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Abstract: The success of precision agriculture relies largely on our ability to identify how the
plants’ growth limiting factors vary in time and space. In the field, several stress factors may
occur simultaneously, and it is thus crucial to be able to identify the key limitation, in order to
decide upon the correct contra-action, e.g., herbicide application. We performed a pot experiment,
in which spring wheat was exposed to water shortage, nitrogen deficiency, weed competition
(Sinapis alba L.) and fungal infection (Blumeria graminis f. sp. tritici) in a complete, factorial design.
A range of sensor measurements were taken every third day from the two-leaf stage until booting
of the wheat (BBCH 12 to 40). Already during the first 10 days after stress induction (DAS),
both fluorescence measurements and spectral vegetation indices were able to differentiate between
non-stressed and stressed wheat plants exposed to water shortage, weed competition or fungal
infection. This meant that water shortage and fungal infection could be detected prior to visible
symptoms. Nitrogen shortage was detected on the 11–20 DAS. Differentiation of more than one stress
factors with the same index was difficult.

Keywords: fluorescence; multi-stress; precision agriculture; site-specific crop management;
spectral indices; stress symptoms

1. Introduction

Abiotic stress, as excess or shortage of water, inadequate nutrients, and biotic stressors such
as insects or fungi have the potential to reduce crop production significantly [1]. Important biotic
stressors are pest organisms like weeds and plant pathogenic fungi. The potential global loss in wheat
due to weeds, fungal diseases and bacteria has been estimated to 38% [2]. In conventional farming,
fertilizers, herbicides and fungicides are applied to avoid nitrogen deficiency, weed competition and
fungal diseases, respectively. However, the application of a uniform rate of these external inputs is
rarely the best approach since the nitrogen demand and weed presence are generally heterogeneously
distributed within fields (e.g., [3,4]). Hence, some parts will receive excess levels at the expense of
others. Site-specific crop management, or precision agriculture, seeks to adjust the rates of external
inputs to this spatial heterogeneity. To be cost-effective, precision farming requires sensors to measure
this heterogeneity.

Sensing techniques for crop management have been suggested since the early 1980s but only
a few have reached the market. The precision agriculture procedure that has been widely adopted,
is precision fertilization. The development of a tailor-made sensor to estimate the nitrogen demand
of the crop on-the-go has been a decisive factor. A series of optical sensors applicable for outdoor
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use exist, including spectrometers, fluorometers and optoelectronic sensors. Compared to imaging
techniques, these can almost instantaneously provide simple measures like single bands, ratios and
indices based on spectral reflectance. Hence, such measures are particularly suitable for automatic
on-the-go field mapping for precision farming implements.

The applicability of spectrometers and fluorometers has been investigated for single stress
factors like water shortage, nitrogen deficiency and weed identification in a series of crops especially
wheat [5–14]. Nitrogen deficiency can result in slower growth rate, smaller plants and reduced
yield. Normalized Difference Vegetation Index (NDVI), which is one of the most widely used
vegetation indices, has been used to determine nitrogen status, vegetation vigor or crop density
in cereals [8,9]. Red Edge Inflection Point (REIP), NDVI, Modified Chlorophyll Absorption in
Reflectance Index (MCARI), Greenness Index (G), Optimized Soil Adjusted Vegetation Index (OSAVI),
an index from Zarco-Tejada and Miller (ZM), Photochemical Reflectance Index (PRI) and Normalized
Phaeophytinization Index (NPQI) have been shown to correlate with nitrogen stress, including
nitrogen deficiency, in maize and wheat [10,15]. Similar results are obtained by fluorescence
indices (Table 2) [13].

Drought stress in crops has been detected by various spectral bands and indices like REIP, NDVI,
OSAVI, MCARI, G, ZM, PRI, a simple ratio proposed by Vogelmann et al. [16] (VOG1), and Plant
Pigment Ratio (PPR) [7,9,17–20]. Fluorescence measurements with sensors like the Multiplex R© and
Dualex R© sensor have also been correlated with water stress in wheat [14].

Weed density is correlated with Leaf Area Index (LAI) and biomass. Different weed species
may be discriminated based on their spectral reflectance curves [21,22]. Based on UV-induced
fluorescence, Longchamps et al. [23] successfully classified maize and weeds into three plant groups
(four maize hybrids, four dicotyledonous weed species and four monocotyledonous weed species).
Tyystjärvi et al. [24] used chlorophyll fluorescence to classify six weed species, maize and barley into
weeds and crop with a high correct classification rate (86.7%–96.1%).

Plant pathogenic fungi depend on their host plants for nutrients and carbon assimilates,
therefore disturbing the plant growth. Rumpf et al. [25] demonstrated the potential of pre-symptomatic
detection of plant diseases in sugar beet by use of spectral indices obtained by hyperspectral
reflectance. Several indices like REIP, NDVI, MCARI, G, ZM, PRI, OSAVI, Red Edge Vegetation
Stress Index (RVSI), Renormalized Difference Vegetation Index (RDVI), along with fluorescence indices
have been correlated with fungal infection in various crops [11,26–28].

Since multiple stressors often occur simultaneously in a field, it is of interest to develop
a sensor-based method that is able to identify the type of stressors. Previous studies
addressing concurrent, multiple stressors have only explored imaging technologies. For example,
Karimi et al. [29] used hyperspectral imagery to identify combinations of various nitrogen application
rates and weediness in maize. Backoulou et al. [12] used multispectral imagery to separate stress
by a pest aphid from other concurrent stressors in wheat. Imaging technologies can be helpful in
identifying weeds but not the rest of the stressors used in the current study. Our approach is to
explore single spectral bands, simple ratios and indices measured by on-the-shelf non-imagery sensors.
For this purpose we implemented both spectral and fluorescence parameters since the technologies by
themselves are not able to indicate the nature of the stress factor. To our knowledge, such measures
have not been tested to identify concurrent biotic and abiotic stressors in wheat until now.

The aim of this study was to determine whether simple sensor-based measures like single
bands, ratios and indices obtained by on-the-shelf optical sensors can be used to detect abiotic and
biotic stressors in spring wheat. The four stressors tested were water deficiency, nitrogen shortage,
weed competition (Sinapis alba L.) and fungal infection (powdery mildew). We hypothesized that the
selected sensors can be used to detect single stressors, even in the co-existence of other stress factors.



Agriculture 2016, 6, 24 3 of 21

2. Experimental Section

2.1. Experimental Design

An outdoor pot experiment was performed twice during 2013 at the University of Hohenheim,
Stuttgart, Germany. In the experiments, spring wheat (Triticum aestivum L. cv. Toras) was exposed
to four stress factors: (a) water shortage; (b) nitrogen deficiency; (c) weeds (Sinapis alba L.) and
(d) fungal infection (B. graminis f. sp. tritici). For each stressor, a non-stressed treatment was included,
and using a randomized complete block design, all 16 treatment combinations were tested with
four replicate blocks (n = 64 in each experiment). Table 1 presents all different combinations used
in this experiment. Mitscherlich pots were each filled with 6 kg of soil consisting of composted soil,
loamy soil and coarse sand in the ratio 2:2:1, as measured by volume. These pots were filled until 90%
of their volume and are ideal for cereal test plants [30]. The soil had previously been sieved through a
net with a mesh size of 8 mm. The soil surface of filled pots was approximately 300 cm2. An ample
amount of spring wheat seeds were planted per pot. At growth stage BBCH 12 [31], some plants
were removed, so that each pot had 12 remaining plants with an even distribution corresponding to
a crop density of about 40 plants m−2. The first experiment was performed from 10 March–17 May .
Unfortunately, the fungal infection was not successful in this first experiment, and the data related to
the fungi infection in the first experiment were thus excluded from further analyses. The experiment
was repeated in the 30 June–17 August period.

The pots were weighted and irrigated daily to maintain a soil moisture content, corresponding
to a water holding capacity (WHC) of 50% until the wheat plants had reached BBCH 12. Then water
stress (+) was induced by reducing the soil moisture level to a maintenance level of 30% WHC. The soil
moisture in pots without water stress (−) was adjusted up to a level of 70% WHC.

A basic fertilization of 73 mg nitrogen was given as calcium ammonium nitrate to all pots. The pots
with nitrogen stress (+) did not receive any additional fertilizer, whereas the non–stressed pots (−)
were fertilized at BBCH 21 and BBCH 32 as well, totaling 189 mg nitrogen per pot.

Weed competition (+) was induced when the wheat plants had reached BBCH 12, by planting
10 plants of Sinapis alba L. evenly into each pot, corresponding to a density of 33 plants m−2. In the pots
without weed competition (−), volunteer weeds were removed during the experiment. Fungal infection
was realized by the inoculation of Blumeria graminis f. sp. tritici at the same time as the weed planting.
Spores of B. graminis f. sp. tritici were suspended from highly infested wheat leaves into a water
solution. Inoculation was performed by vaporizing the spore suspension. The infected pots were
kept under high humidity conditions for 24 h, in order to facilitate the infection. During the last
measurement day (BBCH 40), the plants were harvested and dried for 48 h at 80 ◦C to calculate the
total biomass and the root to shoot ratio. Species were not separated in the weedy pots.

Table 1. All 16 treatment combinations, with “+” indicating presence of stress, while “−” represents
absence of stress.

Treatment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fungi + + + + + + + + − − − − − − − −
Water + + + + − − − − + + + + − − − −

Nitrogen + + − − + + − − + + − − + + − −
Weeds + − + − + − + − + − + − + − + −

2.2. Sensors

Three different sensors were selected to provide data for stress detection, a passive spectrometer,
an active spectrometer and a fluorometer.
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2.2.1. HandySpec

A hand-held passive spectrometer device with a spectral range of 360–1000 nm with 10 nm
bandwidth (HandySpec Field, Tec5, Oberursel, Germany) (Figure 1a) was used to measure the spectral
reflectance. Before each measuring period, the device was calibrated with a white standard (BaSO4).
This spectrometer consists of two independent sensors, one pointing upwards to measure the ambient
light through a cosine diffuser, and the other pointing downwards to measure the ground reflection.
Based on the spectral data 16 spectral indices were calculated (Table 2).

(a) HandySpec R©

(b) Isaria R© (c) Multiplex R©

Figure 1. Sensors used in the current experiment.
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Table 2. Overview of the spectral indices and fluorescence parameters measured with the 3 sensors
(HandySpec R© Field sensor, Multiplex R©, Isaria R©) used in this study.

Index
Reference

Explanation Formula

Structural indices (HandySpec R©)

NDVI
[32]

Normalized Difference
Vegetation Index

R780 − R670
R780 + R670

OSAVI
[33]

Optimized Soil-Adjusted
Vegetation Index

(1 + 0.16)
R800 − R670

R800 + R670 + 0.16

RDVI
[34]

Renormalized Difference
Vegetation Index

R800 − R670
R800 + R670

Red Edge Inflection Point (HandySpec R© & Isaria R©)

REIP
[35]

Red Edge
Inflection Point

700 + 40
(

R670 + R780
2

)− R700

R740 − R700

Chlorophyll indices (HandySpec R©)

G
[36]

Greenness Index
R554
R677

MCARI
[37]

Modified Chlorophyll
Absorption in Reflectance Index

((R700 − R670)− 0.2(R700 − R550))(
R700
R670

)

NPQI
[38]

Normalized Phaeophytinization Index
R415 − R435
R415 + R435

PPR
[20]

Plant Pigment Ratio
R550 − R450
R550 + R450

PVR
[20]

Photosynthetic Vigor Ratio
R550 − R650
R550 + R650

VOG1
[16]

Simple Ratio 740/720
R740
R720

GM1
[39]

Simple Ratio 750/550
R750
R550

LIC1
[40]

Lichtenthaler Index 1
R800 − R680
R800 + R680

ZM
[41]

Zarco-Tejada & Miller
R750
R710

Stress–Pigment indices (HandySpec R©)

PRI
[42]

Photochemical Reflectance Index
R531 − R570
R531 + R570

CTR1
[43]

Simple Ratio 695/420
R695
R420

RVSI
[44]

Red-edge Vegetation Stress Index R714+R752
2 − R733

Fluorescence indices (Multiplex R©)

ANTH
[45]

Anthocyanins log(FERRG)
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Table 2. Cont.

Index
Reference

Explanation Formula

RFR
[45]

Red Fluorescence
(Red Excitation)

—

FRFUV
[45]

Infra-red Fluorescence
(UV Excitation)

—

BGFG
[45]

Blue Green Fluorescence
(Green Excitation)

—

BGFUV
[45]

Blue Green Fluorescence
(UV Excitation)

—

FERRUV
[45]

Fluorescence Excitation Ratio
(Red & UV Excitation)

FRFR
FRFUV

FERRG
[45]

Fluorescence Excitation Ratio
(Red & Green Excitation)

FRFR
FRFG

FLAV
[45]

Flavonoids log(FERRUV)

NBIG
[45]

Nitrogen Balance Index
FRFUV

RFG

NBIR
[45]

Nitrogen Balance Index
FRFUV

RFR

SFRG
[45]

Simple Fluorescence Ratio
(Green Excitation)

FRFG
RFG

SFRR
[45]

Simple Fluorescence Ratio
(Red Excitation)

FRFR
RFR

2.2.2. Isaria

Isaria R© sensor, which is an multi-spectral sensor, was also used (ISARIA R©, Fritzmeier Umwelttechnik,
Großhelfendorf, Germany) (Figure 1b). The sensor has four illumination sources in the range of
660–780 nm and receives their reflectance with a detector integrated in the sensor head. The REIP and
Isaria Biomass Index (IBI) were determined for each pot. IBI is a proprietary sensor index used in the
sensor to estimate plant density.

2.2.3. Multiplex

The Multiplex R© (Force-A, Centre-Universitaire Paris Sud, Cedex, France) sensor (Figure 1c) is an
optical, non-contact, active sensor. It is a fluorometer which measures the fluorescence of molecules
inside plant tissues. The sensor has three silicon photodiodes as light sources, which generate light at
UV, blue, green and red wavelengths. Three detectors are measuring the emitted fluorescence at the
wavelengths of blue, red and far-red light. Ghozlen et al. [46] and Cerovic et al. [47] provide a more
detailed description of the sensor. Table 2 gives an overview of the different ratios measured by the
Multiplex R© sensor. Table 3 summarizes the characteristics of the implemented sensors.
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Table 3. Technical characteristics of the senors used in this study.

HandySpec R© Isaria R© Multiplex R©

Type Spectrometer Spectrometer Fluorometer
Has Illumination No Yes Yes

Needs Calibration Yes No No
Plant-Sensor Distance (cm) 55 ± 5 60 10

Field of View (cm2) 200 700 50

2.3. Data Processing and Statistical Analyses

Sensor measurements were acquired every third day from when the wheat had two leaves
until booting (BBCH 12 to 40). At each measuring day, five measurements were taken per pot
and sensor. Average values of the spectral indices and fluorescence ratios were derived from these
five measurements. First, all data excluding the fungal infection data were pooled from both
experiments (that is treatment combinations # 9-16, as presented in Table 1). The outcome of the
study could be estimated using following the linear mixed effect model:

yijklmn = µ + αi + β j + γk + (αβ)ij + (βγ)jk + (αγ)ik+

(αβγ)ijk + rl + δm + (rδ)lm + ζn + θ + eijklmn,
(1)

where yijklmn is the spectral index or fluorescence ratio, with subscript i indicating water treatment,
j nitrogen treatment, k weed treatment, l block replicate at the m day of the n experiment.
Further, µ is the general mean, whereas α, β, γ are the main effects of water stress, nitrogen stress
and weed stress, respectively, with two-way interactions, (αβ), (βγ) and (αγ) and with (αβγ)ijk as the
three-way water-nitrogen-weed stress interaction. The block effect is represented by r, δ is the day
effect and (rδ) is their interaction, ζ is the experiment effect, θ the day covariance matrix and e the
residual. Then, all data from the second experiment were tested separately with the following mixed
effects model:

yijklmno = µ + αi + β j + γk + ηo + (αβ)ij + (βγ)jk + (αγ)ik+

(αη)io + (βη)jo + (γη)ko + (αβγ)ijk + (αβη)ijo+

(βγη)jko + (αβγη)ijko + rl + δm + (rδ)lm + θ + eijklmn,

(2)

with subscript o indicating fungal treatment, η the main effect of the existence or not of fungal
stress, (αη), (βη) and (γη) are the additional two-way interactions, (αβη) and (βγη) are the additional
three-way interactions, and (αβγη) the four-way water-nitrogen-weed-fungi stress interaction. Results
for stress caused by water shortage, nitrogen deficiency, and weed presence were derived from the
model shown in Equation (1). Results for stress caused by fungal infection were derived from the model
in Equation (2). Spectral indices calculations and data analysis was conducted with R 3.2.0 RC [48].
The means of every stress factor were compared with Tukey’s HSD (honest significant difference) test.
In order to study the effects of time in more detail, the original time series of sensor data per stress
factor were pooled into three discrete measuring time periods: 0–10, 11–20 and 21–30 days after stress
induction (DAS). Our goal was to present the differences of the sensor signals as a function of the
development of the crop at different growth stages, but on the same time to smoothen effects due to
temperature and illumination variations during the measurements.

3. Results

The four stressors affected the growth of the wheat plants significantly, either in terms of biomass
or the root to shoot ratio (Figure 2). Even in the nitrogen stressed pots and the fungi infected pots
the total biomass of the stressed plants was lower than the non-stressed ones, but the result was not
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statistically significant. Pots with weeds showed higher total biomass than the weed free pots, due to
the accumulated measurement of plant and weed biomass. The differences even though statistically
significant did not present a high contrast. The severity of the disease was small. On average, wheat
plants with fungal disease stress treatment had an estimated infestation with B. graminis f. sp. tritici
of 4.4% of the leaf area on the first examination two weeks after inoculation and 6.5% on the last
examination four weeks later. In addition, slight symptoms of wilting were observed on wheat plants
with water stress treatment, especially in the afternoon and on hot days, compared to the non stressed
ones. HandySpec R© (Section 3.1.1) and the Multiplex R© (Section 3.1.2) sensors were able to differentiate
between non-stressed and stressed plants for all four stress factors. Isaria R© could only discriminate
stress due to weed competition (Section 3.1.3).
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Figure 2. Mean values with their upper and lower confidence intervals of the total (including weeds)
below and aboveground biomass and the root to shoot ratio of spring wheat at the end of the experiment
(BBCH 40 = 30 days after onset of stress). Different letters indicate significant differences within each
category (Tukey’s HSD test).

3.1. Single Stressors

3.1.1. HandySpec

Several spectral indices could be used to differentiate between nitrogen deprived plants and
non-nitrogen-stressed plants (Table 4). Using REIP, we were able to differentiate between the two
N-treatments from the second time period (11–20 days), whereas ZM, VOG1, GM1 and NPQI could
only be used to differentiate on the last time period (Figure 3a).

All tested indicators except NPQI contained sufficient information to enable a differentiation
between plants that were under water deprivation and non–water-stressed plants (Table 4).
The G index along with the PVR could clearly separate between stressed and non–stressed plants
throughout the entire experimental period (Figure 3b). PPR and MCARI could also be used to
differentiate between the two groups from the second time period (11–20 days) and onwards. To a
lesser extent, LIC1 could also detect water stress. For all the above indices, water stressed plants had
lower values. G, PPR and MCARI had a relatively stable result from the 10th day after treatment
onwards, while LIC1 showed the typical increase in both groups as days passed.

Weediness was detected by all tested indices except CTR1 and VOG1 (Table 4). In all cases, apart
from RVSI, the index values for weedy pots were higher than those for weed free pots. Most of the
indices increased their values as time passed (Figure 3c). G and MCARI provided relatively similar
values for the second and third 10-day period, but their values also increased slightly.
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Several indices could be used to discriminate fungal infected and non-infected pots.
Both structural, chlorophyll and stress related indices showed statistically significant differences
between the two groups (Table 4). RVSI and NDVI differentiated between infected and non-infected
plants already at the beginning of the experiment until the second 10-day period, but were not able
to differentiate afterwards (Figure 3d). On the other hand, indices like RDVI, NPQI, PRI, and CTR1
showed statistically significant differences between the two groups in the second and third period.
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Figure 3. Ten day mean values of spectral indices derived by the HandySpec R© sensor. The error
bars demonstrate their upper and lower 95% confidence intervals (Tukey’s HSD). The most important
indices per stress are shown, separated into three periods: 0–10, 11–20 and 21–30 days after stress
induction. ’−’ indicates absence of stress, ’+’ indicates presence of stress.
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Table 4. Mean values of spectral indices for the main effects derived by the HandySpec R© sensor.
’−’ indicates the absence of stress and ’+’ indicates its presence. The significance level is indicated as
*** for p < 0.001; ** for p < 0.01; * for p < 0.05, and NS for non-significant differences.

Index Nitrogen Deficiency Water Shortage Weed Competition Fungal Infection

− + Sign − + Sign − + Sign − + Sign

REIP 721 720 *** 720 721 * 721 720 *** 722 721 ***
NDVI 0.64 0.63 NS 0.65 0.62 *** 0.60 0.67 *** 0.56 0.58 **
PVR 0.19 0.18 NS 0.20 0.17 *** 0.15 0.22 *** 0.10 0.12 ***

OSAVI 0.58 0.56 NS 0.58 0.56 ** 0.54 0.60 *** 0.52 0.51 NS
MCARI 0.11 0.11 NS 0.12 0.10 *** 0.08 0.14 *** 0.06 0.05 ***

RVSI 0.030 0.032 NS 0.028 0.034 ** 0.034 0.028 *** 0.047 0.036 ***
RDVI 23.5 22.8 NS 24.0 22.3 * 20.6 25.7 *** 21.9 17.5 ***

G 1.68 1.65 NS 1.75 1.58 *** 1.50 1.83 *** 1.26 1.36 ***
ZM 2.23 2.15 *** 2.23 2.15 ** 2.15 2.23 ** 2.07 2.09 NS

NPQI −0.043 −0.045 ** −0.045 −0.044 NS −0.046 −0.042 *** −0.046 −0.039 ***
PRI −0.021 −0.024 * −0.02 −0.025 *** −0.026 −0.019 *** −0.033 −0.027 ***

CTR1 1.52 1.56 * 1.52 1.55 * 1.53 1.55 NS 1.51 1.40 ***
LIC1 0.64 0.63 NS 0.65 0.61 *** 0.60 0.66 *** 0.56 0.58 **

VOG1 1.51 1.48 ** 1.50 1.48 ** 1.48 1.50 NS 1.46 1.47 NS
GM1 3.40 3.24 *** 3.38 3.26 * 3.22 3.42 *** 2.93 2.88 NS
PPR 0.29 0.30 NS 0.30 0.28 *** 0.26 0.32 *** 0.22 0.22 NS

3.1.2. Isaria

The two indices obtained by the Isaria-sensor, REIP and its proprietary biomass index (IBI),
could differentiate between the two weed treatments only (Table 5). Weed free pots resulted in higher
values for IBI and lower for REIP compared with the corresponding values for pots with weeds.
The differences were significant throughout the entire experiment (Figure 4).

Table 5. Mean values of spectral indices for the main effects derived by the Isaria R© sensor. ’−’ indicates
the absence of stress and ’+’ indicates its presence. The significance level is indicated as *** for p < 0.001;
** for p < 0.01; * for p < 0.05, and NS for non-significant differences.

Index Nitrogen Deficiency Water Shortage Weed Competition Fungal Infection

− + Sign − + Sign − + Sign − + Sign

REIP 724 723 NS 723 724 NS 725 722 *** 726 726 NS
IBI 79.6 76.3 NS 80.8 75.1 NS 64.3 91.6 *** 63.2 64.5 NS
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Figure 4. Ten day mean values of spectral indices derived by the Isaria R© sensor. The error bars
demonstrate their upper and lower 95% confidence intervals (Tukey HSD p = 0.05). The most important
indices per stress are shown, separated into three periods: 0–10, 11–20 and 21–30 days after stress
induction. ’−’ indicates absence of stress, ’+’ indicates presence of stress.

3.1.3. Multiplex

Nitrogen Balance Index excited by green or red light, NBIG and NBIR, measured by the
Multiplex sensor could clearly differentiate between nitrogen stressed and non-stressed plants, giving
lower values for the stressed plants (Table 6). An index correlated with flavonoids (FLAV) also
correlated with nitrogen content along with red and far red fluorescence under ultraviolet excitation
(RFUV and FRFUV). Multiplex R© measurements differentiated between stressed and non-stressed
plants already at the second 10-day period (Figure 5a). NBIG gave the best results followed by NBIR
and FLAV. Multiplex could only differentiate water stress indirectly also through the chlorophyll
and the flavonoid content. The distinction between water deprived and non water deprived plants
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is statistically significant with NBIG, flavonoids (FLAV), NBIR, and FERRUV . The value NBIG and
NBIR is higher on the stressed plants than the non–stressed ones. The opposite applies for FLAV
and FERRUV . All of the above indices could differentiate between the two groups in the first days,
and apart from NBIR, also in the last days after the water stress treatment (Figure 5b).
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Figure 5. Ten day mean values of spectral indices derived by the Multiplex R© sensor. The error bars
demonstrate their upper and lower 95% confidence intervals (Tukey’s HSD). The most important
indices per stress are shown, separated into three periods: 0–10, 11–20 and 21–30 days after stress
induction. ’−’ indicates absence of stress, ’+’ indicates presence of stress.

According to the Multiplex R©sensor, identification of weed presence could be detected with the
Nitrogen Balance Indices and the Simple Fluorescence Ratios both under green and red excitation
(Table 6). In all cases, the values of the weedy pots were higher than the weed free pots. Differentiation
was performed in all three periods with NBIG, NBIR, and SFRG, yet the typical increase in their values
between the periods occurred (Figure 5c). For SFRR, significant differences were visible from the
second period. Multiplex R© did not provide many different indices that could differentiate fungal
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infection. Blue green fluorescence under green and ultraviolet excitation (BGFG, BGFUV), FERRUV ,
FERRG and ANTHRG were able to identify the fungi stress (Table 6). Fungal infected plants showed
higher values than the non–infected ones on FERRG and ANTHRG and the opposite on the rest.
FERRUV was able to differentiate between the fungal infected and the healthy plants the first ten days
after inoculation (Figure 5d). The remaining indices were able to differentiate between the two groups
in the second period. FERRG and ANTHRG showed correlation only with fungi stress.

Table 6. Mean values of spectral indices for the main effects derived by the Multiplex R© sensor.
’−’ indicates the absence of stress and ’+’ indicates its presence. The significance level is indicated as
*** for p < 0.001; ** for p < 0.01; * for p < 0.05, and NS for non-significant differences.

Index Nitrogen Deficiency Water Shortage Weed Competition Fungal Infection

− + Sign − + Sign − + Sign − + Sign

BGFUV 147 146 NS 146 148 ** 150 144 *** 162 158 **
RFUV 80.1 73.5 *** 76.7 76.8 NS 74.7 78.8 * 101 100 NS

FRFUV 347 315 *** 327 335 NS 332 331 NS 462 465 NS
BGFG 88.8 90.1 NS 88.9 90 NS 90.6 88.3 ** 106 102 ***
SFRG 7.15 7.03 NS 7.00 7.19 * 7.35 6.83 *** 7.80 7.75 NS
SFRR 5.48 5.38 * 5.37 5.48 * 5.54 5.32 *** 6.35 6.41 NS

FERRUV 2.08 2.33 *** 2.29 2.12 ** 2.16 2.25 NS 2.49 2.31 *
FLAV 0.29 0.33 *** 0.32 0.29 *** 0.30 0.31 ** 0.35 0.34 NS
FERRG 1.80 1.83 NS 1.83 1.80 NS 1.83 1.80 NS 1.70 1.73 *

ANTHRG 0.25 0.25 NS 0.25 0.25 NS 0.25 0.25 NS 0.23 0.23 *
NBIG 6.83 6.15 *** 6.22 6.76 *** 6.74 6.24 *** 6.34 6.47 NS
NBIR 3.04 2.72 *** 2.80 2.97 *** 2.97 2.79 *** 3.14 3.17 NS

3.2. Combinations of Stressors

3.2.1. HandySpec

More than one stress factor can be described with the same HandySpec R© index as presented
in Figure 6. These results are more complicated to be explained and less robust. If the result
increases or decreases simultaneously for both stressors, then the control and the combined stressed
treatment occupy the edge values, while the values from only one stress combination are between the
two aforementioned values. Examples of the above situation can be REIP for nitrogen deficiency and
weed presence, VOG1 for nitrogen deficiency and water shortage, RDVI for water shortage and fungal
infection and G for weed presence and fungal infection. In cases where the values for the stressed
plants increase for one of the two stressors and decrease for the the other one, then the effect of one
stressor counteracts with the effect of the second stressor. We notice that the highest and the lowest
values belong to the pots containing only one stress value. The control along with the combination of
stressors are in between. We can see this outcome in indices like PPR, NDVI and MCARI for water
shortage and weed presence and PVR for water shortage and fungal infection.
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Figure 6. Ten day mean values of spectral indices derived by the HandySpec R© sensor. The error
bars demonstrate their upper and lower 95% confidence intervals (Tukey HSD). The most important
interactions per combination of two stressors are showed, separated into three periods: 0–10, 11–20 and
21–30 days after stress induction. ’−’ indicates absence of stress, ’+’ indicates presence of stress.

3.2.2. Multiplex

For Multiplex R©, apart from indices like FRFUV that can only identify nitrogen deficiency,
FERRG and ANTHRG that can only pinpoint fungi stress, most of the indices showed statistically
significant results for more than one stress factor. As described in HandySpec R©, we have two distinct
cases: (i) if the values increase in the appearance of both stressors; or (ii) in the appearance of one of the
two, the index value increases and for the other the value decreases. If the values shift simultaneously
for both stressors, then the highest and lowest values belong to the control and the combination of both
stressors. Treatments with only one stress factor provide values between the two aforementioned edges.
In Multiplex R© we can clearly see these trends in SFRR and NBIG for identifying the combination of
nitrogen deficiency and weed presence and in BGFUV for identification of weed presence and fungal
infection (Figure 7). If the index increases for one stressor and decreases for the other, then the values
for treatments with only one stressor are the highest/lowest and the values of the control and the
combination of stressors are between those values. For the Multiplex R© data, we can see the results in
FLAV for the identification of nitrogen deficiency and water infection and BGFG for the identification
of water shortage and fungal infection (Figure 7).
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Figure 7. Ten day mean values of spectral indices derived by the Multiplex R© sensor. The error bars
demonstrate their upper and lower 95% confidence intervals (Tukey’s HSD). The most important
interactions per combination of two stressors are showed, separated into three periods: 0–10, 11–20
and 21–30 days after stress induction. ’−’ indicates absence of stress, ’+’ indicates presence of stress.

4. Discussion

The biomass and the shoot-to-root ratio measurements showed that the stressors affected plant
development. Even though the stress factors were there, they were not causing extreme differences
between stressed and non-stressed plants. The largest effect was measured for water content on dry
matter production, where the dry matter yields in the water stressed pots averaged 29.5% less than
that obtained in the non-water-stressed pots. Hence, the data set should be a good starting point for
stress recognition.

4.1. Could Nitrogen Deficiency Stress Be Detected by the Sensors?

When using the HandySpec indices REIP, ZM, VOG1, and GM1, we were able to discriminate
between spring wheat grown with or without sufficient nitrogen supply. REIP was the only index
enabling the detection of nitrogen deficiency as early as 11–20 days after onset of stress. It should be
noted that all plants had the same nutrient conditions until BBCH 12 (ample resources). The delay
in the differentiation between N-stressed and fertilized plants may be attributed to the early growth
stages of the plants at time of fertilization, and their relatively limited N demand at this developing
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stage. As expected, REIP was lower for the stressed than the non-stressed plants. This agrees with the
well documented red shift of the REIP due to higher concentrations of chlorophyll, which normally
follows increased plant N availability. [16,49–53]. The indices VOG1, ZM and GM1 have also been
proven to correlate with chlorophyll content [16,54,55]. Taking into account that VOG and ZM are
simple ratios centered around 730 nm (red), both can be considered as gross estimators of the REIP.
In contrast, GM1 also involves reflection from the green area (dividing reflectance at 750 nm with that
at 550 nm), and has been reported to correlate well with total chlorophyll along with nutrition and
fertilization level [8,52,53,56].

Five of the twelve indices measured with the Multiplex R© sensor could be used to detect nitrogen
deficiency as early as the 11–20 day period. The indices NBIG and NBIR clearly differentiated between
N-stressed and non-stressed plants, giving lower index values for the stressed than the non-stressed
plants. Similar findings have also been reported for bermudagras and turfgrasses [57,58]. Longchamps
and Khosla [59] were able to distinguish between all their four N-levels in an experiment with maize,
using NBIG and NBIR. In our experiment, we also found out that an index related to flavonoids,
FLAV, also contained information usable for nitrogen stress detection. In contrast with NBIG and
NBIR, FLAV had higher, not lower values for the stressed plants. This agrees well with results from
Agati et al. [58]. Several authors have reported that FLAV correlates with the flavonoid levels in
fruits [13,60–62]. Cartelat et al. [13] found a negative correlation between flavonoid levels and
chlorophyll content in wheat. All in all concerning nitrogen deficiency, both the spectrometer and the
fluorometer were able to detect nitrogen deficiency. REIP, VOG1, ZM, NBIG, NBIR and FLAV can be
used for this identification. On the other hand, the Isaria R©sensor did not provide significant data.

4.2. Could Water Stress Be Detected by the Sensors?

Among the five indices presented for HandySpec R© capable in detecting shortage in water,
PVR and G could detect it already 0–10 DAS. This was well before any visual symptoms of water
deprivation occurred. PVR, MCARI and G showed relatively stable values from the 10th DAS and
onwards. All the above indices utilize the reflection of 550 nm (green) in their formula. Lin et al. [17]
pinpointed a shift of the region around 535–540 nm with the water content of Cinnamomum camphora
(Linn.) Seib. Kusnierek and Korsaeth [63] identified the region 560–610 nm as one of three spectral
regions in the range 400–950 nm containing significant information related to water status in spring
wheat. Thenkabail et al. [8] associates the wavebands around 550 nm with total chlorophyll and
biomass, therefore water stress measurements also derive indirectly from chlorophyll measurements.
Wang et al. [64] also showed a robust correlation between PPR and chlorophyll concentration. In the
current study, NDVI, SAVI, OSAVI, VOG1, LIC1, GM1 and ZM could also be used to differentiate
between water deprived and non stressed plants 20–30 DAS. These indices have also previously
been associated with water content in plants [9,17–20]. The correlations between the indices NDVI,
SAVI, OSAVI, VOG1, LIC1, GM1 and ZM at one side and plant water status at the other were probably
an indirect result, as water deprivation affects other parameters of plant growth, like chlorophyll
content and leaf area index, which these indices correlate better with.

Using the Multiplex R© device, four indices (FERRUV , FLAV, NBIG, and NBIR) enabled early
detection of water shortage. Two of the indices, FLAV and NBI, have previously been associated with
water tolerance in wheat [14]. Concerning water stress for both the spectrometer and the fluorometer,
the presented approach appears promising. It can be argued that the spectrometer performed better
than the fluorometer in this task, since the basic recognition indices in the fluorometer are the same as
for nitrogen. PVR and G from the spectrometer can be used for water identification. However, the
robustness of all indices related with water should be confirmed by further studies.

4.3. Could Weed Competition Be Detected by the Sensors?

As expected, weed competition was correlated with many indices calculated from the
HandySpec R© data. As for water shortage, G and other indices correlating with the Leaf Area Index
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(LAI), like NDVI and OSAVI, could be used to identify weediness from the first days of the experiment
and onwards. The stress factor weeds, differed markedly from the other stressors we imposed, as the
weed plants were physically present from the first day of measurement. Since the pots occupy a
predefined space, the plant biomass and the LAI were thus already higher at the beginning of the
measurement period, compared with pots without any weeds planted.

Vegetation Indices like NDVI, REIP, OSAVI, ZM, RDVI and LIC1, contained not only the
information needed to separate between pots with or without weeds, but they also showed an increase
with time, reflecting the growth in biomass during the experiment (both treatments). Measurements
were performed at the early growing stages of the plants (BBCH 12–40). Therefore, crop plants were
also rapidly growing, resulting in a continuous increase in e.g., LAI, commonly shown to be positively
correlated with NDVI. Indices like PVR and PPR could be used to identify weed presence from days
11–20 and beyond. Since the pot size and volume are finite, this result might be an indirect result from
water stress, due to assumedly higher transpiration from pots with weed and wheat plants than from
pots with wheat plants alone.

Weed treatments could be separated by means of the indices REIP and IBI as obtained by the
active spectrometer Isaria R©. The REIP as calculated from the Isaria sensor gave higher values than
the REIP calculated by the Handyspec R©-sensor. This agrees with the findings of Peteinatos et al. [65].
The Multiplex provided useful data, as four of its output-indices (BGFUV , SFRG, SFRR and NBIG)
could be used to separate the weed treatments.

All three sensors provided information for weed identification. HandySpec R©and Isaria R©provided
bigger differences faster than the fluorometer. It should be noted that the classical method of detecting
weeds is by combining high-density RGB-images and image analysis. Such an approach is, however,
less useful for detecting the other stressors of interest in the current study. Moreover, image-based
weed detection is normally performed with the weed plants at a very early development stage, mainly
to reflect the timing of herbicide application in practice. In this study, we focused on the combined
effect of more stressors, and thus selected sensors, which had a potential for identifying more than one
stressor. Therefore, from our perspective, indices MCARI, G, NDVI and OSAVI were able to perform
this task along with SFRG and SFRR.

4.4. Could Fungal Infection Be Detected by Sensors?

Two indices calculated from data obtained by the HandySpec R© could be used to identify infection
by powdery mildew (B. graminis) as soon as 0–10 DAS, NDVI and RVSI, the latter also 11–20 DAS.
This clearly suggests that RVSI is suitable for early, pre-visual, detection of powdery mildew in
wheat. Bauriegel et al. [11] and Bauriegel and Herppich [27] identified the spectra around 550–560 nm,
and 665–675 nm as important for identifying Fusarium infection in wheat, but they could not find
any significant results with NDVI, G and LIC1. Two of the above indices, MCARI and RDVI, use at
least one of the above two spectral ranges in their calculations. Time-wise, the results showed an
interesting point. A series of four indices could discriminate between infested and non-infested in the
second time period. These could also provide indices which enabled a differentiation in the third period,
but differences became smaller. Zhang et al. [26] made a similar observation when investigating yellow
rust infection over 17 days (four measurements at 216 till 233 days after sowing) in wheat with NDVI,
PRI, RVSI and MCARI. Their results also showed the highest correlations at the second measuring date
(225 days after sowing), whereas five days later only PRI was correlated with yellow rust infection.
We cannot explain this phenomenon based on the current data, but this should be investigated in
more detail, since this may be a potential important issue related to pre-symptomatic fungi detection.
Indices like PRI and MCARI that identified water stress and NDVI and MCARI that identified weed
presence, were also able to identify fungi infection. Zhang et al. [26] reported similar results for PRI.
The fact that all types of spectral indices correlated with presence of fungi can be attributed to the
result that fungi infected plants had a reduced growth dynamic, a lower total biomass and LAI.
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Multiplex R© could also differentiate between fungi infected and non-infected plants. Blue-Green
fluorescence under green or ultraviolet excitation (BGFG and BGFUV) and indices relative to
Ferodoxines and Anthocyanins could be used to identify the fungal infection. FERRG and ANTHRG
seemed sensitive only on fungal infection. This can make them an indicator for B. graminis .
Latouche et al. [66] used Multiplex R© to successfully identify Plasmopara viticola in vineyards,
yet the sensor setup was modified. Time-wise, BGFG, BGFUV , FERRG and ANTHRG were able
to identify the fungal infection in the second 10-day period. The result seems similar to the result of the
HandySpec R© sensor. Only FERRUV was able to identify the fungal infection in the first 10-day period.
However, it identified it only in the first 10-day period and the results, even if it is not statistically
significant, were reversed in the second 10-day period. Therefore, more experimentation is needed to
see if this index can be used as a tool to identify B. graminis . Concerning fungal infection, the small
time windows that it can be measured in, makes it challenging to be identified by both spectral and
fluorescence data.

4.5. Could Combinations of Stressors Be Detected by Sensors?

A lot of indices both from the HandySpec R© and the Multiplex R© sensor showed correlations with
more than one stress factor. In the combination of stress factors, if we take into account the different
way that each index reacts to each stressor, the increase through time for most of the indexes and the
different rate of increase per stressor, identifying combinations of stressors with the same index can be
quite challenging. For example, REIP as presented in Figure 3c in the first 10-day period can clearly
differentiate weedy from weed free pots, but could not differentiate per weed group the nitrogen
stress. As days passed by, the non-nitrogen stressed plants increased in value at a higher rate than the
non-stressed plants. In the third 10-day period, there was a clear distinction, between the control and
the stressed pots. The pots containing only one of the two stressors could not be differentiated from
each other. Similar results can be noted for RDVI where, in the second 10-day period, it can clearly
differentiate between all four water shortage and fungal infection combinations. On 21–30 DAS, only
three groups are clearly distinguishable (control, combinations, one stressor). For weed presence and
fungal infection, G presents the aforementioned three groups on the 10–20 DAS, but in the third 10-day
period, fungal infection cannot be differentiated on the weed free pots. Weedy pots could clearly be
differentiated from weed free and in their case fungal infection could also be pinpointed. On the other
hand, VOG1 can only differentiate the control from the other three treatments in the third 10-day
period. Zhang et al. [26] also pinpointed the difficulty of identifying more than one stress factor with
the same index.

In cases where the results of the two stressors are heading in the opposite direction, identifying
the existence of one stressor or the other can be easy. We can see this in PPR, NDVI and MCARI for
separating water shortage and weed presence and in PVR for the identification of weed presence and
fungal infection from 10–20 DAS onwards. On the other hand, identification between the control and
the combinations of the two stressors is harder. The ability to identify the control from the combination
of two stressors relies only on the condition, if the results on the index for one stressor are higher than
the other. NDVI is not able to perform this, while the rest of the aforementioned indices can perform
this separation in the third 10-day period.

Combination of more than one stressor with the aid of the same index seems harder for the
Multiplex R© sensor. NBIR can separate nitrogen deficiency in the combination with water shortage
from the second 10-day period onwards. NBIG can do the same for the combination of nitrogen
deficiency and weed presence. For both indices, only the pots having nitrogen deficiency could
differentiate the second stressor (water deficiency and weed presence) in the third 10-day period. BGFG
and BGFUV could differentiate fungal infection in the second 10-day period in the combination of water
shortage and weed presence, respectively. In the third 10-day period, BGFG could separate only water
shortage and BGFUV only weeds. Identification of both stressors was not performed simultaneously
but in different time periods. That pinpoints the constraints of creating a robust stress identification
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based on sensor values. Depending on the circumstances, a similar result could be attributed to one
or more different stressors. A similar example can be SFRG which can differentiate water stress in
weed free pots in the first 10-day period. However, from the 11–20 DAS onwards, the differentiation
performed is only weedy and weed free pots regardless of the water stress. Concerning interaction of
more than two factors, no significant results were identified.

5. Conclusions

Water deficiency and fungal infection could be detected pre-symptomatic, i.e., 0–10 days after
stress induction (DAS), with one or more of the sensors tested. The presence or absence of weeds could
also be identified using the same sensors (present during the entire experiment).

Nitrogen shortage could be detected 10–20 DAS by the index REIP (Red Edge Inflection Point)
measured with HandySpec R© and several indices based on Multiplex. The lack in detection of nitrogen
shortage earlier could be attributed to the early growth stage (BBCH 12–14) and hence the limited
nitrogen needs. Water deprivation in spring wheat could be detected as early as 0–10 days after
stress induction (DAS) by the Photosynthetic Vigor Ratio (PVR; 550 nm − 650 nm/550 nm + 650 nm),
the Plant Pigment Ratio (PPR; 550 nm − 450 nm/550 nm + 450 nm) and Greenness (G; 554 nm/677 nm)
from the HandySpec R© spectrometer and several indices based on the Multiplex R© fluorometer.
Weediness (Sinapis alba) could be detected from 0–10 DAS and onwards by indices measured by
all three sensors, including REIP and biomass index (IBI) from the Isaria sensor. Fungal infection
in spring wheat (Blumeria graminis f. sp. tritici) could be detected from 0–10 DAS by Red-edge
Vegetation Stress Index (RVSI; (714 nm + 752 nm/2) − 733), Photochemical Reflectance Index
(PRI; 531 nm − 570 nm/531 nm + 570 nm) and Normalized Phaeophytinization Index (NPQI; 415 nm
− 435 nm/415 nm + 435 nm) measured with HandySpec R© and by the ratio FERRG (Fluorescence
Excitation Ratio; Red/Green excitiation) measured with Multiplex R©. One of the main findings of this
study was that the results both from spectral and from fluorescence data varied more due to the plant
development rather than the presence or absence of a stress factor. In a lot of cases, where values
were attributed to stressed plants at the early stages, ten or twenty days later the same values are
then attributed to the non stressed plants. The study shows that it is possible to distinguish between
a stressed plant and an unstressed control plant at the same growth stage, but we cannot pinpoint
a general threshold value to use for discrimination regardless of the plant development stage. This
hinders the stress identification process. More work needs to be done in order to model how the
spectral indices change with the growth stage of the plants. In some cases, interactions of more than
one stress factor could be viewed with the aid of the same index, yet these results are more complicated
to interpret. Interactions with more than two stress factors could not present any significant results.
None of the indices showed a significant three-way interaction.
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