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Abstract: Farmers are increasingly demanding rapid, cost-effective, easy-to-use and  

non-destructive methods for monitoring changes in the physical and chemical 

characteristics of crops and plants from the early stages of crop development until harvest. 

Remote and proximal sensor tools have been used recently to monitor different aspects of 

cereal production (e.g., fertilization, crop diseases). Most of these tools are characterized as  

non-destructive, non-invasive and easy-to-use, and most of them are based in near-infrared 

(NIR) spectroscopy. This article reviews recent and potential applications for the use of 

proximal sensors based on NIR spectroscopy to monitor dry matter (DM), yield, nitrogen 

and diseases in different cereal crops. 
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1. Introduction 

Farmers are increasingly demanding rapid, cost-effective, green and non-destructive methods for 

monitoring changes in the physical and chemical properties of crops throughout the lifecycle of the 

plant with the goal to establish the optimum harvest date, to improve agronomic management practices 

and to improve crop diagnostics, among other issues [1,2]. Concepts, like water and/or nitrogen use 

efficiency, have been around for decades [1–3]. However, these concepts have not been part of the 
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decision making process, nor have they been used as metrics for evaluating the performance or a 

production system in real farm conditions due to lack of adequate tools and sensors [1–3]. In recent 

years, farmers, researchers and instrument manufacturers have been combining expertise and are 

looking for efficient solutions to solve different issues associated with the development of sensors and 

for ultimately improving current production or processes at the farm level [1–5]. Therefore, the 

development of tools that farmers can use to evaluate efficiency at the farm level will open a new era 

in agronomy and farming [1–5]. The exponential growth of sensor capabilities (e.g., infrared,  

hyperspectral, multi-spectral) and technologies (e.g., drones) allow exploiting these capabilities [1–5]. 

Proximal sensors are powerful tools and have been used for different purposes (e.g., in temporal 

analysis of crop field areas), providing added value for crop production, analysis and quantification of 

crop diseases and the analysis of soil physical and chemical properties [1–8]. More recently, sensor 

networks have been allowing for the collection of multiple types of in situ information, which can be 

conveniently exploited for controlling crop production or monitoring ecosystems by analysing 

different variables (e.g., light, temperature, humidity) [5,7,8]. This information can be also acquired 

using sensors deployed in different countries or areas where the data can be processed remotely, using 

web-based platforms [5,9]. For example, the use of wireless sensor technologies (WST) in specialty 

crops offers new features, both in terms of sensing and communications [9], allowing external service 

providers to access sensor data online, and as a diagnostic tool for any relevant crop production issue. 

A recent review by Ruiz-Altisent and collaborators [9] highlighted the advances in wireless sensor 

networking (WSN) technology and the development of low-cost, low-power, multifunctional sensor 

nodes. These authors emphasized that the application of these technologies for monitoring  

intensively-cultivated crops is new, since the necessary hardware has only recently become available, 

although other authors have demonstrated this type of application for specialty crops [1,6,9]. 

Most of the applications of NIR spectroscopy described in the literature essentially rely on spot 

measurements [9]. Nowadays, the availability of hyperspectral cameras and spectrographs has 

provided exciting new possibilities for online defect detection, which were not achievable with the use 

of sensors based only on the visible (VIS) range of the electromagnetic spectrum (e.g., detection of 

defects in fruits) [9]. For example, broadband images (e.g., grey-scale and colour images) are 

inappropriate for detecting specific quality attributes (other than colour attributes or certain surface 

blemishes that are visible), because many chemical components (pigments, sugar, starch, water, 

protein, etc.) are sensitive to specific narrow wavebands in or beyond the visible region [9]. Spectral 

imaging technologies, which acquire single or multiple images at selected wavelengths, might be used 

to detect specific quality attributes in a wide range of crops and horticultural products [9]. Spectral 

imaging may be categorized into multispectral and hyperspectral imaging. Multispectral imaging 

acquires spectral images at a few discrete narrow wavebands (the bandwidth may range between 5 and 

50 nm). Hyperspectral imaging, on the other hand, acquires tens or hundreds of spectral images at 

congruous wavelengths or wavebands over a specific spectral region [9,10–12]. While acquisition 

speed is still an issue in modern instrumentation, the use of focal plane array cameras may solve this 

issue [9]. Hyperspectral imaging integrates the main features of imaging and spectroscopy to acquire 

both spectral and spatial information from the product simultaneously, thus making it especially 

suitable and more powerful for inspecting horticultural and food products, whose properties and 

characteristics often vary spatially [10–12]. As reviewed by other authors, hyperspectral imaging is 
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commonly implemented in one of the two sensing modes: push broom or line scanning mode and 

filter-based imaging mode [10–13]. In in-line scanning mode, the imaging system line scans the 

moving product items, from which three-dimensional (3D) hyperspectral images, also called 

hypercubes, are created. In filter-based imaging mode, spectral images are acquired from the stationary 

product items for a sequence of wavebands using either a liquid crystal tuneable filter (LCTF) or  

an acousto-optic tuneable filter (AOTF) [14,15]. Line scanning mode is most commonly used because 

it is relatively easy to implement, particularly when real-time, online applications are needed.  

Filter-based hyperspectral imaging systems require more complicated calibration and are not suitable 

for online applications [14,15]. A hyperspectral imaging system needs to consist of a high performance 

digital camera covering the spectral region of interest, a large dynamic range, low noise level and good 

quantum efficiency [9,11,12]. Moreover, an imaging spectrograph, which disperses line images into 

different wavelengths, is an essential component for a line scanning hyperspectral imaging  

system [9,11,12]. It should have an appropriate optical resolution and spectral response efficiency with 

minimal aberrations. In addition to this, it is critical to have an appropriate DC-regulated light source 

that is highly stable, with a smooth spectral response [9,11,12]. Those who have sufficient knowledge 

and experience in optics and imaging may use off-the-shelf optical components to assemble a 

hyperspectral imaging system to achieve cost savings and to meet their specific application needs in 

the laboratory [9,11,12]. The availability of fast and relatively cheap diode array spectrometers allows 

acquiring an NIR spectrum in as little as 50 ms [9,11,12]. These types of instruments have boosted 

research and development towards a wide range of commercial applications [9,11,12]. However, the 

widespread use of this technology depends on several factors, such as cost and availability of 

instruments and the type of application (online, in field). In most of these applications, model 

robustness in terms of accuracy and precision is the most important factor to be considered [9,11,12]. 

This article reviews some applications on the use of proximal sensors based on the near-infrared 

(NIR) to monitor dry matter (DM), yield, nitrogen, pest and diseases in different cereal crops.  

2. Analysis of Crops and Plants 

2.1. Measurement of Dry Matter (Moisture) and Yield 

In the context of climate change, environmental adaptation of crops and sustainable agriculture, the 

determination and monitoring of water status in plants is of significant importance in order to schedule 

irrigation times and volumes, preserve water or to manipulate composition. Near-infrared (NIR) 

spectroscopy in the wavelength range above 1000 nm is becoming widely used to monitor stomatal 

conductance of plant canopies in the lab and in the field [4,16]. 

It is generally accepted that dry matter (DM) yield is one of the most important parameters in crop 

production, as it is directly related to production costs. This parameter greatly influences the 

concentration of nutrients in the whole plant [17–22]. However, taking measurements of DM (water) 

in plants or crops on the farm is not straightforward, presenting several logistical and  

technical challenges [17–22]. 
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In recent years, the use of NIR spectroscopy for online measurements of DM has been made 

possible by the availability of in field portable NIR instruments that have facilitated the direct selection 

of samples in the field for this parameter without pre-processing (in field analysis) [17–22]. 

More complex morphological characteristics, such as tiller density, auxiliary formation, shoot 

branching and spike/spikelet morphology, are considered to be better monitored using  

three-dimensional scanning, as recently shown in maize [23,24]. According to these authors, the 

combination of three-dimensional analysis with NIR spectral reflectance data might be considered as a 

future tool for improving both DM and morphological characteristics in crops [23,24]. In recent years, 

“on the go” or in field NIR spectroscopy methods have been also evaluated to predict nitrogen and 

water content in different cereal crops [25,26]. 

2.2. Measuring Nitrogen and Mineral (Macro and Trace Elements) Status in Crops 

It has been reported by several authors that one of the major causes for low nitrogen (N) use 

efficiency (NUE) in the current N management practices is the poor synchrony between soil N supply 

and crop demand [27–30]. Routine laboratory methods for the determination of N concentration in 

crops are based on methods, such as Kjeldahl distillation (Association of Official Agricultural 

Chemists, 1990) or Dumas. These methods are widespread and used in many routine laboratories, even 

though time-consuming and expensive [20–22,25,26]. 

In recent years, it has been demonstrated that NIR spectroscopy can be implemented to more 

efficiently determine N concentrations in grass samples [20–22], where an NIR-based system 

replacing wet chemistry methods with online field screening constitutes a more direct strategy to select 

for improved N uptake efficiency and total N concentration [20–22,25,26]. 

One of the potential advantages of using NIR spectroscopy for in field crop monitoring is the 

analysis of fresh plant materials (e.g., leaf, whole plant) without the need for drying, grinding or 

sending the sample to the lab [17–19]. This approach has been tested in wheat and other cereal crops 

by several authors [20–22,25,26]. Recently, the use of visible (VIS) and NIR spectroscopy has been 

reported in order to measure trace elements in leaves of rice [31]. In that paper, two wavelength 

selection methods applied to VIS-NIR spectra were investigated to determine the levels of iron (Fe) 

and zinc (Zn) in rice leaf samples [31]. The overall results reported by these authors indicated that 

VIS-NIR spectroscopy, combined with different chemometrics tools, was very efficient in terms of 

accurate determination of trace elements in rice leaves [31]. 

3. Determining Grain Composition at Harvest 

Several authors have evaluated the feasibility of using NIR spectroscopy for at harvest  

applications [21,23,24]. In routine analysis of cereal grains, the spectrum of the sample is typically 

measured from fine ground powders or from the bulk of whole grain [32–34]. In some cases (e.g., 

breeding), single-seed samples can be also used and analysed using NIR spectroscopy in order to 

measure different chemical properties. For example, maize kernels can be classified according to 

characteristics, such as starch composition, hardness, avidin or mycotoxin levels [22,35]. However, 

samples still need to be sent to the lab, causing unavoidable time delays and cost. 
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Research and development on the use of NIR spectroscopy on agricultural harvesters have presented 

new opportunities (and challenges) to develop novel platforms that will enable large-scale screenings 

of crops for several characteristics [21,23,24]. These so-called high throughput techniques could bring 

remarkable progress to plant research and open new possibilities in farm management [20–24]. 

The use of NIR spectroscopy on agricultural harvesters reduces the labour and expenditure required 

for the determination of relevant properties. In contrast to conventional sample-based methods, NIR 

spectroscopy on agricultural harvesters secures a good distribution of measurements within plots and 

covers substantially larger amounts of plot material [20–24]. Consequently, agricultural harvesters 

equipped with NIR instruments will reduce the unavoidable errors associated with traditional sampling 

and produce more representative measurements of the plot material. This approach can also be used 

successfully to determine DM, starch and crude protein contents in several grains at the  

farm level [20–24]. 

In silage maize, the potential of this technology has also been reported for the determination of DM, 

starch and soluble sugars [17,18,20–24]. The use of NIR spectroscopy on agricultural harvesters might 

also represent a high-throughput phenotyping technique with substantially reduced sampling error, 

whereas spectral reflectance of plant canopies facilitates the determination of dynamic traits in a  

non-invasive mode [20–24]. 

The prediction of constituent concentrations using NIR spectroscopy on intact single seeds has been 

most successful for plants with small seeds and those with a relatively uniform distribution of seed 

constituents, such as rapeseed, wheat, sunflower achenes or soybean seeds [36–40]. The potential of 

NIR spectroscopy for non-destructive determination of quality parameters, including oil and protein 

contents in shell-intact cottonseed, was also reported [41]. Determination of amino acid nitrogen 

(AAN) in tuber mustard was also reported by other authors. Moving window partial least squares 

(PLS), combined with Savitzky–Golay smoothing, was used for the wavelength selection. Based on 

the various divisions in the calibration and prediction sets, an effective modelling approach with good 

stability was proposed by these authors [42]. These results confirmed that the long-wave NIR region 

contains enough information for the quantification of AAN in tuber mustard. The authors selected the 

wavelengths between 1700 to 2350 nm as the most appropriate region to develop the PLS models [42]. 

These results can serve as valuable references for designing spectroscopic instruments for quality 

evaluation of tuber mustard [42]. The determination of protein and starch, as well as the effect of 

sample presentation during the analysis of grain at harvest was also investigated [43]. 

4. Monitoring Plant Pests and Diseases 

Various spectroscopic and imaging techniques have been recently evaluated for the detection of 

symptomatic and asymptomatic plant diseases as reviewed by both Lee and colleagues [44] and 

Sankaran and colleagues [45]. Some of the methods used by different authors included fluorescence 

imaging, hyperspectral imaging, infrared spectroscopy, fluorescence spectroscopy and VIS-multiband 

spectroscopy [4,44,45]. In particular, the use of NIR spectroscopy (950 and 1650 nm) was explored to 

determine the percentage of fungal infection in rice samples of yellow-green Aspergillus (aflatoxigenic 

fungal infections) [44,45]. A rapid identification method for aflatoxin B1 in paddy rice samples was 

developed by using NIR spectroscopy under a wavelength range of 1000 to 2500 nm. Paddy rice 
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samples were collected from both natural and artificial infection with aflatoxin B1 in order to build 

PLS calibration models [46]. The best predictive model to detect aflatoxin B1 in paddy rice was 

obtained using a standard normal variate detrending (SNV-D) spectra, resulting in a correlation of 0.85 

and a SEP (standard error of prediction) of 3.21% [46]. These results showed that NIR spectroscopy 

could be a useful method for determining aflatoxin B1 in paddy rice and might be used to monitor 

aflatoxin fungal contamination in postharvest paddy rice during storage [46]. The use of VIS-NIR 

spectroscopy has been applied and evaluated as a method for the detection of plant diseases, 

monitoring of stress, injury and diseases in plants by several authors [44–49]. It has been reported by 

several authors that VIS-NIR spectroscopy allows the determination of physiological stress levels in 

the plants, and some of these wavelengths might be related to a specific disease even before the 

symptoms are visible [44,45]. In recent years, the monitoring or measurement of fungal-derived toxins 

in cereals, such as aflatoxins, deoxynivalenol and other mycotoxins, has been reported by several 

authors [50–52]. The use of NIR spectroscopy has been also reported for the detection of insect 

contamination or to detect insect damage in cereals [53]. 

5. Final Considerations 

Adapting and using advanced technologies is a promising way to efficiently and reliably improve 

management farming practices, as well as to move towards the application of best management 

practices in the process and commercialization of agricultural products and commodities. Different 

studies have shown the important role of proximal sensors based on NIR spectroscopy in the analysis 

of crops. More recently, the use of NIR spectroscopy on agricultural harvesters has shown the potential 

to reduce the manpower and expenditure required for the determination of relevant properties in 

different crops, as well as reducing the sampling error, and it delivers more representative 

measurements of the plot. The measurement of quality parameters, such as protein and dry matter 

during harvest, are continuing to come online and being successfully used by farmers in Australia, 

Canada, Europe and the USA. 

The accuracy and robustness of the NIR calibration used in the field compared to those used in the 

lab should be sufficient even when they are used to predict the quality attributes of the product 

specimen that were not used in the model calibration. Calibration models to be used in practice should 

be based on large datasets, encompassing several origins, climate conditions, seasons and operational 

conditions, such as temperature, and optimized towards robustness by incorporating appropriate 

spectral pre-processing. 

The potential savings, reduction of analysis time, cost and the environmentally-friendly 

(reagentless) nature of this technology places proximal sensors based on NIR spectroscopy as a very 

attractive technique with a bright future to be used in farm applications for crop properties. It is clear 

that the breadth of these applications, either in routine use or under development, is showing no sign of 

diminishing. The development of hyperspectral imaging, micro-spectroscopy and new algorithms 

(topics not covered in this report) will place NIR spectroscopy as one of the most useful tools in crop 

monitoring and as the preferred in field technology in the near future. 

The application of NIR technology across the entire food supply chain, such as in the hands of 

landholders with large (many square km) and small (less than one hectare) holdings, in all food 
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processing plants and for retailers and consumers is not unrealistic [54]. Batten [54] also added that the 

limits of the technology must be appreciated and any misuse monitored by a spectroscopy specialist. It 

is in this context that one of the main barriers to the development of these applications is the lack of 

academic education in spectroscopy and chemometrics in disciplines related to plant and soil sciences. 

However, without a doubt one, of the biggest challenges for the use of NIR spectroscopy will be the 

interpretation of the spectra obtained, as well as the mathematical models through multivariate analysis 

or chemometrics in order to develop robust and reliable applications for crops. 
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