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Abstract: The potential of single-seed near-infrared (NIR) spectroscopy was investigated to
characterise castor seeds based on their seed viability and seed oil content. Distinct differences
between viable and non-viable seeds were observed in the principal component analysis
(PCA) analysis. Furthermore, the PCA compared heavy and medium seeds with light seeds, which
were comparable to the clusters of viable and non-viable seeds, respectively. Prediction accuracies of
98.7% and 99.6% were obtained with the partial least squares discriminant analysis (PLS-DA) model
with a classification error rate of 0.8% and 1.1% for the training set and test set, respectively. The NIR
spectral regions having chemical information from the oil in castor seeds were found to be vital for
determination of seed viability.
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1. Introduction

Castor (Ricinus communis L.), a member of the Euphorbiaceae family, is an important non-edible
oil seed crop used for bioenergy production. The oil in castor seeds accounts for 42 to 58% of the total
seed weight [1] and is a prospective candidate for the production of biodiesel. Castor oil contains more
than 90% ricinoleic acid ((9Z,12R)-12-Hydroxyoctadec-9-9enoic acid, C18H34O3), which has a hydroxyl
group at position 12C that helps it to dissolve in alcohol at a low temperature (30 ◦C). This property
of castor oil is advantageous in comparison to other vegetable oils for the production of biodiesel in
terms of minimum energy (low or without heat) required for transesterification to reduce the viscosity
of the oil [2]. Castor oil is therefore considered economically important for biodiesel production.

The castor seeds mature sequentially within and between the racemes, leading to a variation
in maturity stages at harvest [3]. Furthermore, seeds from different racemes are reported to vary in
seed vigour and weight [4]. Thus, the final castor lot consists of seeds of different size, weight and
physiological maturity and consequently seeds of differing quality [3,5]. The variation in the seed lot
relates to the germination ability required for initial plant establishment. It also gives an indication
of oil recovery from the castor seeds as heavy seeds contain higher oil content than light seeds [6].
Additionally, seed weight is positively correlated with the germination ability of the seeds, i.e., heavier
seeds have better performance than light seeds [4].
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Near-infrared (NIR) spectroscopy is a non-destructive method commonly used to estimate
the quality parameters such as protein, water, carbohydrates and fats of agricultural products.
The estimation of the quality parameters of a sample by NIR spectroscopy is based on light absorption
in the near-infrared region and are due to overtones and combinations of fundamental mid-infrared
vibrational transitions [7]. The NIR spectrum of a sample contains complex information of different
chemical bonds, therefore requiring a multivariate data analysis to obtain qualitative information.
In combination with multivariate data analysis, NIR spectroscopy has demonstrated the ability to
estimate oil quality and content in sunflower [8], jatropha [9] and castor seeds [10]. Similarly, it has
also demonstrated the potential to predict the viability of spinach [11], tomatoes [12] and cabbage and
radish seeds [13]. These potentials of the NIR spectroscopy provide an opportunity to characterise
castor seeds with regards to their viability and oil content. The study investigates the capacity of NIR
spectroscopy to predict the viability of castor seeds and the subsequent relationship of viability to
oil content.

2. Materials and Methods

2.1. Seed Samples

The castor seeds (Ricinus communis L.) ecotypes Ahvaz and Arak collected from a seed company
were grown under controlled (irrigated) or water-stressed conditions in Esfahan, Iran in 2013. The seeds
were stored under dry and temperature-controlled conditions from harvest until further measurements.
One subsample of 300 castor seeds comprising 150 seeds from each ecotype with 75 seeds from
controlled and water-stressed conditions, respectively, were used for the viability study (Table 1).

Table 1. Number of seeds grown under controlled and stressed conditions. The values in parenthesis
indicate the number of light, medium and heavy castor seeds, respectively. Abbreviations are the total
number of germinated seeds (GS), germination percentages (G%), non-germinated and viable seeds
(NG/V) and total non-viable seeds (T nV).

Ecotype
Growing Conditions

GS G (%) NG/V T nV
Control Stressed Total

Arak 75 (23, 46, 6) * 75 (17, 58, 0) 150 (40, 104, 6) 116 77.3 34/3 31
Ahvaz 75 (14, 61, 0) 75 (15, 23, 37) 150 (29, 84, 37) 121 80.7 29/1 28
Total 150 150 300 (69, 188, 43) 237 79.0 63/4 59

* Light seeds (≤0.1455 g), medium seeds (0.1455 to 0.2348 g) and heavy seeds (≥0.2348 g). Measurement of oil
percentage and oil yield was on a treatment level [14] and not on a single-seed level (Table 2).

Table 2. Oil percentage and oil yield in the field experiment. Modified from [14].

Oil Percentage (%) Oil Yield, kg ha−1

Control Stressed Control Stressed

Ahvaz 42.7 35.6 233 118
Arak 41.9 39.4 248 125

The other subsample of 1200 seeds (600 seeds from each ecotype) were individually weighed and
subsequently used only for the categorisation of the castor seeds into three groups. A histogram of
seed weight is shown in Figure 1. The three seed weight groups were light castor seeds (≤0.1455 g),
medium seeds (0.1455 to 0.2348 g) and heavy seeds (≥0.2348 g).
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Figure 1. Histogram of individual seed weight.

2.2. Acquisition of NIR Spectra

Single-seed NIR diffuse transmission spectra expressed in absorbance and wavelengths were
obtained in 2014 using a single-seed Fourier Transformed Near-infrared (FT-NIR) Analyser (Q-Interline
A/S, QFAflex 600F; Tølløse, Denmark). Individual seeds were placed in a 30-sample carousel tray.
To ensure optimal masking and uniform measurements, the dry seed was placed with the middle of
the seed covering the hole on the side of the carousel facing the incident light. A cover with 2.5 mm
apertures was placed on top of the carousel to avoid light leakage around the seed. Seeds were
measured at a resolution setting of 32 cm−1 and each spectrum was obtained using the mean of
64 successive scans at 2-nm intervals from 965 to 1701 nm. A reference (background) spectrum was
taken using the built-in reference of the instrument prior to scanning.

2.3. Viability Test

Germination was performed between filter paper in accordance with ISTA [15]. In each box,
25 seeds were placed on wet pleated filter paper and germinated at 25 ◦C for a 14/10 (light/dark) hour
photoperiod. Seeds were visually inspected for germination twice a day for seven days and finally
at day 14. The seeds with radicle protrusion (>2 mm) were considered as ‘germinated’. After the
completion of the germination test, seeds that did not germinate were stained with tetrazolium.
The non-germinated castor seeds were immersed in a tetrazolium solution of 0.1% and kept in an oven
at 35 ◦C in the dark for 120 min. The red-stained seeds (indicator of viability) were classified as viable,
while seeds that were not red-stained were classified as non-viable as per Gaspar-Oliveira et al. [16].
All seeds were individually given a score of ‘0’ for non-viable seeds or ‘1’ if the seeds were viable.

2.4. Multivariate Data Analysis

The NIR spectra of the single castor seeds were pre-processed using Savitsky–Golay [17] 1st
derivative of 11 point window size and detrended [18] before mean centring.

Principal component analysis (PCA) was applied in the current study to pre-processed NIR
spectra to obtain an overview of all data and to identify possible extreme outliers. The visual scorings
were used to see the effect of the viability of the seeds. Afterwards the data were divided using Onion
algorithm of partial least squares (PLS) Toolbox ver. 7.9 (Eigenvector Research, Inc., Wenatchee, WA,
USA) into a training set and a test set consisting of 76 and 224 seeds, respectively.
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Partial least squares discriminant analysis (PLS-DA) is a linear supervised classification method
and is a derivative of the standard PLS regression algorithm [19], which uses class variables instead of
numeric variables. PLS is comparable to PCA, which is based on the latent variables (LVs), similar to
principal components of PCA; however, LVs are calculated using the information from Y (response
variable) for the decomposition of the main data. PLS1 and PLS2 algorithms are commonly used
based on the number of classes, where PLS1 is used for two-class problems whereas PLS2 is used
when there are more than two classes of samples. In PLS, the dummy variable Y is used as a response
variable, and is set to 1 if the sample is one of either classes and 0 if not. For instance, in our work
comprising two classes (viable and non-viable), each sample is coded as one of two vectors, [1 0] and
[0 1], designating viable and non-viable classes, respectively. The model seldom predicts either 1 or 0
perfectly, and a cut-off value was determined that yielded minimum positive and negatives, above
which the sample is predicted as 1 and below which it is predicted as 0. Variable importance in the
projection (VIP) scores for the PLS-DA model were calculated as per Chong and Jun [20] and give
an overview of the relative importance of each variable in the model calculation. VIP scores are a
weighted sum of squares of the PLS weights considering the amount of explained Y-variance in each
PLS component [21]. Variables having VIP scores higher than 1 are considered to be important for
PLS-DA model development; however, this does not indicate that variables having low VIP scores are
irrelevant to the classification [20,21].

In this study, one training set was used to develop a PLS-DA calibration model and was validated
on samples from the test set. The optimal number of latent variables (LVs) was chosen on the basis
of minimal classification error for calibration and cross-validation of the model. The model was
cross-validated by venetian blinds of 10 data splits with 10 samples in each split. The classification
performances of the PLS-DA model were evaluated using sensitivity (Sn), specificity (Sp), classification
error rate (CER), classification accuracy as described in Shrestha et al. [22] (2016) and the Matthews
correlation coefficient (MCC) [23].

3. Results and Discussion

3.1. Spectral Overview and Chemical Assignment

The pre-processed NIR spectra showed a distinct variation of spectral absorbance at different
wavelengths for viable and non-viable seeds (Figure 2a).

The peaks at 1400 and 1410 nm (Figure 2a) correspond to chemical information from the first
O–H overtones. This information is for the viable and non-viable seeds’ assigned to ricinoleic acid,
which contains an OH group at C12 [6,10]. The smaller peak for the seed coat is most probably due
to water as the seed coat is not expected to contain high amounts of oils [6]. The viable, heavy, and
medium seeds had similar absorption peaks (Figure 2a,b), which suggests that the high oil content in
the seeds is important for viability.

The viable seeds exhibited major spectral absorptions in the range of 1107–1205 nm, 1210–1270 nm,
1340–1483 nm and 1630–1701 nm with distinct peaks at 1155, 1185, 1223, 1379, 1400 and 1662 nm,
respectively (Figure 3c,d). These spectral regions, apart from the region with the peak at 1400 nm,
correspond to C–H stretching and are related to the chemical functional groups of fatty acids [7,24].
The influence of the fatty acids on the major spectral absorbance (Figure 2a) is due to the high oil
content (42–58%) in castor seeds [1,7,24].
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Figure 2. The average pre-processed absorbance from 965 to 1701 nm for (a) viable vs. non-viable seeds,
(b) light, medium and heavy seeds and (c) endosperm vs. seed coat of castor seeds. Near-infrared (NIR)
spectra in (a,b) are from single-seed measurements whereas NIR spectra in (c) are from glass vials.

3.2. Castor Seed Viability

The PCA analysis was used as an exploratory method [25] to investigate the relationship between
objects (castor seeds) and variables (NIR wavelengths) and to identify possible outliers and/or
extreme samples. The analysis revealed a few outliers in the dataset. However, removal of outliers
did not improve the model, and the outliers were thus kept in the dataset. There was a distinct
clustering between the viable and non-viable seeds (Figure 3a), as also indicated by the variation in
spectral absorbance (Figure 2a). Surprisingly, it was not possible to show any distinct patterns based
on ecotypes or growing conditions.

The variation in samples was a result of a single harvest done at mass maturity of the racemes, and
the harvested material then consisted of seeds with varying maturity and different seed weights. Seed
abortion before the dry matter accumulation in the seeds might be the reason for the non-viable empty
seeds observed in the study [5]. Castor seeds require up to 60 days (after pollination) for complete
development, and seed filling starts after 20–23 days (after pollination) [26]. The seed filling duration
(SFD) of the individual seed is vital for maturity as they mature sequentially within and between
the racemes [3]. Therefore, we suppose partially developed or deformed embryos did not get the
SFD required for maturity and hence were physiologically immature. During drying operations these
immature will get deformed or shrink due to rapid loss of moisture and often undergo desiccation
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injuries that will lead to poor germination ability upon imbibition [27]. The seed reserve accumulation
in these physiologically immature seeds is low in comparison to mature seeds [3]. The seed reserves
could also be inferred from the spectral similarities of the non-viable seeds with ones from the seed
coats and viable seeds (Figure 2a). The spectral loadings from the NIR regions at 1155, 1223, 1379,
1424 and 1662 nm, which have a correlation with the oil content in the seeds, proved to be important
for discriminating between viable and non-viable seeds (Figure 3c). Therefore, we assume that the
difference in the maturity level leads to differences in dry matter accumulation between viable and
non-viable seeds. This difference is reflected in the spectral absorbance and subsequent determination
of viable and non-viable seeds.

Figure 3. Principal component analysis (PCA) score plots (a and b) for PC1 vs. PC2 on pre-processed
NIR spectra and PCA loading plot of PC1 (c) and variable important in the projection (VIP) plot (d) for
viable seeds using the partial least squares discriminant analysis (PLS-DA) model from 965 to 1701 nm.

3.3. Relationship between Seed Weight, Oil Content and Seed Viability

The seed weight of castor has been positively associated with germination capacity; heavier seeds
have higher potential for germination [5]. Our study supports the results of Severino et al. [5] as most
of the non-germinated or non-viable seeds were part of the lightweight seed group, while viable seeds
were part of the medium and heavy seed groups (Figure 3a,b). A similar relationship between the
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seed weight and viability can also be anticipated from the comparable patterns of spectral absorption,
where medium and heavy castor seeds are assigned to viable seeds and light seeds to non-viable seeds
(Figure 2a,b). The major absorbance differences in light seeds were observed in the NIR regions with
peaks/valleys at 1155, 1185, 1223, 1379, 1400 and 1662 nm from the spectra of medium and heavy
seeds (Figure 2b). These NIR regions contributed significantly to the determination of viability and
seed weight, as depicted by a loadings plot (Figure 3c).

Variation in seed weight might be due to the mixtures of seeds from different racemes [4] or to
the differences in maturity level. The aborted seeds do not contain seed reserves [5] and immature
seeds have less dry matter accumulation, resulting in a lower weight due to insufficient SFD and
consequently less oil content. The NIR spectral absorbance differences between the seed weights
were also observed in the NIR regions pertaining to the oil content (1155, 1185, 1223, 1400, 1410 and
1662 nm). Spectral resemblance to light seeds (Figure 2b) indicates that light seeds contained less oil
compared to medium and heavy seeds. Severino et al. [6] observed very small variations of oil content
(percentage) in seeds weighing between 250 and 450 mg. Thus, we assume there was little variation
in oil content between medium and heavy seeds and oil content in the seeds could be regarded as
an indicator of castor seed viability. This was also observed in cotton seeds, where seed oil content
has been considered an indicator of seed vigour [28]. However, oil content and viability in the castor
seed are not only dependent on the pre-harvest conditions, but are also affected by the post-harvest
period and storage conditions. Santoso et al. [29] reported a decrease in seed oil content during storage
and correlated this with a decline in seed viability in castor seeds. They recorded a 12.1% decrease
in the seed oil content and observed a similar 12.3% decline of seed viability for seeds stored in jute
sacks for a period of 12 months [29]. Therefore, characterisation of seeds based on seed viability could
also give an indication of seed oil content or vice versa. The results from PCA show that single-seed
NIR spectroscopy could be used for characterisation and further prediction of viable and non-viable
castor seeds.

3.4. Classification of Viable and Non-Viable Seeds

The single-seed NIR spectra were used to develop a PLS-DA model for classifying seeds into
two classes of viable and non-viable seeds. The PLS-DA model was developed using five LVs that
explained 98% of the total variation in the NIR spectra and was further used to predict the seeds of the
test set. The model classified viable and non-viable seeds at an accuracy rate of 98.7% and performed
similarly on the test set with 99.6% classification accuracy (Table 3). The classification error rate of 0.8%
was observed for viable and non-viable castor seeds, which was consistent when seeds from the test
set were predicted (1.1% ER) (Table 3). The number of misclassified seeds was very low in the training
and test set (Table 3), as can also be observed in Figure 4.

Table 3. The details of PLS-DA classification model on seed viability for training, cross-validation and
test sets. (MS—misclassified seeds, TS—total seeds, Sn—sensitivity, Sp—specificity, CER—classification
error rate, MCC—Matthews correlation coefficient).

Viable Non-Viable Total CER, % Accuracy, % MCC

Training set
MS 1 0 1

0.8 98.7 0.98TS 62 14 76
Sn/Sp 0.98/1 1/0.98

Cross-validation
MS 1 0 1

0.7 98.7 0.98TS 62 14 76
Sn/Sp 0.99/1 1/0.99

Test set
MS 0 1 1

1.1 99.6 0.98TS 179 45 224
Sn/Sp 1/0.98 0.98/1
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Figure 4. PLS-DA predictions for non-viable seeds. Values greater than the threshold value indicate
class membership.

The sensitivity and specificity are the two major indicators of reliability of the model and values
near to 1 indicate robustness of the model [30]. The values of sensitivity and specificity were almost
equal to 1 for viable and non-viable seeds (Table 3), indicating that the developed model had unbiased
capability to identify the viable seeds (i.e., sensitivity) and reject samples (non-viable seeds) not
belonging to the class (i.e., specificity) [30]. The robustness of the model could also be observed from
the strong correlation between the NIR spectra of the castor seeds and seed viability indicated by
Matthews correlation coefficient (MCC) values, which were 0.98 for both the training and test sets.
The NIR wavelengths at 1155, 1185, 1223, 1379, 1424 and 1662 nm were recorded as important by
the variable importance for projection (VIP) scores for classifying the viable and non-viable seeds
(Figure 3d). These important wavelengths have a chemical correlation with oil content in the seed,
as described earlier [7,10,24].

The study demonstrates the use of single-seed NIR spectroscopy for the segregation of viable
and non-viable castor seeds. In areas where castor is grown in marginal lands and requires high seed
germination, single-seed NIR spectroscopy can be used to increase the crop production [31]. The study
shows that NIR spectroscopic signatures from the seed relating to the oil content could be used as an
indicator of the seed viability. Furthermore, previous studies have indicated that seed viability and seed
oil content are highly correlated [29]; therefore, NIR spectroscopy could equally be used for assessing
the oil content in the castor seeds. Similar studies involving single-seed NIR spectroscopy have shown
potential for determining the seed oil content in oil-rich crops like sunflower [8] and jatropha [9].
Moreover, a NIR spectroscopy study on the oil quality in castor seeds has also shown potential for
identifying seeds with a high content of ricinoleic acids or oleic acids [10]. Thus, NIR spectroscopy also
presents an opportunity in a production system for supplying high-quality seeds to the international
bioenergy market.

4. Conclusions

The PCA and PLS-DA models developed in the current study show the use of NIR spectroscopy
as a non-destructive tool for assessing the seed quality of castor seeds in relation to seed viability
and seed oil content. The study also indicates a positive correlation between seed viability and
NIR wavelengths that Fernández-Cuesta et al. [10] found to be related to oil content in castor seeds.
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The NIR spectral regions having chemical information from the oil in castor seeds were found to be
vital for the determination of seed viability. In conclusion, non-destructive NIR technology has shown
its applicability for segregating viable and non-viable seeds and could be an effective strategy for
improving castor seed quality from viability to seed oil recovery.
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