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Abstract: Detection and monitoring land use/land cover (LULC) changes using historical
multi-temporal remote sensing data is greatly important for providing an effective and robust
assessment of the human-induced impacts on the environmental conditions. It is extremely
recommended for LULC studies related to evaluating the sustainability of changing areas over
time. The agricultural sector in Egypt is one of the crucial pillars of the national economy. The amount
of traditional agricultural land (Old Lands) in the Nile Delta had a significant decline over the past
few decades due to urban encroachment. Consequently, several land reclamation initiatives and
policies have been adopted by the Egyptian government to expand agricultural land in desert areas
(New Lands) adjacent to both fringes of the Nile delta. Tiba district is one of those newly reclaimed
areas located in the western Nile Delta of Egypt with a total area of 125 km2. The primary objective
of this article was to identify, monitor and quantify historical LULC changes in Tiba district using
historical multi-temporal Landsat imageries for six different dates acquired from 1988 to 2018. The
temporal and historical changes that occurred were identified using supervised maximum likelihood
classification (MLC) approach. Three major LULC classes were distinguished and mapped: (1)
Agricultural land; (2) barren land; and (3) urban land. In 1988, Tiba district was 100% barren land;
however, during the 1990s, the governmental reclamation projects have led to significant changes in
LULC. The produced LULC maps from performing the MLC demonstrated that Tiba district had
experienced significant agricultural land expansion from 0% in 1988 to occupy 84% in 2018, whilst,
barren land area has decreased from 100% in 1988 to occupy only 7% in 2018. This reflects the
successful governmental initiatives for agricultural expansion in desert areas located in the western
Nile Delta of Egypt.
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1. Introduction

Egypt has one of the world’s fastest growing and largest populations, with a total population of
100 million people [1]. The country’s total land area is 1 million km2 of which nearly 96% is vast arid
deserts, and only 4% of the total land area of Egypt (The Nile Delta region) is inhabited [2,3]. This
dramatic population increase, and the limited inhabited land area has caused critical socio-economic and
environmental problems, including an increase of unemployment levels, reducing living standards, and
loss of productive agricultural land due to urban encroachment [3–5]. The unbalanced ratio between
human and land resources is the main issue in Egypt. Such a high annual non-stop population growth
requires paying considerable attention to preserve the limited natural and land resources, to maximize
agricultural productivity and to reclaim more agricultural land in the desert (New Lands) [4,5].
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The continuous loss of fertile agricultural land and the potential subsequent food security issues
have led to crucial concerns for governments, particularly within developing countries [6,7]. During
the past four decades, the Egyptian government adopted policies to cope with the growing demand
for food and to ensure self-sufficiency from food production, i.e., agriculture land expansion and
maximization of existing crops’ yields. Consequently, several initiatives have been executed to reclaim
New Lands in the desert, these governmental efforts led to the conversion of more than 12,000 km2 from
barren land to agricultural land (New Lands) [4,5,8].

Agricultural land in Egypt can be divided into two main categories; Old Lands and New
Lands [3,9,10]. Old Lands represent highly fertile soils, which are located in the Nile Delta. Due
to the River Nile deposits and the highly productive nature of the soil, these areas have been
traditionally cultivated with strategic cereal crops, such as rice, wheat and maize, preserving food
security for the Egyptian people. During the past four decades, these areas have been encroached
by dramatic urban sprawl due to the rapid population growth and economic development [4,5,8].
Therefore, there has been a pressing need for the government to find alternative solutions to maintain
the sustainability of the national agricultural sector. Consequently, the adopted policies by the
government to reclaim new lands in the desert have led to the second category (New Lands). These are
barren areas located in the Western and Eastern deserts outside the green zone of the Nile Delta [3,8].
The New Lands process includes accessibility through constructing roads, houses, installing irrigation
and drainage systems and providing reliable sources of water and electricity [11,12].

Due to the rapid global population growth and the increasing demand for food, particularly in
developing countries, agricultural expansion has been one of the priority initiatives for decision makers
and authorities. In Africa, Basnet and Vodacek [13] tracked land use/land cover (LULC) dynamics
in the region of Lake Kivu, which is located on the border between Uganda, Democratic Republic of
Congo, Rwanda and Burundi in central Africa. They reported that agricultural land had expanded
from 28,730 km2 in 1988 to 34,630 km2 in 2011. Knauer et al. [14] monitored agricultural land expansion
in Burkina Faso from 2001 to 2014. They demonstrated that agricultural land had increased from
61,080 km2 in 2001 to 116,907 km2 in 2014. In Asia, Zhao et al. [15] studied the long-term land cover
dynamics of Northeast China from 1986 to 2016. They found that croplands expansion was the major
land cover change occurred in this region, and it has been increased by 63,000 km2 over the study
period. Yang et al. [16] analyzed the forest deforestation patterns and its driving factors between 1988
and 2017 in Myanmar. Thy reported that agricultural land had expanded by about 91,000 km2 at the
expense of long-term deforestation processes.

The integration of GIS/RS can provide applicable and powerful techniques to understand, evaluate
and analyze the changes in LULC dynamics [17–19]. Historical and continual RS data can provide
accurate and up-to-date geospatial information—this would help to produce more detailed LULC
maps for a better understanding of the surrounding changing landscape [20–22]. Furthermore,
it could help decision makers and planners identify and develop alternative sustainable plans and
solutions for their communities [23–25]. LULC change detection by remotely-sensed data involves
the analysis of several multi-date satellite images to detect and identify the differences within LULC
due to different human and environmental phenomena occurring between the acquisition dates of
the analyzed images [26–28]. The most common platform for acquiring remotely-sensed data is the
moderate-resolution, multi-spectral Land system (Landsat). The Landsat program was initiated by the
National Aeronautical and Space Administration (NASA) in 1967, and the launch of the first satellite in
the series was in 1972 [29]. It provides historical, consistent and continuous records of imagery. These
records of imagery can be processed and analyzed to explore LULC changes over vast areas with a
decent amount of spatial detail that is sufficient for identifying, monitoring and evaluating global
LULC changes [30].

Several studies have been attempted using different sensors (TM, ETM+, OLI) Landsat imagery to
monitor LULC changes in Egypt. Allam et al. [31] monitored the LULC changes in an arid region in
Fayoum governorate, Egypt using maximum likelihood classification (MLC) approach from 1984 to
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2016. Bakr and Afifi [32] quantified the LULC changes and its potential impacts on rice production
using MLC technique in Kafr El-Sheikh governorate, northern of the Nile Delta of Egypt between 1972
and 2016. Xu et al. [33] monitored cropland changes along the River Nile in Egypt from 1984 to 2015
using 961 images. Bratley and Ghoneim [8] used three images to monitor the urban sprawl in the East
of the Nile Delta between 1988 and 2017. Megahed et al. [34] used three images to map and model
urban encroachment over Greater Cairo between 1984 and 2014. Halmy et al. [35] used three images
between 1988 and 2011 to monitor LULC changes in the Northwestern coast of Egypt. Shalaby and
Moghanm [36] assessed the implications of urban expansion on the productive cultivated land in the
North of the Nile Delta using 12 images for the years 1984, 1992 and 2006. Hegazy and Kaloop [37]
investigated LULC change detection from 1985 to 2010 using three images in Dakahlia governorate.
Shalaby et al. [38] used three images to monitor the implications of urban sprawl on the fertile cultivated
land from 1992 to 2009 in Qalubia governorate. Belal and Moghanm [39] detected LULC changes in
Gharbia Governorate, using two images acquired in 1972 and 2005. Abdulaziz et al. [40] used three
images from 1984 to 2003 to analyze LULC changes in the Eastern Nile Delta. Shalaby and Tateishi used
two images for the years 1987 and 2001 to monitor LULC types in the Northwestern coast of Egypt.

The objective of this paper was to identify, monitor and quantify historical LULC changes in Tiba
district, western Nile Delta, Egypt from 1988 to 2018 using multi-temporal Landsat imageries and a
supervised MLC approach.

2. Materials and Methods

2.1. Study Area

Tiba district is located in both Beheira and Alexandria governorates, western of the Nile Delta,
North of Egypt in a newly reclaimed desert region (New Lands). It is bounded by longitude 29◦53′ to
30◦7′ E, and latitude 30◦33′ to 30◦41′N. It is mainly accessible through Alexandria-Cairo desert road and
occupies a total area of about 125 km2 (12,527 hectares). This total area is as half the size of Edinburgh
(The capital city of Scotland, UK). It covers an area that belongs to six villages, namely, Hussein Abo
El-Yosr, Suliman, Adam (the central village), Abd El-Halim Mahmoud, El-Yashaa, and Bilal. Tiba
district is characterized by a Mediterranean semi-arid climate. Climatic data were obtained from Tahrir
meteorological station (longitude: 30◦70′ E, latitude: 30◦65′ N, elevation: 16 m) using CLIMWAT
2.0 for CROPWAT 8.0 software [41]. Average climatic records for thirty years demonstrate that the
minimum and maximum temperatures occur in January (6 ◦C) and August (35 ◦C), respectively.
Rainfall mostly takes place during winter months, whilst, the summer months are usually dry with
yearly total precipitation around 34 mm [11].

According to the macro-morphological description, field observations, presence or absence of
main diagnostic horizons, parent material, soil attributes values derived from laboratory analysis. The
soils of Tiba district could be recognized as Entisols order and could be classified as Typic Torripsamments
due to the high sandy content found in all fifty-four investigated soil profiles [42]. Tiba district (Figure 1)
is cultivated with several crops, the majority are fruit trees (Orchards), such as Citrus, Grape, Apple,
Banana, Peach, Pear, and a few areas are cultivated with vegetables and field crops. The main source
of irrigation water in Tiba district is branch canal 20, which feeds from the River Nile, and the main
pump station is located in the zone of Hussein Abo El-Yosr village. However, a few areas rely on
groundwater wells as an irrigation water source. The main irrigation systems used in the study area
are mostly the dripping system and partially sprinkler and surface systems.



Agriculture 2019, 9, 137 4 of 14
Agriculture 2019, 9, x FOR PEER REVIEW  4 of 14 

 

 
Figure 1. Location of the Tiba district, western Nile Delta of Egypt (study area). 

2.2. Data sets Collection and Description 

2.2.1. Landsat Imageries Description 

The data sets used in this paper include six Landsat images with 30 m spatial resolution (Table 
1). Three Thematic Mapper (TM) sensor images mounted on Landsat-5 acquired in July 1988, 1998 
and May 2008. An Enhanced Thematic Mapper Plus (ETM+) sensor image onboard Landsat-7 
acquired in May 2003 (Before the SLC failure). Two Operational Land Imager (OLI) sensor image 
onboard Landsat-8 acquired in July 2013 and May 2018 (Figure 2). They have not been collected in 
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interval. Except the first time period had a 10-year interval, since the land reclamation projects were 
initiated in this area, as well as surrounding areas at the beginning of the 1990s. All images are 
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Figure 1. Location of the Tiba district, western Nile Delta of Egypt (study area).

2.2. Data sets Collection and Description

2.2.1. Landsat Imageries Description

The data sets used in this paper include six Landsat images with 30 m spatial resolution (Table 1).
Three Thematic Mapper (TM) sensor images mounted on Landsat-5 acquired in July 1988, 1998 and
May 2008. An Enhanced Thematic Mapper Plus (ETM+) sensor image onboard Landsat-7 acquired
in May 2003 (Before the SLC failure). Two Operational Land Imager (OLI) sensor image onboard
Landsat-8 acquired in July 2013 and May 2018 (Figure 2). They have not been collected in the same
month, to ensure that all the used imageries are 100% cloud free. These particular dates were selected
to explore the agricultural expansion occurred in the studied area through a five-year interval. Except
the first time period had a 10-year interval, since the land reclamation projects were initiated in this
area, as well as surrounding areas at the beginning of the 1990s. All images are GeoTIFF Level 1
products and were acquired on satellite track path/row 177/039. They are freely available and obtained
from the United States Geological Survey (USGS) website (http://earthexplorer.usgs.gov).

Table 1. Landsat satellite imageries information.

Satellite/Sensor Spatial Resolution Acquisition Date

Landsat-5 (TM) 30 m 07/1988
Landsat-5 (TM) 30 m 07/1998

Landsat-7 (ETM+) 30 m 05/2003
Landsat-5 (TM) 30 m 05/2008
Landsat-8 (OLI) 30 m 07/2013
Landsat-8 (OLI) 30 m 05/2018

http://earthexplorer.usgs.gov
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scenes, and 7-5-2 bands for the 2013 and 2018 OLI scenes.

2.2.2. Ancillary and Other Data Description

Other ancillary data were used to support this study, including, two paper topographic maps
covering Tiba District with a scale of 1:50,000 were on-screen digitized. Furthermore, fifty-four ground
control points (GCPs) were collected from Tiba District using Garmin GPSMAP 64s to identify and
provide information about the LULC types exist in the studied area. These ground truth points were
also used to confirm the training sets during the supervised classification. In addition, Google Earth
Pro was used to validate the LULC classes’ locations visually.

The Shuttle Radar Topographic Mission (SRTM) 30 m digital elevation model (DEM) produced by
NASA was acquired and clipped using the study area’s shapefile. All acquired and used data sets in
this paper were projected into the World Geodetic System (WGS 84) Universal Transverse Mercator
(UTM) zone 36N projection. The Environment for Visualization Images (ENVI) 5.3 image processing
software package [43] and ArcGIS Desktop 10.5 [44] were used to carry out the digital image processing
and undertake the MLC classification approach performed in this paper.

2.3. Satellite Image Pre-Processing

Pre-processing of remote sensing data prior to change detection studies is a fundamental
procedure [45]. All imageries (Figure 2) were geometrically projected to the projection WGS 84
(UTM zone 36). All the acquired images were cloud coverage-free, carefully chosen using the available
metadata filtering on the USGS website. Therefore, atmospheric correction is not required. Furthermore,
it is not required in such change detection studies as long as the used satellite images are geometrically
corrected [46]. All images were subset (Clipped) and masked to the boundary (Shapefile) of Tiba
District, then, a layer stacking (Bands compositing) operation was performed for each image, involving
all the bands except Band 6 (Thermal band) and Band 8 (Panchromatic band) if existed (i.e., Landsat 7
and 8 images).

2.4. Images Visual Interpretation

Prior to image classification, the identified LULC classes in Tiba District were categorized into
three main classes, agricultural land, barren land, and urban land. These three LULC classes were
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recognized based on the visual interpretation of the used satellite images and verified according to
field investigation. Agricultural land mainly represents areas cultivated with fruit trees (Orchards),
vegetables or field crops, and these areas are recently reclaimed lands (New Lands). Urban areas include
roads, irrigation canals (Concrete materials) and the existing six residential villages in the study area as
previously mentioned, which have been constructed at the 1990s decade as part of several new land
reclamation projects by the Egyptian government. Barren land refers to uncultivated land or desert
areas [3,5,11].

2.5. Supervised Image Classification

The second step of the classification was to undertake the supervised classification. Based on
the field inspection and images’ visual interpretation, three LULC classes were distinguished in Tiba
District: Agricultural land, barren land, and urban land. Training sets were drawn for each of the
pre-identified LULC classes by drawing polygons per each representative site per LULC class. Using the
pixels located within these polygons, various spectral signatures for the corresponding LULC classes
were derived and generated [47,48]. The maximum likelihood classification was used to undertake
the supervised classification for the analyzed imageries, since it is the most common supervised
classification technique being used to classify satellite images. The basis of the maximum likelihood
classification technique is the likelihood of each group of pixels with similar spectral signatures to be
grouped into one LULC class [49,50]. Therefore, pixels with similar spectral signatures in each class
were grouped together forming the three major LULC classes in the study area. The two topographic
maps, high-resolution Google Earth Pro images and the investigated GCPs were used to improve the
classification approach. Six LULC maps were generated for the used dates; 1988, 1998, 2003, 2008, 2013,
and 2018. Figure 3 shows the flowchart of the methodology undertaken in this article.
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2.6. Classification Accuracy Assessment

Accuracy assessment is considered a crucial step in classifying remotely-sensed data used in
LULC change studies [49–51]. An accuracy assessment for the classification was undertaken based
on independently selected 100 random pixels from each resulting LULC map. These random pixels
were recognized and assigned based on a stratified random technique to represent the three main
LULC classes located in the study area. The most common method of undertaking classification
accuracy validation for remote sensing applications is to create error matrices [52,53]. Two different
accuracies were generated from the values in an error matrix; user’s accuracy and producer’s, as well
as calculating Kappa (Kˆ) statistics [51,54].

3. Results

3.1. SRTM DEM and Slope Analysis

The SRTM DEM analysis results (Figure 4) demonstrate that the study area has an elevation that
ranges from 20 to 50 m (above sea level). Based on the DEM, the slope percentage was generated.
The slope classes were produced according to the Food and Agriculture Organization of the United
Nations (FAO) [55]. The slope map (Figure 4) shows that the dominant slopes percentages in the study
area are nearly level (0–1%) and gently sloping (1–5%).
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Figure 4. The digital elevation model (DEM) and slope data for Tiba district, Egypt.

3.2. Temporal LULC Change Analysis

Six LULC maps (corresponding to six time periods) from 1988 to 2018 have been generated from
the utilized maximum likelihood supervised classification. For each time period, three major LULC
classes were observed in Tiba District: Agricultural land, barren land, and urban land. Figures 5 and 6
show the geospatial distribution and the area percentages for the LULC classes in the study area for
the six dates.
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The results (Table 2) show that in 1988, the barren land dominated the total area of Tiba district
occupying 100% (12,527 ha). After the land reclamation projects have started to develop in the study
area, other land cover classes were identified. In 1998, Barren land occupied 59.18% (7413 ha), urban
land covered 3.78 (474 ha). Whilst, agricultural land covered 37.04% (4640 ha).
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Table 2. Area coverage for each land cover class across Tiba District over the studied period.

LULC Class Year
Agriculture Barren Urban

Hectares (%) Hectares (%) Hectares (%)

1988 0.00 0.00 12,527 100.00 0.00 0.00
1998 4640 37.04 7413 59.18 474 3.78
2003 7421 59.24 4179 33.36 927 7.40
2008 8860 70.73 2625 20.95 1042 8.32
2013 10,111 80.71 1021 8.15 1395 11.14
2018 10,510 83.90 855 6.82 1162 9.28

Net change (1998–2018) 5870 126.51 −6558 −88.47 688 145.15

As a consequence of the agricultural expansion occurred in this newly reclaimed area, a substantial
increase in agricultural land was observed in 2003. In 2003, agricultural land occupied 59.24% (7421 ha)
of the total area of Tiba district, from 1998 to 2003, the amount of agricultural land has significantly
increased by 60%. This is considered the highest rate of agricultural land expansion in the Tiba district
over the study period. Nevertheless, barren land covered 33.36% (4179 ha). The barren land was
found to be dramatically decreased by 70% between 1998 and 2003. The urban land has grown to
7.40% (927 ha). In 2018, similar patterns were observed. The agricultural land had increased to
occupy 83.90% (5870 ha) of the total area. Whilst, barren land significantly decreased to cover 6.82%
(855 ha). Furthermore, urban land slightly increased to occupy 9.28% (1162 ha). Overall, both the
agricultural and urban lands have increased by 126.51% and 145.15%, respectively between 1998 and
2018. However, Barren land has decreased by 88.47%.

3.3. Classification Accuracy Validation

Error matrices, overall accuracies and Kappa statistics (Kˆ) values for the classified images for the
six investigated time periods were produced (Table 3). In 1988, the overall classification accuracy was
100%, and the Kappa index was 1. At that time, the study area was a total piece of desert, and only
barren land observed. By 1998, three land cover classes were identified, and the overall classification
accuracy was 93%, and the Kappa index was 0.88. In 2003, the overall accuracy and the Kappa value
decreased to 92% and 0.87, respectively. This could be attributed to the significant changes that
occurred among the different LULC classes, which made it slightly harder to distinguish. Similar
trends were found in 2013 and 2018, resulting in an overall accuracy of 94% and 93%, respectively.
However, the highest overall classification accuracy was obtained from validating the Landsat TM
2008 image, and it was 95% with the highest Kappa value achieved of 0.92. The achieved accuracy was
found satisfactory and matched with the USGS proposal for the minimum overall level of accuracy
(85%) generated from LULC classification using Landsat imageries [56,57].

Table 3. Error matrices, overall accuracies and Kappa statistics values for the classified images per each
date from 1998 to 2018.

Landsat
Scene

LULC Type Reference Data User’s Accuracy Overall
Accuracy

Kappa
(Kˆ)

Agriculture Barren Urban

1998 93.00% 0.88

Classified
data

Agriculture 32 2 0 34 94.12%
Barren 2 49 1 52 94.23%
Urban 0 2 12 14 85.71%

Reference total 34 53 13 100
Producer’s accuracy 94.12% 92.45% 92.31%



Agriculture 2019, 9, 137 10 of 14

Table 3. Cont.

Landsat
Scene

LULC Type Reference Data User’s Accuracy Overall
Accuracy

Kappa
(Kˆ)

Agriculture Barren Urban

2003 92.00% 0.87

Classified
data

Agriculture 44 2 2 48 93.75%
Barren 1 31 2 34 94.12%
Urban 1 0 17 18 94.40%

Reference total 46 33 21 100
Producer’s accuracy 95.65% 93.93% 80.95%

2008 95.00% 0.92

Classified
data

Agriculture 54 1 1 56 96.43%
Barren 1 22 1 24 91.60%
Urban 1 0 19 20 95.00%

Reference total 56 23 21 100
Producer’s accuracy 96.43% 95.65% 90.48%

2013 94.00% 0.88

Classified
data

Agriculture 63 2 1 66 95.45%
Barren 1 10 1 12 83.30%
Urban 1 0 21 22 95.45%

Reference total 65 12 23 100
Producer’s accuracy 96.92% 83.30% 91.30%

2018 93.00% 0.86

Classified
data

Agriculture 64 2 2 68 94.12%
Barren 1 11 0 12 91.60%
Urban 2 0 18 20 90.00%

Reference total 67 13 20 100
Producer’s accuracy 95.52% 84.62% 90.00%

(Note: 1988 is not shown since it was 100% barren land and the overall accuracy was 100%).

4. Discussion

During the past three decades, the governmental desert land (New Lands) reclamation endeavors
that have been established and developed, had massively altered the LULC changes over areas like Tiba
district located in the western Nile Delta of Egypt. Particularly, there has been a dramatic expansion in
agricultural land, as well as substantial urban and residential settlements growth. However, barren
land has significantly declined as a consequence. These land reclamation initiatives and the associated
agricultural expansion reflect the human impacts and the regional development policies in these areas.
Consequently, agricultural production has been increased with great economic benefits. As of now,
more than 100 million people live on approximately 4% of the total land area of Egypt (the Nile Delta
and its valley). About 60 million people live in the Nile Delta [2]. The main national concern is the
unbalanced ratio between human and natural resources. The national population is increasing rapidly,
with a rate of 1.5–2%/year [1]. Nevertheless, on the other hand, the fertile, productive agricultural soils
in the Nile Delta are being lost dramatically due to unplanned urban expansion consequently. About
96% of the total area of Egypt is a barren desert. Therefore, this has encouraged the national authorities
to reclaim New Lands outside the traditional populated Nile Delta cities. These desert reclamation
initiatives could help establish and develop new urban communities to meet the large demand for
housing the growing population and diminishing the population densities in the Nile Delta (Old Lands),
as well as reducing the unemployment rates that arise as a result of the rapid population growth [5,11].
Furthermore, this large-scale agricultural expansion projects could be hugely useful to the Egyptian
economy, since the grown fruits and vegetables could be exported to European markets.
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One of the main limitations faced in this research is that the urban land class was found to be
overestimated in the generated LULC maps. This could be attributed to the fact that the irrigation
network system (main, sub-main canals and drainages) in Tiba district and possibly in likewise newly
reclaimed areas in the western desert, is built from concrete materials, which are the same materials
used for constructing buildings. Furthermore, all sorts of waterways are located so close and adjacent
to roads. This issue has been previously reported by Abd El-Kawy et al. [5] in a similar area. As a
consequence, it was difficult to fully classify and distinguish between roads and waterways in the
study area using medium resolution imagery (Landsat), which led to this slight overestimation in the
amount of urban land observed in the six investigated Landsat images.

The results generated from this research are in accordance with a number of recent studies
performed within similar areas in Egypt to monitor the conversion from desert land to green land.
Afifi and Darwish [58] monitored both the urban sprawl and the expansion of agricultural land in
Beheira governorate, Egypt using three Landsat images between 1985 and 2013. Despite the dramatic
urban encroachment over agricultural areas, they reported that the agricultural land had increased
from 4556 km2 in 1985 to 7756 km2 in 2013. Abd El-Kawy et al. [5] monitored historical LULC changes
in a newly reclaimed region located in the western desert of the Nile Delta using four Landsat images
from 1984 to 2009. Revealing that the major change occurred was the conversion from bare land to
agricultural land. They demonstrated that the agricultural land coverage in 1984 was 10% and because
of the several subsequent land reclamation projects, the agricultural land occupied 61% of the total
area in 2009. Bakr et al. [11] monitored LULC changes that occurred in the Bustan 3 region, Beheira
governorate, Western Nile Delta between 1984 and 2008 using five Landsat images. They found that
the agricultural land was covering 0% in 1984, expanding to occupy 79% of the total area.

5. Conclusions

In this paper, multiple Landsat images for the years 1988, 1998, 2003, 2008, 2013 and 2018 were
used to monitor the temporal LULC changes that occurred in Tiba district. This district is one of the
newly reclaimed areas located in the western desert of Egypt, west of the Nile Delta. During the last
three decades, remarkable LULC changes have occurred and observed in the region. Particularly,
the significant expansion in agricultural land. The results demonstrate that the study area was
completely barren in 1988. However, in 1998, when the land reclamation projects accelerated and
developed, 37% of the total area of Tiba district was agriculturally occupied. Furthermore, by 2018,
agricultural land has dramatically increased to cover about 84% of the total area. This significant
agricultural land expansion reflects the successful Egyptian government’s projects and initiatives in
reclaiming more land in desert areas outside both fringes (Eastern and Western) of the Nile Delta. This
large-scale agricultural expansion could be extremely beneficial to the national economy, since the
produced fruits and vegetables could be exported mainly to lucrative European markets.
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