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Abstract: With the global human population growing rapidly, agricultural production must increase
to meet crop demand. Improving crops through breeding is a sustainable approach to increase yield
and yield stability without intensifying the use of fertilisers and pesticides. Current advances in
genomics and bioinformatics provide opportunities for accelerating crop improvement. The rise of
third generation sequencing technologies is helping overcome challenges in plant genome assembly
caused by polyploidy and frequent repetitive elements. As a result, high-quality crop reference
genomes are increasingly available, benefitting downstream analyses such as variant calling and
association mapping that identify breeding targets in the genome. Machine learning also helps
identify genomic regions of agronomic value by facilitating functional annotation of genomes and
enabling real-time high-throughput phenotyping of agronomic traits in the glasshouse and in the
field. Furthermore, crop databases that integrate the growing volume of genotype and phenotype
data provide a valuable resource for breeders and an opportunity for data mining approaches to
uncover novel trait-associated candidate genes. As knowledge of crop genetics expands, genomic
selection and genome editing hold promise for breeding diseases-resistant and stress-tolerant crops
with high yields.
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1. Introduction

Humans depend on crops for over two-thirds of their daily energy intake [1,2]. As the global
human population grows, agriculture (crop cultivation) is under increasing pressure to produce higher
crop yields [3]. Additionally, climate change, limited availability of land and water shortages are posing
further agricultural challenges [4]. To increase crop yields while reducing the environmental impact
of agriculture, genomics is accelerating crop breeding by helping systematically leverage the genetic
components of agronomic traits [5,6]. Crop genome sequences provide an important foundation for
identifying agronomically relevant variation. During the last decade, the decreasing cost of DNA
sequencing has led to a rapid rise in the size of crop genomic data, which represents a substantial
opportunity for breeders [7].

Although plant genome assembly (generating a genome sequence from fragmented sequencing
reads) is still hampered by frequent long repetitive regions, large genome sizes and frequent polyploidy,
advances in sequencing technologies and bioinformatics tools have allowed rapid progress since the
sequencing and assembly of the rice genome in 2005 [8].

Although rice was still sequenced using bacterial artificial chromosomes (BAC) and Sanger
sequencing, the grape genome published in 2007 was the first to use a combination of the less costly
454 sequencing and Sanger sequencing [9]. Two years later, Illumina short reads were combined with
Sanger sequencing to assemble the cucumber genome [10], marking the start of the rapid adoption of
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next generation sequencing (NGS) [11]. By 2013, 55 plant genomes had been sequenced, with 40 of
these belonging to crops [12]. Third generation sequencing technologies capable of generating long
reads greater than 10 kb in length were developed in recent years, providing a further useful tool for
crop genome sequencing. Today, there are over 260 land plant nuclear genomes publicly available in
GenBank, including most major crops.

Crop breeding has long relied on cycles of phenotypic selection and crossing, which generate
superior genotypes through genetic recombination. When genome sequences are available, all genes
and genetic variants contributing to agronomics traits can be identified and changes made during
breeding processes can be assessed at the genotype level. Because of the ready availability of genomic
data for breeders today, genomics plays an increasingly important role in all aspects of crop breeding,
such as quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS), where
genomic sequencing of crop populations can allow gene-level resolution of agronomic variation.
For example, advances in genomics-based breeding allow the identification of genetic variation
in crop species, which can be applied to produce climate resilient crops [5,13,14]. In a different
approach, genomic selection (GS) harnesses genome-wide genetic variants to avoid the need for
repeated phenotyping in breeding cycles.

Bioinformatics is crucial for processing and analysing large genomic datasets and gaining
functional insights into plant genomes [15,16]. Although genome assembly, sequence alignment
and variant calling are standard bioinformatics tasks when analysing sequencing data, the algorithms
required are non-trivial and there are different competing computational approaches with unique
biases [17–19]. For alignment of third generation sequencing data, many tools developed for short
reads perform poorly when aligning long reads [20]. A challenge for assembly and alignment tools
is combining different data types such as short reads and long reads to reduce the impact of unique
biases. Downstream analyses such as comparative genomic analysis, variant calling and GWAS can
provide comprehensive information to facilitate crop improvement [21]. Variant callers differ in their
ability to call indels and in their biases towards calling heterozygous and reference variants [19].
Software designed for carrying out GWAS may apply models of varying complexity to address the
effects of population structure. Applying the right bioinformatics tool for the right application is
therefore crucial. Although there is a wide range of tools available to mine genomes and variant data,
processing the growing amounts of genomic data and selecting the appropriate analyses is also a
leading challenge faced by researchers in crop genomics [22]. Adaptation of existing crop databases
such as GrainGenes [23] and Gramene [24] as well as development of novel databases such as the
Wheat Information System (WheatIS) [25] will help store the deluge of data and make it more accessible
to breeders.

An interdisciplinary approach is needed for plant breeding in the 21st century to identify and
resolve breeding challenges and improve crop production [26]. Together with novel glasshouse
technologies to accelerate plant development [27], genomics and bioinformatics play an important
role in increasing the production rate of improved crop cultivars. Nevertheless, the vast amounts
of genotypic and phenotypic data available create an enormous challenge to integrate diverse data
outputs for breeding [28]. Integrating phenotypes, genomics and bioinformatics tools and resources in
public and private breeding pipelines will address this challenge and help deliver breeding targets [29].
In this review, we discuss advances in genomics and bioinformatics, suggesting how these can be
integrated to allow precise breeding and overcome bottlenecks in crop improvement.

2. Third Generation Sequencing to Improve Crop Genome Assemblies

Since the introduction of NGS, genome sequencing and resequencing have become standard in
many disciplines of plant biology [11]. However, there are important limitations of NGS, such as
inherent biases and ambiguous alignment of repetitive elements, which leads to highly fragmented
draft genome assemblies and complicates the study of hidden indels and structural variants [20]. The
emergence of third generation sequencing, including Pacific Biosciences (PacBio) single-molecule
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real-time sequencing and Oxford Nanopore Technologies (ONT) sequencing, has enabled the
generation of long reads and allowed production of more accurate and contiguous genome
assemblies [30–32]. Third generation sequencing helps generate high-quality whole genome de novo
assemblies, using reads spanning complex regions such as those with high levels of repetitive sequence
and shed light on the remaining complex of repeat sequences and other structural variants. Moreover,
the full-length sequenced transcripts produced by third generation sequencing techniques (isoform
sequencing) allow the precise study of exons, splice sites and alternatively spliced regions, which is
useful in improving genome annotation [30]. A fully assembled and well-annotated genome will allow
breeders to discover genes related to agronomic traits, determine their location and function as well as
develop genome-wide molecular markers.

Combining long-read sequencing with long-range mapping technologies and chromosome
conformation capture has put highly contiguous chromosome-level crop genome assemblies within
grasp even for smaller laboratories and non-model crop species [33]. New optical mapping platforms
such as BioNano Genomics allow rapid labelling of long DNA molecules over 250 kb, enabling
detection of structural variants and generation of a high-quality scaffolding at low cost. For example,
using PacBio sequencing and optical mapping from BioNano, the assembly of the desiccation-tolerant
grass species Oropetium thomaeum achieves a contig N50 of 2.4 Mb with over 99.5% genome
coverage [34], a contiguity as high as that of model plant genomes such as Arabidopsis (TAIR10),
rice (V 7) and Brachypodium distachyon (V 2.1). Optical mapping data was also used to generate a
high-resolution map of the wheat chromosome 7DS with contigs showing an N50 of 1.3 Mb [35].
Long-read sequencing also uncovers repetitive regions with high accuracy. In O. thomaeum, long
reads helped identify 18 telomeric regions, nine centromeric satellites and 3247 intact long terminal
repeats in 358 families [34]. These repetitive sequences could not have been captured by short
reads, potentially resulting in a miscalculation of their content. Another third-generation mapping
innovation is chromosome conformation capture sequencing (Hi-C) [36], which is based on naturally
physical close ligation of DNA fragments. Integration of Hi-C data and optical mapping allow further
improvement of chromosome phasing and scaffolding. By combining short reads and optical and
chromatin interaction mapping data, Mascher et al. [37] assembled the highly repetitive and polyploid
barley genome, attaining an N50 value of 1.9 Mb. The higher level of sequence contiguity provided
by third generation sequencing can facilitate genomics-based breeding approaches including trait
mapping. For example, using a long read assembly of Arabidopsis, it was possible to define the
growth-related SG3i QTL region that could not be previously resolved with Sanger sequencing [38].

The most powerful application of third-generation sequencing for breeding is the assembly
of improved highly contiguous crop genomes. When selecting a sequencing approach for a crop
genome assembly project, it is important to consider the size of the genome, ploidy, levels of repetitive
content and the available funds. The current choice is mainly between PacBio, ONT and NGS, which
can be used in combination with each other and supplemented with other long-range technologies
such as BioNano and HiC. While costs for sequencing vary substantially between providers and
countries, third generation sequencing can remain an order of magnitude costlier than NGS (Table 1).
When sufficient funding is available, deep sequencing (>30×) using PacBio is likely to yield the most
accurate, contiguous crop genome because it is less error prone than ONT sequencing [38] and existing
sequencing errors can often be self-corrected at deep coverages [20]. However, the cost of PacBio deep
sequencing may be prohibitive, particularly for large genomes. At a cost of $900/Gb with the PacBio
RS II (Table 1), 30× coverage of the average-sized 389 Mb rice genome [8] would cost over $10,000.
For genomes with repeat regions >100 kb and high levels of heterozygosity, the ultra-long reads
(>100 kb) generated by ONT sequencing offer a unique advantage of this technology as in this case
ultra-long reads improve assembly quality most [20]. When costs limit the depth of third generation
sequencing to <30×, short reads can make an important contribution to error correct long reads before
assembly [39] and to polish completed assemblies by correcting single base errors and small indels [38].
For resequencing studies of crop populations, third generation sequencing is therefore generally not
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cost-effective and NGS remains the preferred approach. As the cost of third generation sequencing
costs decreases, the application of these methods may extend into a broader range of genomic analysis
beyond genome assembly.

Table 1. Comparison of the three main sequencing technologies for crop genomics. Corrected error
rates are calculated after applying error correction methods that do not require additional data. Prices
are in US$.

Illumina Short Reads
(HiSeq) PacBio (RSII/Sequel) Oxford Nanopore Technologies

(MinION)

Sequencing method Sequencing by synthesis Single-molecule Single-molecule

Average read length 125 bp–300 bp 10–15 kb (up to 100 kb) 10–15 kb (up to 1Mb)

Raw error rate ~0.1% 10–15% 10–38%

Corrected error rate - ~1% 1–9%

Corrected error rate with
short read polish - >0.1% 0.1–2.8%

Cost/Gb with library prep * $30–$45 $240–$900 $160–$250

Applications for
crop breeding

Resequencing studies; error
correction of long reads

De novo assembly;
scaffolding; gap filling

De novo assembly of genomes
with long repetitive regions

and high heterozygosity,
scaffolding; gap filling

References [11,40–42] [34,40,43,44] [45–49]

* Costs are estimates and can vary substantially between sequencing providers.

3. Integrated Crop Databases

With third generation sequencing technologies and other ‘omics’ technologies emerging, large
volumes of data are available to investigate crop traits from the gene level to the population level [50].
Although essential sequence repositories such as Genbank [51], European Molecular Biological
Laboratory (EMBL) [52], PlantGDB [53] and Phytozome [54] play an essential role, they mainly
focus on storing and managing genomic data without integrating variant or phenotype data from
other sources. This makes it more challenging for breeders and plant biologists to link genotype
to phenotype, which often requires data on genomics, epigenomics, phenotypes and environments.
Although come crop databases integrating these data exist, for example, marker and expression
data are integrated in GrainGenes [23], additional databases are needed to address this gap in major
repositories [55].

The task of creating an integrative crop database by combining annotated genome sequences, gene
functions, interaction networks and trait phenotypes is challenging as the relevant data are dispersed in
numerous databases with various data formats and different quality and coverage. Intelligent mining
of large-scale crop databases is required to merge complex data resources and allow gene discovery and
crop improvement [56]. To integrate biological data from different resources, a web-based intelligent
mining tool, KnetMiner (Knowledge Network Miner) has been developed to search for links and
concepts in biological knowledge networks, which enables the discovery of novel connections between
traits and genes [56]. There are four main steps in the KnetMiner approach: (1) integrating diverse
biological data into a knowledge graph, (2) improving the knowledge graph with text-mining of the
literature, (3) identifying the link between genes and evidence nodes, (4) applying the evidence-based
gene ranking algorithm and visualising the integrated data. Currently, KnetMiner has been employed
for constructing integrative databases for important crops such as barley and wheat, providing insights
into indirect associations between distant traits and biological processes. In barley, a gene-evidence
network was applied to infer a connection between the MLOC_10687.2 and seed width phenotype,
which show great potential in barley production improvement [57]. Progress is underway in wheat
and rice to further develop the single information systems available for these crops [25,58], allowing
broad querying across integrated databases. By ongoing development of integrative crop database
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with advances in data mining techniques, breeders can understand a complex trait better and identify
trait-associated candidate genes, which is beneficial for crop improvement [59].

4. Applying Integrative Genomics to Trait Discovery and Crop Improvement

4.1. Mining Quantitative Trait Loci Studies

The analysis of QTL enables estimation of genetic regions linked to quantitative phenotypic
traits, bridging the gap between genomics and the field [60]. However, with the increasing number
of QTL studies being conducted and reported in plants, a new challenge to identify high-quality
candidate loci and further improve crop breeding is to integrate information from different QTL
studies. In this case, meta-analysis, a tool to pool the outcomes of a range of studies and predict the
location of QTL more precisely than individual studies, is required to use existing resources fully [61].
Bioinformatics tools are available for efficiently carrying out meta-QTL analysis. For instance, using
statistics and a consensus model, a computational package called MetaQTL can reduce the length of
the confidence interval of QTL, leading to precise estimation of the correct QTL location and effect [62].
Other bioinformatics tools such as solQTL and RASQUAL further offer the convenience of low bias
QTL analysis, visualizing the QTL data and linking the QTL data with other genome databases [63,64].
To date, meta-QTL analyses have been performed to map traits related to crop development and
abiotic and biotic responses in maize [65], cotton [66], soybean [67] and wheat [68]. For example,
meta-QTL analysis has been used to identify five groups of yield and yield-related candidate genes
in wheat with 195 molecular markers and 197 ESTs reported from 55 wheat QTL studies in the last
14 years [68]. Moreover, 37 QTLs related to nitrogen use efficiency were identified in maize [65].
Similarly, 20 consensus QTLs and their related markers were narrowed down by meta-QTL from
a combination of QTL studies in last 20 years, which provides a foundation for gene mining and
crop improvement in soybean [67]. QTL mapping remains a powerful method to link an observed
agronomic trait to a genomic region. It provides a high detection power for scanning the complete
crop genome and identifies rare alleles using limited genetic markers. Because QTL mapping is
hypothesis-driven, it is applied when a trait of interest segregating in a mapping population is available.
However, QTL mapping suffers from two fundamentals shortcomings: (1) low resolution caused by
coarse mapping making it hard to differentiate pleiotropic and physically adjacent genes [69], (2) only
allelic diversity present in the parents of the segregating population can be assayed [70]. To overcome
these limitations of QTL mapping, GWAS can be employed to pinpoint genomic regions linked to
traits in diverse, unrelated populations.

4.2. Genome-Wide Association Studies for Identifying Breeding Targets

In contrast to QTL analysis conducted on bi-parental populations derived from controlled crosses,
GWAS relies on natural populations, providing higher resolution to identify multiple recombination
events and explore the natural variations associated with phenotypical differences. GWAS leverages
linkage disequilibrium to detect links between genotype and phenotype in crop species, achieving
higher mapping resolution than QTL analysis [71]. When the aim of the breeder is an exploratory
analysis to identify a broad range of genomic leads, GWAS is preferred to QTL analysis. Association
studies are more likely than QTL analysis to identify specific candidate genes that can be directly
introgressed into crop germplasm to improve crops [72]. GWAS has been carried out in a variety of
crops such as rice, soybean, maize, wheat and canola [73–76]. In Oryza sativa indica, 517 landraces
were sequenced, identifying around 3.6 million single nucleotide polymorphisms (SNPs) [73]. Using a
GWAS of 14 agronomic traits, over 36% of the phenotypic variance could be explained by the identified
loci, allowing further discovery of trait-related genes and alleles for crop improvement. Through a
GWAS of maize, Tian et al. [75] revealed the architecture of leaf traits and found that variation in
liguleless genes can result in upright leaves.
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Advances in bioinformatics tools offer extra opportunities for conducting GWAS studies.
For instance, PLINK is a widely used bioinformatics tool for GWAS, employing a standard regression
analysis to associate genotypes with phenotypes [77]. However, for rare variants, standard regression
cannot provide sufficient sensitivity for GWAS analysis [78]. TASSEL is another common GWAS
tool and implements a mixed linear model incorporating population and family structure in the
analysis [79]. Unlike PLINK, TASSEL can thus control for population effects. Other enhanced GWAS
bioinformatics tools such as GAPIT have also been developed to computationally efficiently handle a
large dataset containing over 1 million SNPs within 10,000 individuals using the compressed mixed
linear model and model-based prediction and selection method [80].

4.3. Forward and Reverse Genetic Screening

Forward genetic screening is a widely used breeding tool and identifies and characterizes genes
based on a known phenotype [81]. Reverse genetic screening, on the other hand, determines the
phenotypic effect of altered sequences of specific genes or regulatory regions [82]. The starting point of
forward genetics, including most QTL analyses, is a target phenotype that segregates in a population.
Reverse genetics, on the other hand, can be used to functionally characterize known genes identified by
QTL analysis or GWAS, with a mutation panel or a transformed line as a starting point. The role played
by both forward and reverse genetic screening is essential to identify functional variation associated
with agronomic traits such as tolerance to abiotic and biotic stresses, disease resistance, increased yield
and improved nutritional quality. Forward genetic screening can improve gene cloning and marker
development. Rather than performing whole genome sequencing to identify many sequences that
are not related to heritable phenotypes, exome sequencing used in forward genetic screening allows
selective screening of coding regions, excluding intergenic sequences. In rice, it was shown that to
recover induced mutations it is sufficient to sequence 20 Mb of the 389 Mb genome [83]. Reverse genetic
screening has been applied to crop functional genomics and breeding. Targeted Induced Local Lesions
IN Genomes (TILLING), a reverse genetic approach, can take advantage of conventional mutation
induction and high-through mutation methods, providing the capability of recovering mutations from
any genetic regions and discover novel phenotypes [84]. For instance, TILLING was used to induce
homozygous mutations in two waxy genes (granule-bound starch synthase I, or GBSSI) in a progenitor
of wheat that has the null waxy genotype [84]. Forward and reverse genetic screening can also be
combined. After conducting reverse genetic screening in Lotus japon using TILLING, forward genetic
screening was used to recover the alleles from a set of 275 cultivars with a 10-fold reduction of the cost
compared with whole-genome screening methods [85].

4.4. Genomic Selection

Trait discovery using QTL analysis, GWAS or reverse genetics is not essential for genomics-based
breeding. Particularly when targeting polygenic agronomic traits such as yield, minor effect alleles
can be difficult to detect and assess using these methods. When confronted with complex traits
that are difficult to introgress systematically, GS present an additional breeding approach. GS relies
on calculating the genomic estimated breeding values (GEBV) for sets of variants [86] based on
a genotyped and phenotyped training population. By combining the entire SNP marker sets in
the predicted model and preventing biased marker effects from variations in small-effect QTL,
GS overcomes inefficient translation of QTL analysis results from biparental mapping populations
to breeding and insufficient capability of statistical approaches to identify polygenic loci [87,88].
The combination of GS with automated phenotyping techniques can further promote prediction
accuracy of GEBV, shortening the breeding cycle [88]. Based on computational simulations, GS based
genomics-assisted breeding allows a four-year reduction in the breeding cycle of pasture grass
Lolium perenne compared with traditional breeding [89]. Additionally, GS in cassava showed
a significant increase in predicted genetic gains from 39.42% to 73.96%, comparing with the
phenotypic selection [90]. Genotyping-by-sequencing (GBS) allows low-cost de novo genotyping
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of crop plants [91,92] and can help to develop accurate GS models in crops with large genomes that
are costly to genotype with whole genome sequencing at the population level [93]. GBS was used in
elite wheat breeding lines to develop precise GS models, estimating genotypes with high yield and
stem rust resistance [93,94]. GBS also delivered 55,000 SNP markers with high prediction accuracy
from various maize breeding lines that were used for GS model construction [95].

4.5. Beyond the Gene: Targeting Cis-Regulatory Elements for Crop Breeding

Cis-regulatory elements (CREs) such as promotors and enhancers regulate gene expression and
may contain close to half of all variants influencing traits [96]. In crops, domestication traits are
often caused by variants in CREs [97]. For instance, Wang et al. showed that a mutation in a rice
CRE achieved the production of slender rice without decreasing yield production, by reducing the
repression of the gene GRAIN WIDTH 7 [98]. Targeting CREs for breeding can be advantageous when
the aim is not to knock out a gene entirely but to reduce or increase expression. Although CREs
are not expressed like genes, making them more difficult to study, they are associated with open
chromatin, which facilitates protein-binding. Open chromatin can be identified through DNase I
hypersensitivity mapping [99], ATAC-seq [100] and ChIP-seq [101] experiments, which helps predict
candidate CREs. Recently developed laboratory approaches combine chromatin signature detection
and genome editing to allow prediction, validation and genome-wide functional assessment of CREs.
For example, by editing ChIP-seq identified candidate sites, 73 enhancers were detected in humans,
using an approach readily transferable to plants [102]. Additionally, bioinformatics approaches
such as word-counting across the different promoter sequences [103] and analysis of sequence
conservation [104] are used for regulatory element detection. Due to these methods, identifying
cis-regulatory elements has become easier, leading to a growing body of knowledge on mammalian
and, to a lesser extent, plant cis-regulatory elements.

As our high-throughput CRE detection ability grows, the challenge for breeders is knowing
which CRE to target. This is difficult because knowledge of the functional impact of CREs in plants
is scant [98]. Integrated databases such as the Plant Cis-Acting Regulatory Elements (Plant CARE)
database provide comprehensive resources to study plant CRE function [105]. However, the roles
of specific CREs in regulatory networks are largely unknown and whether editing the sequence of a
CRE will affect the expression of the target gene can only be accurately determined experimentally.
The experiments necessary to characterise CREs in this way have been conducted on genes in rice [106,
107], generating a combined mutant library of almost 100,000 independent lines. By producing a CRE
mutant library with a similar approach and obtaining expression data from the mutant lines, CREs
associated with agronomic traits could be identified. When trait-associated CREs are known, an allelic
series produced with genome editing can rapidly create stepwise variation in a target trait. For example,
using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome editing,
Rodríguez-Leal et al. obtained stepwise variation in tomato seed compartment (locule) numbers,
a yield-related trait, by targeting the promoters of the inflorescence architecture gene WUSCHEL (WUS)
and CLAVATA (CLV3) [108].

5. Applying Machine Learning to Crop Breeding

Machine learning (ML) allows algorithms to interpret data by learning patterns through
experience. For large, diverse and formless datasets, such as those generated by photo imaging
or sequencing, ML can provide substantial advantages over other analytical approaches [109]. With
the aid of ML, crop breeders can efficiently phenotype plants and mine diverse datasets for patterns
such as associations between DNA sequences and traits.

5.1. High Throughput Crop Phenotyping

Plant phenotyping is the measurement of functional or structural traits from the cellular level to
the organism level and is essential for association studies and crop improvement [110]. With the
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intensive development of genomics research and sequencing techniques, there is an increasing
demand for plant phenotypes to help understand genomic data. Conventional phenotyping is often
a bottleneck because it is subjective, error-prone, labour-intensive and time-consuming, limiting
the number of traits, plants and environments that can be sampled [111]. Advances in measuring
technologies (high-throughput imaging and automatic sensors) and ML allow the establishment of
robotic high-throughput phenotyping, overcoming the shortcomings of traditional human-based
phenotyping by allowing rapid generation of phenotypical features and features across large
populations. High-throughput phenotyping has four main elements, namely detection by imaging
or sensors, phenotypical data classification, feature quantification and prediction based on specific
models or algorithms [112]. Phenotyping using ML has been applied in stress phenotyping and
monitoring of diseases. A real-time ML-based high-throughput phenotyping method was developed
to assess the severity of iron deficiency chlorosis from a total of 4366 soybeans from representative
canopies [113]. Using linear discriminant analysis (LDA) and multi-class support vector machines
(SVM) ML algorithms, the collected phenotypic data were used to train the best classification model to
predict iron deficiency chlorosis stress severity in soybean, which is useful to measure the real-time
severity in the soybean field. Another recent study applied a deep ML-based phenotyping method
using an unsupervised identification explanation mechanism to measure, determine and classify
various stress severity of foliar stresses in Glycine max including bacterial and fungal diseases and
nutrient deficiency [114]. Although ML has been successfully applied in crop genomics and crop
phenotyping, several challenges remain. ML modelling requires large datasets for training and model
construction. A small training set can lead to statistically insignificant and problematic prediction [115]
but a large dataset can be costly and time-consuming to acquire, as measurements on crops can often
only be taken once per growth cycle. High-throughput ML based phenotyping therefore remains
limited to certain research institutes and commercial companies [116]. Further reduction of purchasing
and operating costs is required to make ML-based phenotyping widely usable on the farm of the future.

5.2. Machine Learning in Crop Genomics Research

ML plays a role in many areas of genomics research, including genome assembly, the iterative
inference of gene regulatory networks and identifying true SNPs in polyploid plants. A representative
list of ML algorithms and related open-source R packages relevant for data analysis in plants is
provided by Ma et al. [117]. ML can be used to improve assemblies of polyploid genomes with
complex genome redundancies [117]. A complete genome assembly and annotation is the foundation
to track the genetic variations within a plant species and understand plant gene function and structure,
which are crucial within the crop trait discovery pipeline (Figure 1). Assembling highly redundant
genomes is a challenge for a non-ML-based assembly approaches that use a linear algorithm to
assemble repetitive sequence regions. To overcome this limitation, an ML method was used to detect
assembly errors and generate a high-quality assembly of bread wheat (Triticum aestivum) [118]. ML is
also deployed by the RNA-seq mapping tool Portcullis to differentiate between real and artificial
splicing junctions, which has helped annotate the bread wheat genome [119].

Inferring the relationships between regulatory elements and genes is a promising field for
identifying previously unknown candidates for crop improvement. Based only on gene co-expression
levels, a regulatory network constructed in silico is limited because the association between genes
may not accurately reflect shared gene regulation [120]. Consequently, an ML-based method that can
incorporate various kinds of regulatory signals from different data sources has become popular
for interactive inference of gene regulatory networks [117]. For instance, by analysing data on
transcription factor binding, conserved sequences, gene expression and chromatin modification data,
the transcriptional regulatory network in Drosophila melanogaster involving 300,000 regulatory edges
and over 12,000 targeted genes could be predicted [121].

SNPs are the most frequent class of variations in plant genomes [122,123]. However, challenges
remain for SNP discovery in polyploid plants [124]. Korani et al. [125] developed an ML-based
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analysis tool called SNP-ML using neural networks and tree bagging models to efficiently filter
false positive SNPs. They demonstrated that SNP-ML could be used to detect SNP variation and
select true SNPs with over 98% accuracy in simulated SNP variant data of peanut, cotton and
strawberry. Neural networks have also been deployed for SNP calling in error-prone long reads,
which is particularly challenging in diploid or polyploid samples as errors must be distinguished from
genuine heterozygous variants [126].

Figure 1. Schematic overview of a crop trait discovery pipeline.

6. Genome Editing of Crops and Bioinformatics Challenges in Guide RNA Design

Breeding relies on generating novel combinations of alleles and this can be achieved by harnessing
natural variation from germplasm collections or by generating novel variation. Advanced breeding
methods to generate DNA mutations such as irradiation or chemical mutagens are commonly
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used [127]. However, these methods are hampered by the high rate of background mutations,
some of which can be deleterious and need to be removed with multiple time-consuming rounds of
breeding. In contrast to conventional breeding methods (Figure 2), CRISPR/Cas does not require
substantial crossing to fix traits and remove deleterious background mutations. The CRISPR/Cas
system relies on a guide RNA (gRNA) to target the Cas protein to DNA sites for cleavage by locating
a matching ~20 bp sequence and a protospacer adjacent motif (PAM), which is specific to the Cas
protein used [128]. The Cas protein induces a double-strand break at the target site, allowing gene
knock-out via mutations arising during nonhomologous end joining and gene knock-in via a donor
DNA template and homology-directed repair. In the last five years, the CRISPR/Cas system has been
efficiently applied in a variety of essential food crops (reviewed in [129]) and is expected to have a
major impact on agriculture [130,131]. The remaining challenges for genome editors are improving
protoplast transformation [132], increasing the efficiency of gene targeting using homology-directed
repair [133] and optimisingthe bioinformatics tools for gRNA design with minimal off-target effects.

Figure 2. Generating a novel crop cultivar using a parental cross, random mutagenesis and genome
editing. Changed genomic regions on a representative chromosome are shown, with regions harbouring
beneficial mutations in red. Plant populations shown to harbour more phenotypic changes when using
a parental cross or random mutagenesis and are more uniform when using genome editing, likely
varying only in the target trait(s). When using genomic selection to complement traditional breeding,
the phenotyping process can be replaced with a faster genotyping step and plants selected based on
breeding values calculated from a phenotyped and genotyped training population.

Bioinformatics tools are essential for the optimal design of gRNAs that facilitate efficient and
specific CRISPR/Cas gene editing. The two crucial requirements for gRNA design are that the gRNA
has both high binding affinity to the target site and is specific, with few off-target effects. Using human
cell lines, it was shown that guanines are at the −1 and −2 PAM-proximal positions increase binding
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efficiency, whereas thymines at the +4/−4 PAM-proximal positions decrease efficiency [134]. An assay
on human cells investigated the effect of nucleotide sequence and epigenetic parameters on gRNA
efficiency, finding that both locus accessibility and the sequence composition affect efficiency [135].
Similar studies of gRNA binding efficiency are lacking in plants. However, early assessments indicate
that the base preferences identified in human cells are not shared by plants [136]. The specificity of
gRNA designs is difficult to predict based on sequence similarity alone and the results of off-target
prediction are inconsistent between various tools [137]. Although there are over 50 tools for gRNA
design publicly available (http://omictools.com/crispr-cas9-category) [138], only CRISPR-P [139]
and CRISPR-Plant [140] are designed for plants. CRISPR-P is the more sophisticated tool, supporting
design for 49 plant species and providing secondary structure analysis and microhomology scores
for guide designs. However, the gRNA activity evaluations and specific searches for knock-in or
knock-out designs available for non-plant model systems in tools such as the CRISPR-ERA web
server [141] as well as learning-based design tools such as sgRNA Designer [142] are not yet available
for plants. Because the interactions between Cas proteins, gRNA, DNA and chromatin are likely to
differ to some degree in plants [136], it will be important to incorporate this information into plant
gRNA design tools. In addition, plant genomes are highly redundant which may make it difficult to
generate unique gRNAs for single target sites. Moreover, for minor crops with few available genomic
resources, or highly genetically diverse germplasm, it can be difficult to predict gRNA activity because
of SNPs between the reference genome and the target individual [143]. As additional endonucleases
with different activity from Cas9 are added to the CRISPR/Cas toolkit and more empirical data on
endonuclease activity in plants becomes available, bioinformatics tools will be able to tailor gRNAs to
target more genomic sites at higher accuracy in crops.

7. Conclusions

Agriculture faces substantial challenges in harnessing the deluge of genomic data of diverse
origins and formats for crop improvement. To overcome these challenges, novel breeding methods and
bioinformatics tools must be used to translate genomic data into gains in crop yield and yield stability.
To accelerate the detection of robust gene-trait associations, researchers can apply meta-QTL analyses,
GWAS and genetic screens. While genome editing offers a valuable approach to rapidly introduce
beneficial mutations into elite cultivars, GS increases selection efficiency without requiring knowledge
of underlying genetic drivers. ML algorithms can take advantage of high-throughput phenotyping
and genomic data to further automate parts of the gene discovery pipeline such as genome annotation
and image interpretation that remain particularly challenging. By applying novel technologies and
methods in concert, future plant breeding can achieve the crop improvement rate required to ensure
food security.
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