontal load is as
large as 1.73 times the vertical load in the oblique wave. The ultimate-strength assessment
method is well established for the vertical load on intact ships [3] but not for damaged
ships. Therefore, it is necessary to devise a method for the damaged ship under combined
bending moments. For this purpose, the limit state function is key to the method.

The longitudinal-strength assessment method for intact ships can be calculated directly
by the Smith method and the Finite Element Method (FEM). There are more studies about
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the ultimate strength based on these methods [4–8]. However, it is difficult to directly
obtain the longitudinal strength of the ship under combined bending moments, and one has
to rely on the limit state function for the assessment of ship safety. The accuracy of the limit
state function depends on the ultimate-strength calculation method and the fitting method.
To obtain accurate samples for the fitting of the limit state function, a variety of methods
have been proposed. Yao et al. [9] applied a simplified progressive collapse method
to study the longitudinal strength of the bulk carrier under bi-axis bending moments.
Parunov et al. [10] investigated the longitudinal strength of a damaged tanker under
combined bending moments with the FEM, and the relationship between the damage size
and the longitudinal strength was discussed. Paik et al. [11,12] compared the longitudinal
strength of unstiffened and stiffened plates under combined loads. Dow et al. [13] explored
the longitudinal strength of a stiffened box girder under combined bending moments with
the Smith method and the FEM. Paik et al. [14] studied corroded stiffened plates under
combined compression loads with the FEM. Fujikubo et al. [15] investigated the longitudinal
strength of the stiffened plate under the combined shear and thrust force with the FEM.
Dow et al. [16] studied the longitudinal strength of an alloy plate under combined shear and
compression/tension with the FEM. Among the methods widely used in the community,
the FEM can account for the initial implication, the material nonlinearity and the geometric
nonlinearity. The finite element models provide more details about the structures, and the
relationship between adjacent parts is taken into account. However, the method costs much
more time for modeling and computation. The Smith method only needs to discretize a
cross section into stiffened plate elements, plate elements, and hard-corner elements. As
the curvature increases, the stress and the bending moment of each element are calculated
according to the strain–stress relationship curves of different element types, and the sum
of the element bending moment is the bending moment of the cross section. This method
is much more efficient, but the accuracy is poor when applied to ships with asymmetric
cross sections. To improve the accuracy of the method in nonsymmetric applications,
improved Smith methods were devised by Fujikubo et al. [17] and Joonmo et al. [18].
Fujikubo et al. [17] applied an improved Smith method to damaged ships, and proposed
an equation to describe the relationship between the increments of vertical and horizontal
bending moments and the increments of the curvatures. Joonmo et al. [19] proposed the
force vector equilibrium criterion to track the rotation of the neutral axis so as to obtain the
bending moments of the asymmetric cross section.

Once samples of longitudinal strength are obtained, the limit state function can be
approximated by means of fitting. Gordo et al. [19,20] applied a nonlinear fitting method
to obtain the limit state function of the longitudinal strength of a tanker under combined
bending moments. Monsour et al. [21] applied a nonlinear fitting method to obtain the limit
state functions of different ships. Luis et al. [22] adopted a nonlinear fitting method to fit the
limit state functions of two damaged tankers. Khan et al. [23] also used a nonlinear fitting
method to fit the limit state functions and explored the reliabilities of a damaged tanker
and a bulk carrier. Shahid [24] used the response surface method and the artificial neural
network to fit the limit state function. Zhu et al. [25] proposed the weighted piecewise
fitting method for the limit state function. Paik et al. [26] investigated the longitudinal
strength of the as-built ultra-large containership under combined vertical bending and
torsion, then fitted the limit state function with a nonlinear method and obtained the
design load area. Kim et al. [27] studied the longitudinal strength of the hull girder under
combined bending and torsion and obtained a 1

4 circular form of the limit state function by
fitting. Shi et al. [28] compared the longitudinal strength of open box girders with cracked
damage under pure vertical bending load and combined loads, and a circular form of the
limit state function was also obtained by fitting. Hu et al. [29] studied the longitudinal
strength of a large opening box girder with a crack under torsion and bending loads and
presented the interaction between the two loads in a circular form. The same form of
the limit state function was also used by Li et al. [30], who investigated the pipe under
combined bending and torsion moment. Though the fitting methods are used in many
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research studies, the accuracy and the applicability of the fitting methods remain unclear
and need to be studied.

As the ship structure and damage condition can be different from one another, the
limit state curves may also be different from one another, but all of them are closed curves
in the coordinate system. In the existing studies, four typical closed curves are adopted to
approximate the curve: (1) circle, (2) transverse ellipse, (3) vertical ellipse, and (4) oblique
ellipse. Four fitting methods are proposed and investigated in this study: namely, (1) the
least-squares method, (2) the moving least-squares method (MLS), (3) the radial basis
artificial neural network method (RBFNN), and (4) the weighted piecewise fitting method
(WP). Finally, samples of longitudinal strength for a damaged tanker and damaged bulk
carrier calculated by Fujikubo et al. [12] were obtained for the fitting method study.

2. Fitting Methods for the Limit State Function
2.1. The Least-Squares Method

The least-squares method adopts the linear or nonlinear regression to establish a
polynomial function. The general form of the linear polynomial function is a + b = c:

Y = C0 +
n

∑
i=1

CiXi +
n

∑
i=1

n

∑
j=1

CijXiXj + ε, (1)

where Y is the regression result of the fitting function for the n random variables Xi,
C is the regression coefficient, and ε is the error between the regression result and the
actual response.

Quadratic functions and cubic functions are commonly used linear least-squares fitting
functions. They take the following forms, respectively:

y = a + bx + cx2, (2)

y = a + bx + cx2 + dx3 (3)

where x = MH/MUH and y = MV/MUV ; where MV and MH are the vertical and horizon-
tal bending moment, respectively, and MUV and MUH are the ultimate bending moments
resulted from pure vertical and horizontal bending, respectively. In the case of multiple-
valued functions, the following functions are used instead:

x = a + by + cy2, (4)

x = a + by + cy2 + dy3, (5)

Nonlinear functions are also widely used in least-squares fitting, where an often-used
form is

xα1 + yα2 = 1, (6)

2.2. The Moving Least-Squares Method

Different from the classic polynomial function, the coefficient vectors of the moving
least-squares-based fitting function and the basis functions are determined by the fitting
results. The function usually takes the form

y =
m

∑
i=1

αi(x)pi(x) = pT(x)α(x), (7)

where pT(x) is the basis function, α(x) is the coefficient vector, m is the number of
terms, and

pT(x)= [p1(x), p2(x), · · · , pm(x)], (8)

αT(x)= [α1(x), α2(x), · · · , αm(x)], (9)
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To extend the fitting range, the samples are described in polar coordinates, and the
fitting function is

r = pT(θ)α(θ), (10)

where r is the distance between the sample and the origin and θ is the angle between the
point and the positive direction of the x-axis at the origin.

2.3. The Radial Basis Function Neural Network Method

The radial basis function is a function that relies only on the distance between the
point x and the origin (or the calculation point c), which takes the form

Φ(x) = Φ(‖x‖), (11)

or
Φ(x, c) = Φ(‖x− c‖), (12)

where ‖x− c‖ is the Euclidean distance between point x and point c.
The radial basis function neural network (RBFNN) is a neural network comprised of

three layers: the input layer, the hidden layer, and the output layer, as shown in Figure 1.
The RBF is the basis of the hidden layer. The transformation between the input layer and
the hidden layer is nonlinear, while the transformation between the hidden and output
layers is linear.
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Figure 1. Typical form of the RBFNN.

The activation function is

ϕ(xk − ci) = exp(− 1
2σ2 ‖xk − ci‖2) (k = 1, 2, . . . , l; i = 1, 2, . . . , m

)
, (13)

where xk is the k-th input data, ci is the center of the i-th neuron, and σ is the standard deviation

σ =
cmax√

2h
, (14)

where h is the number of the centers that determines the K-means clustering and cmax is
the maximum distance among the chosen centers.

The output of the neural network is

yi =
h
∑

i=1
wij exp(− 1

2σ2 ‖xk − ci‖2) (j = 1, 2, . . . , n ), (15)
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where wij is the weight of the i-th neuron for the output

w = exp
(

h
c2

max
‖xk − ci‖2

)
(j = 1, 2, . . . , n), (16)

Once the RBFNN-based calculation is carried out, the input vector Xp×1 can be trans-
formed into the output vector Yn×1.

When the method is used to fit the samples in the polar coordinate system, the output
of the neural network takes the form

ri =
h
∑

i=1
wij exp(− 1

2σ2 ‖θk − ci‖2) (j = 1, 2, . . . , n ), (17)

2.4. The Weighted Piecewise Fitting Method

The weighted piecewise fitting method provides a series of functions to describe the
response relationship [20]. It adopts a piecewise regression method to fit the Function (3),
and the weights matrix w is introduced to improve the accuracy. With the sample matrix X
and Y, the coefficient matrix N is

N =
(

XTwX
)−1

XTwY, (18)

where
N = {a, b, c, d}T , (19)

X =


1 x1 x1

2 x1
3

1 x2 x2
2 x2

3

...
...

...
...

1 xm xm
2 xm

3

, (20)

Y = {y1, y2, . . . , ym}T , (21)

where a, b, c, and d are the coefficients of the function. xi and yi is the i-th sample for
the fitting.

Once the fitting functions for all samples are obtained, the values at both ends of each
piece, yi1 and yi2, and the slopes y′ i1 and y′ i2 can be found. As the two adjacent piece
functions must be smooth at the joint, the following boundary conditions are applied:

yi2 = y(i+1)1 = yi, (22){
y′ i1 = (y′(i−1)2 + y′ i1)/2
y′ i2 = (y′ i2 + y′(i+1)1)/2

, (23)

In order to obtain a closed curve, the following boundary conditions are used:{
y(n+1)1 = y1
y′(n+1)1 = y′11

, (24)

The coefficients of the fitting function of each piece need be recalculated with y and y′

at the curve ends as follows:
yi1 = ai + bixi1 + cix2

i1 + dix3
i1

y′ i1 = bi + 2cixi1 + 3dix2
i1

yi2 = ai + bixi2 + cix2
i2 + dix3

i2
y′ i2 = bi + 2cixi2 + 3dix2

i2

, (25)
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3. Calculation and Analysis of Typical Fitting Sample Distributions

In order to compare the difference between the fitting methods, six fitting methods
are adopted to fit the function using typical fitting sample distributions: namely, the least-
squares method with the quadratic function (LS-Q), the cubic function (LS-C), and the
nonlinear function (LS-N); the moving least-squares method; the radial basis function
neural network method; and the weighted piecewise fitting method.

3.1. Typical Fitting Sample Distribution

The distribution pattern of the sample of the longitudinal strength of the ship structures
under combined bending moments is usually a closed curve, and the shape depends on
the type and the damage of the structures. To present the representative conclusion, four
typical distributions (TD1–TD4) are obtained for research after comparing the fitting sample
distributions in the literature [15–24], as shown in Figure 2, where x and y represent the
input data and output data of the fitting sample.
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The results obtained with the fitting methods for the typical distributions are shown
in Figure 3.
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In order to compare the accuracy of the fitting methods, the y of the sample and the
fitting results y f itting are shown in Figure 3, where the abscissa represents the y of the
sample and the ordinate denotes the fitted results y f itting. The vertical distance between
the fitting results for y and the line y f itting = y is the error of the fitting, and when the point
is located on the line y f itting = y, it means that the fitting result is accurate. Two types of
fitting are performed: (1) Case 1, fitting for the sample data and (2) Case 2, fitting for the
removed-sample data.

The maximum error and the mean square errors (MSE) of the fitting results of
the sample data and the sample-removed data are calculated. The errors are shown in
Tables 1–4, and the MSE is

MSE =

n
∑

i=1

(
y f itting − y

)2

n
, (26)
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As shown in Figure 3, some fitting curves are not coincident with the sample curves,
and the reason is that the shape and accuracy of the fitting curves depend on the sample
distribution and the fitting method used. In Figure 4, it is found that the results calculated
by the least-squares method have larger errors than others. The errors of LS-Q are larger
than LS-C and LS-N when the sample distributions are TD1 and TD4. The errors of LS-N
are larger than LS-Q and LS-C in TD2 and TD3. It is also observed in Tables 1–4 that the
maximum errors and MSE of LS-Q, LS-C, and LS-N are larger than that of MLS, RBFNN,
and WP, and the error comparison between LS-Q, LS-C, and LS-N is the same as shown in
Figure 4. The comparison between LS-Q and LS-C shows that increasing of the function
order barely improves the fitting accuracy. The comparison of results obtained with LS-N
shows the errors are larger when the sample is not −1 or 1 on the coordinate axis. It
is also shown in Tables 1–4 that the errors of LS-Q, LS-C, and LS-N in Case 1 are larger
than in Case 2. The reason is that the least-squares method requires all data to obtain the
minimum sum-of-squares errors. Therefore, the new sample for the fitting may change
the fitting function and increase the fitting error. MLS, RBFNN, and WP need the sample
near the fitting points, and the reduction of the sample may have a large influence on the
fitting accuracy.

Table 1. Maximum error and MSE for TD1.

Project Case LS-Q LS-C LS-N MLS RBFNN WP

maximum error
Case 1 0.1427 0.0930 <1 × 10−4 <1 × 10−4 <1 × 10−4 0
Case 2 0.0996 0.0823 <1 × 10−4 <1 × 10−4 <1 × 10−4 0.0081

MSE
Case 1 0.0043 0.0019 <1 × 10−8 <1 × 10−8 <1 × 10−8 0
Case 2 0.0041 0.0024 <1 × 10−8 <1 × 10−8 <1 × 10−8 1.09 × 10−5

Table 2. Maximum error and MSE for TD2.

Project Case LS-Q LS-C LS-N MLS RBFNN WP

maximum error
Case 1 0.1142 0.0744 0.2000 0.0008 <1 × 10−4 0
Case 2 0.0796 0.0658 0.1582 0.0108 <1 × 10−4 0.0073

MSE
Case 1 0.0028 0.0012 0.0105 2.80 × 10−7 <1 × 10−8 0
Case 2 0.0026 0.0016 0.0134 1.20 × 10−5 <1 × 10−8 7.71 × 10−6
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than LS-C and LS-N when the sample distributions are TD1 and TD4. The errors of LS-N 
are larger than LS-Q and LS-C in TD2 and TD3. It is also observed in Tables 1–4 that the 
maximum errors and MSE of LS-Q, LS-C, and LS-N are larger than that of MLS, RBFNN, 
and WP, and the error comparison between LS-Q, LS-C, and LS-N is the same as shown 
in Figure 4. The comparison between LS-Q and LS-C shows that increasing of the function 
order barely improves the fitting accuracy. The comparison of results obtained with LS-N 
shows the errors are larger when the sample is not −1 or 1 on the coordinate axis. It is also 
shown in Tables 1–4 that the errors of LS-Q, LS-C, and LS-N in Case 1 are larger than in 
Case 2. The reason is that the least-squares method requires all data to obtain the mini-
mum sum-of-squares errors. Therefore, the new sample for the fitting may change the 
fitting function and increase the fitting error. MLS, RBFNN, and WP need the sample near 
the fitting points, and the reduction of the sample may have a large influence on the fitting 
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Table 3. Maximum error and MSE for TD3.

Project Case LS-Q LS-C LS-N MLS RBFNN WP

maximum error
Case 1 0.1427 0.0930 0.3566 0.0024 <1 × 10−4 01
Case 2 0.0996 0.0823 0.2511 0.0097 0.0003 0.00181

MSE
Case 1 0.0043 0.0019 0.0197 1.23 × 10−6 <1 × 10−8 0
Case 2 0.0041 0.0024 0.0161 1.34 × 10−5 <1 × 10−8 1.02 × 10−5

Table 4. Maximum error and MSE for TD4.

Project Case LS-Q LS-C LS-N MLS RBFNN WP

maximum error
Case 1 0.2071 0.1732 0.1891 0.0016 <1 × 10−4 0
Case 2 0.1389 0.1386 0.1330 0.0593 0.0611 0.0334

MSE
Case 1 0.0046 0.0028 0.0076 6.84 × 10−7 <1 × 10−8 0
Case 2 0.0040 0.0029 0.0063 0.0002 0.0003 3.78 × 10−5

4. Calculation and Fitting for the Sample of the Damaged Ships
4.1. The Improved Smith Method

In the improved Smith method [17], the rotation of the neutral axis can be taken into
account, which makes it applicable to asymmetric hull girder, for instance, damaged hull
like the cross-section in Figure 5 under combined bending moments.
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The process for calculating the residual strength consists of 10 steps [3]:

(1) The cross section of concern is divided into different types of stiffened plate units,
plating units, and hard-corner units;

(2) For a given curvature, the stress–strain relationships for all types of units are defined
as shown in Figure 6. Then, the strain of the i-th unit is

εi(yi, zi) = ε0 + yiΦH + ziΦV , (27)

where ε0 is the strain at the origin O and ΦH and ΦV are the horizontal curvature and
vertical curvature, respectively. Then, the tangential stiffness Di can be calculated as

Di =
d fi(σ)

dε
=

∆σi
∆ε

, (28)



J. Mar. Sci. Eng. 2022, 10, 102 11 of 17

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 11 of 18 
 

 

Figure 4. Accuracy comparison of fitting results for (a) TD1 in Case 1, (b) TD1 in Case 2, (c) TD2 in 
Case 1, (d) TD2 in Case 2, (e) TD3 in Case 1, (f) TD3 in Case 2, (g) TD4 in Case 1, and (h) TD4 in 
Case 2. 

4. Calculation and Fitting for the Sample of the Damaged Ships 
4.1. The Improved Smith Method 

In the improved Smith method [17], the rotation of the neutral axis can be taken into 
account, which makes it applicable to asymmetric hull girder, for instance, damaged hull 
like the cross-section in Figure 5 under combined bending moments. 

 
Figure 5. Cross section of a damaged ship. 

The process for calculating the residual strength consists of 10 steps [3]: 
(1) The cross section of concern is divided into different types of stiffened plate units, 

plating units, and hard-corner units; 
(2) For a given curvature, the stress–strain relationships for all types of units are defined 

as shown in Figure 6. Then, the strain of the i-th unit is 

0( , )i i i i H i Vy z y zε ε= + Φ + Φ , (27) 

where 0ε  is the strain at the origin O and HΦ and VΦ are the horizontal curvature 
and vertical curvature, respectively. Then, the tangential stiffness iD  can be calcu-
lated as 

( )i i
i
df

D
d

σ σ
ε ε

Δ
= =

Δ
, (28) 

 
Figure 6. Stress–strain curve. 

  

Figure 6. Stress–strain curve.

(3) The axial force P should satisfy

P =
N

∑
i=1

σi Ai ≡ 0, (29)

The vertical bending moment MV and the horizontal bending moment MH can be
calculated as 

MH =
N
∑

i=1
σiyi Ai

MV =
N
∑

i=1
σizi Ai

, (30)

where Ai is the cross-sectional area of the i-th unit;

(4) The position of point G is shown in Figure 7 and can be obtained by


yG =

(
n
∑

i=1
yiDi Ai

)
/
(

n
∑

i=1
Di Ai

)
zG =

(
n
∑

i=1
ziDi Ai

)
/
(

n
∑

i=1
Di Ai

) , (31)
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(5) The flexural stiffness should satisfy the function

{
∆MH
∆MV

}
=

[
DHH DHV
DVH DVV

]{
∆ΦH
∆ΦV

}
, (32)
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where 

DHH =
N
∑

i=1
Di(yi − yG)

2 Ai

DVV =
N
∑

i=1
Di(zi − zG)

2 Ai

DHV = DVH =
N
∑

i=1
Di(yi − yG)(zi − zG)Ai

, (33)

(6) The increments of the next curvature and/or bending moment can be calculated by{
α∆MH
∆MV

}
=

[
DHH DHV
DVH DVV

]{
∆ΦH
∆Φ0

V

}
, (34)

(7) Increase the curvature, calculate the increment in strain and stress according to the
stress–strain curve, and then the cumulative results of bending moment, strain, and
stress of each unit can be obtained;

(8) The position of the neutral axis can be calculated with the stress and strain

ε0 + yΦH + zΦV = 0 (35)

(9) When the ultimate strength is reached, the calculation is stopped.

4.2. Distribution of the Sample of Damaged Ships

In order to compare the accuracy of these fitting methods when applied to the limit
state function, the sample of the longitudinal strength of a damaged single-hull bulk carrier
(DB) and a damaged double-hull oil tanker (DT) calculated by Fujikubo et al. [17] are
adopted. The main dimensions of the ships are shown in Table 5. The diagrammatic sketch
of the cross sections and the damage conditions are shown in Figure 8.

Table 5. The main dimensions of the ships.

Ship Parameter DB DT

L (mm) 217,000 219,000

B (mm) 32,236 32,240

D (mm) 18,300 19,900
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The distribution of the results for the residual strength of DB and DT are shown in
Figure 9.
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4.3. Residual Strength Fitting Results for the Damaged Ships

The envelopes of bending moments of different ships or damaged cases are not
different. In order to facilitate the comparison, the vertical bending moments and horizontal
bending moments are nondimensionalized separately by the maximum vertical bending
moment and the maximum vertical bending moment, respectively. The fitting results are
shown in Figure 10. The fitting results of Case 1 and Case 2 are shown in Figure 11. The
maximum errors and MSEs are shown in Tables 6 and 7.
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Table 6. Maximum error and MSE for TD1.

Project Case LS-Q LS-C LS-N MLS RBFNN WP

maximum error
Case 1 0.3121 0.2944 0.4264 0.0129 0.0087 0.0000
Case 2 0.3267 0.3640 0.2209 0.0471 0.0650 0.0404

MSE
Case 1 0.0046 0.0043 0.0138 8.53 × 10−6 8.21 × 10−6 0.0000
Case 2 0.0054 0.0075 0.0072 0.0001 0.0005 0.0001

Table 7. Maximum error and MSE for TD2.

Project Case LS-Q LS-C LS-N MLS RBFNN WP

maximum error
Case 1 0.1326 0.0740 0.4658 0.0024 0.0008 0.0000
Case 2 0.1069 0.2451 0.4682 0.0700 0.0378 0.0750

MSE
Case 1 0.0026 0.0008 0.0419 1.30 × 10−6 1.66 × 10−7 0.0000
Case 2 0.0035 0.0047 0.0576 0.0008 0.0001 0.0003

It is shown in Figure 10 that the deviation between fitting curves of LS-Q, LS-C, and
LS-N and sample curves is larger than the curves of MLS, RBFNN, and WP. The fitting
accuracy of LS-Q and LS-C is poor when the sample curves have more than one inflection
point in a single quadrant, such as the curve in the second quadrant in Figure 10a, of which
y increases and then decreases near x = 0 and of which x decreases and then increases
near x = −1. The fitting accuracy of LS-N is poor when the sample curves do not pass the
points (1,0), (0,1), (−1,0), and (0,−1), such as the curve in the fourth quadrant in Figure 10b,
which is flat, vertical, and then flat with decreasing x. It depends on the function of LS-N,
and influences the curve shape and accuracy. The fitting curves of MLS, RBFNN, and WP
are near the sample curves. In Figure 11, it can be found that when y is near −1, 0 and
1, y f itting of LS-Q, LS-C, and LS-N is usually far away from the reference line, which is
disadvantageous for the assessment of the ship-hull girder residual strength under vertical
bending moments. Comparison of Case 1 and Case 2 shows that the fitting accuracy of
LS-Q, LS-C, and LS-N is also poor for the nonsample, and the fitting errors obviously
increment or reduce. Comparing Case 1 of MLS for DT, the fitting errors of Case 2 increase
when y is near 1 or −1, and the reason is that the lack of inflection point decreases the
accuracy. The fitting accuracy of RBFNN and WP is high. In Tables 6 and 7, it is shown
that the maximum error and MSE of Case 1 and Case 2 of LS-Q, LS-C, and LS-N are large
and close, but the maximum error and MSE of Case 2 of MLS, RBFNN, and WP are larger
than in Case 1. The fitting results also show that LS-Q, LS-C, and LS-N can provide the
explicit fitting functions in a single quadrant, and the fitting curves of LS-Q and LS-C are
not continuous as well as LS-N not being smooth. The fitting curves of MLS, RBFNN, and
WP are continuous and smooth, and a series of explicit fitting functions is obtained with
WP, while the implicit fitting functions are obtained with MLS and RBFNN.



J. Mar. Sci. Eng. 2022, 10, 102 15 of 17J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 15 of 18 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 11. Accuracy comparison of fitting results for (a) DB in Case 1, (b) DB in Case 2, (c) DT in 
Case 1, and (d) DT in Case 2. 

Table 6. Maximum error and MSE for TD1. 

Project Case LS-Q LS-C LS-N MLS RBFNN WP 

maximum error 
Case 1 0.3121 0.2944 0.4264 0.0129 0.0087 0.0000 
Case 2 0.3267 0.3640 0.2209 0.0471 0.0650 0.0404 

MSE 
Case 1 0.0046 0.0043 0.0138 8.53 × 10−6 8.21 × 10−6 0.0000 
Case 2 0.0054 0.0075 0.0072 0.0001 0.0005 0.0001 

Table 7. Maximum error and MSE for TD2. 

Project Case LS-Q LS-C LS-N MLS RBFNN WP 

maximum error Case 1 0.1326 0.0740 0.4658 0.0024 0.0008 0.0000 
Case 2 0.1069 0.2451 0.4682 0.0700 0.0378 0.0750 

MSE Case 1 0.0026 0.0008 0.0419 1.30 × 10−6 1.66 × 10−7 0.0000 
Case 2 0.0035 0.0047 0.0576 0.0008 0.0001 0.0003 

Figure 11. Accuracy comparison of fitting results for (a) DB in Case 1, (b) DB in Case 2, (c) DT in
Case 1, and (d) DT in Case 2.

5. Conclusions

In this study, four fitting methods and six fitting functions are applied to calculate
the fitting curves of four typical sample distributions and the longitudinal strength of two
damaged ships under combined bending moments. Based on analysis of the results, the
following conclusions are drawn:

(1) The distribution of the sample influences the fitting accuracy. When the sample curves
have multiple inflection points in a single quadrant and the curves do not pass the
points (1,0), (0,1), (−1,0), and (0,−1), the difference between the fitting curves and the
sample curves is large.

(2) The least-squares method can fit the curves with different fitting functions and all the
functions are explicit, but the fitting accuracies of the quadratic function, the cubic
function, and the nonlinear function are not satisfactory. The fitting curves of the
linear functions are not continuous, and the nonlinear functions are not smooth. The
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fitting results also show that the increase in the sample and the order of the function
has little contribution to the fitting accuracy.

(3) Application of MLS, RBFNN, and WP are more complex than the least-squares
method, but the fitting accuracy is much better. All the fitting curves are continuous
and smooth in the four quadrants, and they are able to improve the assessment
accuracy of the residual strength under pure or combined bending moments. It
can also be found that the increment of the sample has little contribution to the
fitting accuracy.

(4) The implicit fitting function can be obtained with MLS and RBFNN, and a series of
explicit fitting functions can be obtained with WP.
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