Organic Agriculture and the Quest for the Holy Grail in Water-Limited Ecosystems: Managing Weeds and Reducing Tillage Intensity
Abstract
:1. Introduction
2. Critical Needs of Organic Agriculture in the Northern Great Plains, a Water Limited Ecosystem
3. The Failed Marriage between No Tillage and Organic Agriculture in Water-Limited Systems
4. Reducing Tillage Intensity in Organic Systems and Impacts to Weed Communities
5. Integrated Crop and Livestock Production
6. Integrating Crop and Livestock Organic Production. Preliminary Lessons from Montana
7. A Path Forward
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Trewavas, A. Urban myths of organic farming. Nature 2001, 410, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food; The MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Bergstrom, L.; Kirchmann, H. Are the claimed benefits of organic agriculture justified? Nat. Plants 2016, 2, 16099. [Google Scholar] [CrossRef] [PubMed]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Organic Trade Association. U.S. Organic Industry Survey; Organic Trade Association: Washington, DC, USA, 2016. [Google Scholar]
- USDA-ERS Service. Organic Market Overview. Available online: https://www.ers.usda.gov/topics/natural-resources-environment/organic-agriculture/organic-market-overview.aspx (accessed on 30 March 2017).
- Dore, T.; Makowski, D.; Malezieux, E.; Munier-Jolain, N.; Tchamitchian, M.; Tittonell, P. Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods, concepts and knowledge. Eur. J. Agron. 2011, 34, 197–210. [Google Scholar] [CrossRef]
- Robertson, G.P.; Gross, K.L.; Hamilton, S.K.; Landis, D.A.; Schmidt, T.M.; Snapp, S.S.; Swinton, S.M. Farming for ecosystem services: An ecological approach to production agriculture. Bioscience 2014, 64, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Padbury, G.; Waltman, S.; Caprio, J.; Coen, G.; McGinn, S.; Mortensen, D.; Nielsen, G.; Sinclair, R. Agroecosystems and land resources of the northern great plains. Agron. J. 2002, 94, 251–261. [Google Scholar] [CrossRef]
- Tanaka, D.L.; Lyon, D.J.; Miller, P.R.; Merrill, S.D.; McConkey, B.G. Soil and water conservation advances in the semiarid northern great plains. In Soil and Water Conservation Advances in the USA; Soil Science Society of America Special Publications: Madison, WI, USA, 2010; Volume 60, pp. 81–102. [Google Scholar]
- Johnston, A.M.; Tanaka, D.L.; Miller, P.R.; Brandt, S.A.; Nielsen, D.C.; Lafond, G.P.; Riveland, N.R. Oilseed crops for semiarid cropping systems in the northern great plains. Agron. J. 2002, 94, 231–240. [Google Scholar] [CrossRef]
- McKenzie, S.; Goosey, H.; O’Neill, K.M.; Menalled, F. Integration of sheep grazing for cover crop termination into market gardens: Agronomic consequences of an ecologically-based management strategy. Renew. Agric. Food Syst. 2017, in press. [Google Scholar] [CrossRef]
- McKenzie, S.C.; Goosey, H.B.; O’Neill, K.M.; Menalled, F.D. Impact of integrated sheep grazing for cover crop termination on weed and ground beetle (coleoptera:Carabidae) communities. Agric. Ecosyst. Environ. 2016, 218, 141–149. [Google Scholar] [CrossRef]
- Butler, M.; Ragen, D.; Westbrook, J.; Boles, J.; Layton, W.; Craig, T.; Hatfield, P. Effects of Confinement Finish and Cover Crop Grazed Lambs on Performance, Carcass Quality and Parasite Loads; Montana State University: Bozeman, MT, USA, 2015. [Google Scholar]
- National Climate Assessment (NCA). Great Plains; National Climate Assessment: Washington, DC, USA, 2014. [Google Scholar]
- Cutforth, H.; Judiesch, D. Temperature trends in the semiarid prairie of southwestern Saskatchewan revisited. Can. J. Soil Sci. 2012, 92, 803–806. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate impacts on agriculture: Implications for crop production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef]
- Keren, I.N.; Menalled, F.D.; Weaver, D.K.; Robison-Cox, J.F. Interacting agricultural pests and their effect on crop yield: Application of a bayesian decision theory approach to the joint management of bromus tectorum and cephus cinctus. PLoS ONE 2015, 10, e0118111. [Google Scholar] [CrossRef] [PubMed]
- Meehan, T.D.; Werling, B.P.; Landis, D.A.; Gratton, C. Agricultural landscape simplification and insecticide use in the midwestern United States. Proc. Natl. Acad. Sci. USA 2011, 108, 11500–11505. [Google Scholar] [CrossRef] [PubMed]
- Tautges, N.E.; Goldberger, J.R.; Burke, I.C. A survey of weed management in organic small grains and forage systems in the northwest United States. Weed Sci. 2016, 64, 513–522. [Google Scholar] [CrossRef]
- Carr, P.M.; Anderson, R.L.; Lawley, Y.E.; Miller, P.R.; Zwinger, S.F. Organic zero-till in the northern US great plains region: Opportunities and obstacles. Renew. Agric. Food Syst. 2012, 27, 12–20. [Google Scholar] [CrossRef]
- Miller, P.R.; Lighthiser, E.J.; Jones, C.A.; Holmes, J.A.; Rick, T.L.; Wraith, J.M. Pea green manure management affects organic winter wheat yield and quality in semiarid Montana. Can. J. Plant Sci. 2011, 91, 497–508. [Google Scholar] [CrossRef]
- Triplett, G.B.; Dick, W.A. No-tillage crop production: A revolution in agriculture! Agron. J. 2008, 100, S153–S165. [Google Scholar] [CrossRef]
- Hansen, N.C.; Allen, B.L.; Baumhardt, R.L.; Lyon, D.J. Research achievements and adoption of no-till, dryland cropping in the semi-arid US great plains. Field Crops Res. 2012, 132, 196–203. [Google Scholar] [CrossRef]
- Shirtliffe, S.J.; Johnson, E.N. Progress towards no-till organic weed control in western Canada. Renew. Agric. Food Syst. 2012, 27, 60–67. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Curran, W.S.; Mortensen, D.A.; Ryan, M.R.; Shumway, D.L. Control of cereal rye with a roller/crimper as influenced by cover crop phenology. Agron. J. 2009, 101, 1589–1596. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mohler, C.L. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 2000, 48, 385–392. [Google Scholar] [CrossRef]
- Tanaka, D.L.; Bauer, A.; Black, A.L. Annual legume cover crops in spring wheat-fallow systems. J. Prod. Agric. 1997, 10, 251–255. [Google Scholar] [CrossRef]
- Townley-Smith, L.; Slinkard, A.E.; Bailey, L.D.; Biederbeck, V.O.; Rice, W.A. Productivity, water use and nitrogen fixation of annual legume green manure crops in the dark brown soil zone of Saskatchewan. Can. J. Plant Sci. 1993, 73, 139–148. [Google Scholar] [CrossRef]
- Vaisman, I.; Entz, M.H.; Flaten, D.N.; Gulden, R.H. Blade roller-green manure interactions on nitrogen dynamics, weeds, and organic wheat. Agron. J. 2011, 103, 879–889. [Google Scholar] [CrossRef]
- Mischler, R.; Duiker, S.W.; Curran, W.S.; Wilson, D. Hairy vetch management for no-till organic cornpproduction. Agron. J. 2010, 102, 355–362. [Google Scholar] [CrossRef]
- Izard, E. Seeking Sustainability for Organic Cropping Systems in the Norhern Great Plains: Legume Green Manure Strategies; Montana State University: Bozeman, MT, USA, 2007. [Google Scholar]
- Briar, S.S.; Carr, P.M.; Gramig, G.G.; Menalled, F.D.; Miller, P.R. Current Status and Soil Biology Impacts of Organic Conservation Tillage in the U.S. Great Plains. In Proceedings of the International Seminar on Emerging Trends in Organic Farming and Sustainable Agriculture, Kottayam, India, 29–31 December 2016. [Google Scholar]
- Gruber, S.; Claupein, W. Effect of tillage intensity on weed infestation in organic farming. Soil Tillage Res. 2009, 105, 104–111. [Google Scholar] [CrossRef]
- Rusu, T.; Bogdan, I.; Moraru, P.; Pop, A.; Oroian, I.; Marin, D.; Ranta, O.; Stanila, S.; Gheres, M.; Duda, M.; et al. Influence of minimum tillage systems on the control of convolvulus arvensis l. On wheat, maize and soybean. J. Food Agric. Environ. 2013, 11, 563–566. [Google Scholar]
- Sans, F.X.; Berner, A.; Armengot, L.; Mader, P. Tillage effects on weed communities in an organic winter wheat-sunflower-spelt cropping sequence. Weed Res. 2011, 51, 413–421. [Google Scholar] [CrossRef]
- Carr, P.M.; Gramig, G.G.; Liebig, M.A. Impacts of organic zero tillage systems on crops, weeds, and soil quality. Sustainability 2013, 5, 3172–3201. [Google Scholar] [CrossRef]
- Mohler, C.L. Mechanical management of weeds. In Ecological Management of Agricultural Weeds; Liebman, M., Mohler, C.L., Staver, C.P., Eds.; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Hakansson, S. Soil tillage effects on weeds. In Weeds and Weed Management on Arable Land: An Ecological Approach; CABI Publishing: Cambridge, MA, USA, 2003; pp. 158–196. [Google Scholar]
- Franzke, C.J.; Hume, A.N. Field Bindweed and Control Methods for South Dakota; Bulletins, South Dakota Agricultural Experiment Station: Brookings, Soud Dakota, USA, 1936; Volume 305, pp. 5–47. [Google Scholar]
- Sciegienka, J.K.; Keren, E.N.; Menalled, F.D. Impact of root fragment dimension, weight, burial depth, and water regime on cirsium arvense emergence and growth. Can. J. Plant Sci. 2011, 91, 1027–1036. [Google Scholar] [CrossRef]
- Orloff, N.; Mangold, J.M.; Miller, Z.; Menalled, F. A meta-analysis of field bindweed (Convolvulus arvensis L.) and Canada thistle (Cirsium arvense L.) management in organic agricultural systems. Agric. Ecosyst. Environ. 2017. submitted. [Google Scholar]
- Burgess, M.; Miller, P.; Jones, C.; Bekkerman, A. Tillage of cover crops affects soil water, nitrogen, and wheat yield components. Agron. J. 2014, 106, 1497–1508. [Google Scholar] [CrossRef]
- Lenssen, A.W.; Sainju, U.M.; Hatfield, P.G. Integrating sheep grazing into wheat-fallow systems: Crop yield and soil properties. Field Crops Res. 2013, 146, 75–85. [Google Scholar] [CrossRef]
- Peigne, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Mohler, C.L.; Frisch, J.C.; McCulloch, C.E. Vertical movement of weed seed surrogates by tillage implements and natural processes. Soil Tillage Res. 2006, 86, 110–122. [Google Scholar] [CrossRef]
- Harrison, S.K.; Regnier, E.E. Postdispersal predation of giant ragweed (ambrosia trifida) seed in no-tillage corn. Weed Sci. 2003, 51, 955–964. [Google Scholar] [CrossRef]
- Jacob, H.A.; Minkey, D.M.; Gallagher, R.S.; Borger, C.P. Variation in postdispersal weed seed predation in a crop field. Weed Sci. 2006, 54, 148–155. [Google Scholar] [CrossRef]
- Anderson, R.L. A multi-tactic approach to manage weed population dynamics in crop rotations. Agron. J. 2005, 97, 1579–1583. [Google Scholar] [CrossRef]
- Grundy, A.C.; Mead, A.; Burston, S. Modelling the emergence response of weed seeds to burial depth: Interactions with seed density, weight and shape. J. Appl. Ecol. 2003, 40, 757–770. [Google Scholar] [CrossRef]
- Franke, A.C.; Singh, S.; McRoberts, N.; Nehra, A.S.; Godara, S.; Malik, R.K.; Marshall, G. Phalaris minor seedbank studies: Longevity, seedling emergence and seed production as affected by tillage regime. Weed Res. 2007, 47, 73–83. [Google Scholar] [CrossRef]
- Menalled, F.D.; Gross, K.L.; Hammond, M. Weed aboveground and seedbank community responses to agricultural management systems. Ecol. Appl. 2001, 11, 1586–1601. [Google Scholar] [CrossRef]
- Moyer, J.R.; Roman, E.S.; Lindwall, C.W.; Blackshaw, R.E. Weed management in conservation tillage systems for wheat production in north and south America. Crop Prot. 1994, 13, 243–259. [Google Scholar] [CrossRef]
- Tuesca, D.; Puricelli, E.; Papa, J.C. A long-term study of weed flora shifts in different tillage systems. Weed Res. 2001, 41, 369–382. [Google Scholar] [CrossRef]
- Hilimire, K. Integrated crop/livestock agriculture in the United States: A review. J. Sustain. Agric. 2011, 35, 376–393. [Google Scholar] [CrossRef]
- Martens, J.R.T.; Entz, M.H. Integrating green manure and grazing systems: A review. Can. J. Plant Sci. 2011, 91, 811–824. [Google Scholar] [CrossRef]
- Hendrickson, J.R.; Hanson, J.D.; Tanaka, D.L.; Sassenrath, G. Principles of integrated agricultural systems: Introduction to processes and definition. Renew. Agric. Food Syst. 2008, 23, 265–271. [Google Scholar] [CrossRef]
- Entz, M.H.; Bullied, W.J.; KatepaMupondwa, F. Rotational benefits of forage crops in Canadian prairie cropping systems. J. Prod. Agric. 1995, 8, 521–529. [Google Scholar] [CrossRef]
- Popay, I.; Field, R. Grazing animals as weed control agents. Weed Tech. 1996, 10, 217–231. [Google Scholar]
- Bhowmik, P.C.; Inderjit, J. Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot. 2003, 22, 661–671. [Google Scholar] [CrossRef]
- Tracy, B.F.; Davis, A.S. Weed biomass and species composition as affected by an integrated crop-livestock system. Crop Sci. 2009, 49, 1523–1530. [Google Scholar] [CrossRef]
- Schoofs, A.; Entz, M.H. Influence of annual forages on weed dynamics in a cropping system. Can. J. Plant Sci. 2000, 80, 187–198. [Google Scholar] [CrossRef]
- National Center for Appropriate Technology (NCAT). Organic Livestock Workbook; National Center for Appropriate Technology: Butte, MT, USA, 2004. [Google Scholar]
- USDA Service. Sheep and Goats; USDA National Agriculture Statistics Service: Washington, DC, USA, 2010. [Google Scholar]
- Hatfield, P.G.; Goosey, H.B.; Spezzano, T.M.; Blodgett, S.L.; Lenssen, A.W.; Kott, R.W.; Marlow, C.B. Incorporating sheep into dryland grain production systems iii. Impact on changes in soil bulk density and soil nutrient profiles. Small Rumin. Res. 2007, 67, 222–231. [Google Scholar] [CrossRef]
- Sainju, U.M.; Lenssen, A.W.; Goosey, H.B.; Snyder, E.; Hatfield, P.G. Dryland soil carbon and nitrogen influenced by sheep grazing in the wheat-fallow system. Agron. J. 2010, 102, 1553–1561. [Google Scholar] [CrossRef]
- Hatfield, P.G.; Blodgett, S.L.; Spezzano, T.M.; Goosey, H.B.; Lenssen, A.W.; Kott, R.W.; Marlow, C.B. Incorporating sheep into dryland grain production systems I. Impact on over-wintering larva populations of wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae). Small Rumin. Res. 2007, 67, 209–215. [Google Scholar] [CrossRef]
- Barroso, J.; Miller, Z.J.; Lehnhoff, E.A.; Hatfield, P.G.; Menalled, F.D. Impacts of cropping system and management practices on the assembly of weed communities. Weed Res. 2015, 55, 426–435. [Google Scholar] [CrossRef]
- Johnson, S. Effects of Organic and Conventional Cropping Systems on Plant Diversity and Plant Soil Feedbacks; Montana State University: Bozeman, MT, USA, 2015. [Google Scholar]
- Smith, R.G.; Mortensen, D.A.; Ryan, M.R. A new hypothesis for the functional role of diversity in mediating resource pools and weed-crop competition in agroecosystems. Weed Res. 2010, 50, 37–48. [Google Scholar] [CrossRef]
- Johnson, S.; Miller, Z.; Miller, P.; Lehnhoff, E.; Menalled, F. Cropping systems modify soil biota effects on wheat (Triticum aestivum L.) growth and competitive ability. Weed Res. 2017, 57, 6–15. [Google Scholar] [CrossRef]
- UN. World Population Projected to Reach 9.7 Billion by 2050. Available online: http://www.un.org/en/development/desa/news/population/2015-report.html (accessed on 27 January 2017).
- Hunter, M.C.; Smith, R.G.; Schpanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. Bioscience 2017. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Kniss, A.R.; Savage, S.D.; Jabbour, R. Commercial crop yields reveal strengths and weaknesses for organic agriculture in the United States. PLoS ONE 2016, 11, e0165851. [Google Scholar] [CrossRef] [PubMed]
- Russelle, M.P.; Entz, M.H.; Franzluebbers, A.J. Reconsidering integrated crop-livestock systems in north America. Agron. J. 2007, 99, 325–334. [Google Scholar] [CrossRef]
- Undersander, D.J.; Albert, B.; Cosgrove, D.; Johnson, D.; Peterson, P. Pastures for Profit: A Guide to Rotational Grazing; University of Wisconsin Extension: Madison, WI, USA, 2002. [Google Scholar]
- Swinton, S.M.; Rector, N.; Robertson, G.P.; Jolejole-Foreman, C.B.; Lupi, F. Farmer decisions about adopting environmentally beneficial practices. In The Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability; Hamilton, S.K., Doll, J.E., Robertson, G.P., Eds.; Oxford University Press: New York, NY, USA, 2015; pp. 340–359. [Google Scholar]
- Ominski, P.D.; Entz, M.H.; Kenkel, N. Weed suppression by medicago sativa in subsequent cereal crops: A comparative survey. Weed Sci. 1999, 47, 282–290. [Google Scholar]
- Wortman, S.E.; Francis, C.A.; Bernards, M.A.; Blankenship, E.E.; Lindquist, J.L. Mechanical termination of diverse cover crop mixtures for improved weed suppression in organic cropping systems. Weed Sci. 2013, 61, 162–170. [Google Scholar] [CrossRef]
System | Weed Management | Soil Fertility | Impacts to Key Farm Characteristics | |||
---|---|---|---|---|---|---|
Weed Control | Nutrient Availability | Soil Quality | Water Availability | |||
Conventional tilled | Tillage | Synthetic fertilizer | ↑ 1 Generally effective in controlling weeds. | ↑ Synthetic fertilizers generally adequate to supply crops with nutrients. | ↓ 2 Long term tillage resulted in very poor soil quality across much of the Northern Great Plains and was the impetus for the adoption of no-till. | ↓ Soil affected by tillage has less water holding capacity. |
Conventional no-till | Herbicide | Synthetic fertilizer | ↑ Generally effective in controlling weeds. 3 | ↑ Synthetic fertilizers generally adequate to supply crops with nutrients. | ↑ Improved soil quality compared to tilled soils. | ↑ Improved water holding capacity compared to tilled soils. |
Organic tilled | Tillage | Cover crops | ↑ Generally effective in controlling weeds. | − 4 May still need off-farm inputs. | ↓ Deteriorates soil quality, although somewhat mitigated by incorporation of cover crop green manure. | ↓ Soil affected by tillage has less water holding capacity, although somewhat mitigated by increased organic matter. |
Organic no-till | Cover crops | Cover crops | − ↑ Cover crops may provide adequate weed control if enough biomass is produced and grown late into summer, but this comes at the expense of soil water. | − Cover crops may provide adequate nutrients through sequestration and N fixation, but longer growth and tillage or grazing to accelerate nutrient release may be needed. | ↑ No-till and cover crop incorporation improve soil quality. | ↓ Adequate cover crop growth for weed control and nutrient supply will use excess water, at the expense of subsequent cash crop yields. |
↓ Cover crops terminated early to conserve water will not provide adequate weed control. | ↓ Cover crops terminated early to conserve water will not provide adequate levels of soil nutrients. | ↑ No-till and cover crop incorporation improve soil quality. | − ↑ Cover crops terminated early may increase water availability by increasing soil organic matter and cooling the soil surface. |
2013-Safflower | 2014-Sweet Clover | 2015-Winter Wheat | 2016-Lentil |
---|---|---|---|
Conventionally Managed Plots | |||
Malva neglecta (22.1) | Capsella bursa-pastoris (38.6) | Bromus tectorum (100) | Thlaspi arvense (29.7) |
Avena fatua (21.3) | Chenopodium album (22.1) | -- | Malva neglecta (20.7) |
Thlaspi arvense (13.9) | Thlaspi arvense (17.7) | -- | Lamium amplexicaule (14.0) |
Chenopodium album (12.5) | Bromus tectorum (4.7) | -- | Chenopodium album (12.1) |
Amaranthus retroflexus (10.0) | Lactuca serriola (3.5) | -- | Lactuca serriola (12.0) |
Cirsium arvense (8.2) | Lamium amplexicaule (3.3) | -- | Cirsium arvense (6.9) |
Capsella bursa-pastoris (5.3) | Sisymbrium altissimum (2.6) | -- | Triticum aestivum (2.3) |
Monolepis nuttalliana (2.6) | Monolepis nuttalliana (2.6) | -- | Capsella bursa-pastoris (1.7) |
Solanum triflorum (2.4) | Avena fatua (1.6) | -- | Asperugo procumbens (0.2) |
Prunus virginiana (0.7) | Cirsium arvense (1.5) | -- | Amaranthus retroflexus (0.2) |
Grazed Organic Plots | |||
Thlaspi arvense (39.2) | Thlaspi arvense (38.7) | Capsella bursa-pastoris (42.1) | Thlaspi arvense (65.5) |
Malva neglecta (31.6) | Chenopodium album (25.6) | Bromus tectorum (25.5) | Chenopodium album (19.4) |
Chenopodium album (18.9) | Capsella bursa-pastoris (25.4) | Lactuca serriola (14.1) | Bromus tectorum (4.2) |
Amaranthus retroflexus (5.1) | Sisymbrium altissimum (4.6) | Tragopogon dubius (9.7) | Taraxacum officinale (2.7) |
Capsella bursa-pastoris (1.4) | Lactuca serriola (2.5) | Taraxacum officinale (4.6) | Capsella bursa-pastoris (2.1) |
Lactuca serriola (1.3) | Androsace occidentalis (0.8) | Sisymbrium altissimum (2.2) | Malva neglecta (1.2) |
Solanum triflorum (1.1) | Triticum aestivum (0.7) | Galium aparine (0.6) | Melilotus officinalis (1.1) |
Monolepis nuttalliana (0.7) | Poa annua (0.7) | Thlaspi arvense (0.5) | Triticum aestivum (1.0) |
Hordeum jubatum (0.3) | Monolepis nuttalliana (0.3) | Melilotus officinalis (0.4) | Lactuca serriola (1.0) |
Avena fatua (0.2) | Lamium amplexicaule (0.2) | Asperugo procumbens (0.2) | Cirsium arvense (0.6) |
Tilled Organic Plots | |||
Chenopodium album (31.7) | Capsella bursa-pastoris (46.3) | Thlaspi arvense (79.7) | Thlaspi arvense (62.8) |
Thlaspi arvense (30.2) | Thlaspi arvense (23.3) | Lactuca serriolaI (14.7) | Chenopodium album (17.2) |
Malva neglecta (17.0) | Chenopodium album (18.3) | Capsella bursa-pastoris (3.0) | Capsella bursa-pastoris (7.6) |
Capsella bursa-pastoris (6.5) | Androsace occidentalis (3.2) | Lamium amplexicaule (2.6) | Triticum aestivum (4.6) |
Hordeum jubatum (5.0) | Avena fatua (2.6) | Chenopodium album (<0.1) | Avena fatua (3.1) |
Lactuca serriola (3.6) | Lactuca serriola (2.6) | -- | Lactuca serriola (2.3) |
Solanum triflorum (3.0) | Bromus tectorum (0.8) | -- | Malva neglecta (1.5) |
Avena fatua (0.9) | Monolepis nuttalliana (0.7) | -- | Lamium amplexicaule (0.3) |
Monolepis nuttalliana (0.8) | Silene latifolia (0.6) | -- | Monolepis nuttalliana (0.2) |
Amaranthus retroflexus (0.8) | Sisymbrium altissimum (0.5) | -- | Melilotus officinalis (0.1) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehnhoff, E.; Miller, Z.; Miller, P.; Johnson, S.; Scott, T.; Hatfield, P.; Menalled, F.D. Organic Agriculture and the Quest for the Holy Grail in Water-Limited Ecosystems: Managing Weeds and Reducing Tillage Intensity. Agriculture 2017, 7, 33. https://doi.org/10.3390/agriculture7040033
Lehnhoff E, Miller Z, Miller P, Johnson S, Scott T, Hatfield P, Menalled FD. Organic Agriculture and the Quest for the Holy Grail in Water-Limited Ecosystems: Managing Weeds and Reducing Tillage Intensity. Agriculture. 2017; 7(4):33. https://doi.org/10.3390/agriculture7040033
Chicago/Turabian StyleLehnhoff, Erik, Zachariah Miller, Perry Miller, Stephen Johnson, Tessa Scott, Patrick Hatfield, and Fabian D. Menalled. 2017. "Organic Agriculture and the Quest for the Holy Grail in Water-Limited Ecosystems: Managing Weeds and Reducing Tillage Intensity" Agriculture 7, no. 4: 33. https://doi.org/10.3390/agriculture7040033