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Abstract: In vineyard mulching research, using biodegradable liquid mulch represents a
novel and environmentally conscious approach to mulching. In comparison, grapevine
branch return has been identified as the most effective mulching method. The effects of in-
row mulching with two materials, biodegradable liquid film (BLF) and grapevine branches
(GBM), on soil properties and microbial communities in the vineyard were assessed using
a one-way horizontal block test with tillage as a control. The results indicated that the
application of mulching resulted in a reduction in soil bulk weight; an increase in soil
moisture; an enhancement in soil organic matter; and a notable elevation in soil nutrients
content compared to the control treatment. Both mulching techniques increased the abun-
dance and diversity of soil microorganisms, strongly correlated with soil physicochemical
properties. The correlation analysis demonstrated that total organic carbon (TOC); total
nitrogen (TN); total potassium (TK); nitrate nitrogen (NN); and available phosphorus (AP)
had the most significant impact on shaping the microbial community, exhibiting a positive
correlation with microbial diversity. Additionally, soil nutrients were identified to exert a
more pronounced influence on the composition of the bacterial community.

Keywords: biodegradable liquid film; soil nutrients; microorganisms

1. Introduction
The practice of orchard mulching effectively alleviates surface runoff [1,2], prevents

soil erosion and nutrient loss [3], improves soil fertility [4], changes the soil structure [5],
reduces water evaporation, and maintains soil moisture. Mulching also has the effect
of improving the microenvironment within the orchard, increasing the structural and
functional diversity of soil microorganisms [6] and promoting microbial metabolism and
reproduction [7]. Mulching treatment can improve the water retention capacity of soil,
increase soil enzyme activity [8], improve the soil structure, significantly reduce the soil
volume weight, increase soil porosity, improve soil permeability (which benefits root
growth) [9], optimize the development of shallow and lateral roots, and increase root
density and growth [9]. It can also increase the content of soil nutrients in the short
term [10] and increase the soil carbon–nitrogen ratio [11]. Mulching treatment results in the
advancement of grape phenology, increases the fruit setting rate, and makes fruit mature
earlier [12]. It can also increase the chlorophyll content of grape leaves, enhance the rate of
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photosynthesis and rate of color change of grapes, and promote fruit maturity [13], all of
which increase the fruit yield and quality.

Recently, there has been a notable increase in interest in sustainable and environ-
mentally conscious agricultural practices as applied to grapevines, coinciding with the
broader context of ecological transition [14–16]. Grape branch mulching (GBM), defined
as the practice of covering soil surfaces with a specified depth of branches, has proven
an efficacious method for returning branches to agricultural fields [17]. It has been ob-
served that GBM can markedly enhance crop yields and precipitation utilization, control
weed growth, optimize the soil structure, maintain moisture, moderate temperatures, and
alter biodiversity [18–20]. A synthesis of prior research indicates that grapevine branch
return represents the most efficacious mulching method when compared to other forms of
mulching, including mulch, straw mulch, and grass mulch [21,22].

The preliminary research indicates that biodegradable liquid film (BLF) has the poten-
tial to serve as an effective alternative material in place of plastic mulch [23]. This approach
has already been employed in numerous countries, including Norway, Japan, China, and
Spain, as a means of preventing pollution from plastic residues [24–27]. The BLF is a new
crop management technique for moisture retention, which can be broken down naturally
by sunlight and soil micro-organisms, without damage to the ecosystem. The BLFs act
as binders, stabilizing soil aggregates, binding soil particles together to form aggregates,
reducing surface damage and soil wind erosion, improving the soil structure, regulating
soil’s physical and chemical properties, promoting crop growth and development, promot-
ing microbial growth and proliferation, and promoting the conversion and accumulation of
soil organic matter to improve soil fertility [28,29]. The BLF material used in this trial is an
environmentally friendly, highly adhesive soil structure regulator. Once sprayed onto the
soil surface, it rapidly forms a multimolecular network membrane that seals the pores on
the soil surface and minimizes soil water evaporation without affecting rainfall infiltration.

In this study, GBM and BLF were used as mulches, taking tillage as a control, in
order, to investigate the changes in soil microbial communities and the influencing factors
under the different treatments, through the determination of various physico-chemical soil
properties and 16S rRNA and ITS rRNA gene sequencing.

2. Materials and Methods
2.1. Site Information and Sampling Collection

The experiments were carried out in a flat orchard in Shengtang Winery in the middle
of the Guanzhong Plain, Yangling, Shaanxi, China (34◦27′ N; 108◦8′ E) in the years 2021
and 2022. The site exhibits the typical semi-humid and semi-arid climate of the warm
temperate zone of East Asia. Its altitude is 514 m, its mean annual temperature is 15.12 ◦C,
its mean annual rainfall is 664 mm, its frost-free period is 211 d, its annual average sunshine
duration is 2163.8 h, and its annual total solar radiation is 480.79 kJ/cm2 (data from China
Statistical Yearbook). The soils in the orchard exhibited a relatively uniform composition,
predominantly loam.

The material used in this experiment was Vitis vinifera L. cultivar ‘MeiLi’ selected and
bred by the College of Enology, Northwest Agriculture and Forestry University. The vines
were planted in 2008 in Shengtang Vineyard, with a spacing of 1.0 m between vines and
2.5 m between rows and a row length of 90 m. A single hedge frame system was applied,
and single stems and double arms with long and short branches were mixed and trimmed.

The in-row mulching treatment was implemented prior to germination in the month
of March of each year. The treatments were comprised of three distinct methodologies:
biodegradable liquid mulch film (BLF), grapevine branch mulching (GBM), and tillage,
which served as the control. A single-factor, level-block design with three replicates was
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employed. The experimental area was divided into three distinct blocks, each serving as a
replicate. Each experimental unit, or block, consisted of three treatments, each occupying
two rows with 90 vines per row. In order to circumvent the effects of wind drift and edge
effects, the treatments were arranged in nonadjacent rows. Within the control rows, the
soil was cultivated to keep it weed-free until harvest. The BLF material with a humic
acid content of 121.6 g/kg, purchased from Shaanxi Kerui Company, was applied to
the soil in the BLF-treated rows. Soil sprayed with BLF is black and becomes lighter
as the BLF degrades. The soil was covered with segments of broken grapevines in the
GBM-treated rows.

Soil moisture content and bulk density were determined while harvesting the fruit.
In addition, surface soil samples (0–20 cm) from five randomly selected locations in each
treatment were also collected and mixed. Samples were divided into two parts; one part
was moistened and stored in a −80 ◦C freezer for the determination of soil microorganisms,
and the other part was air-dried and passed through a steel sieve for the determination of
soil nutrients.

2.2. The Determination of Soil Characteristics

Soil temperature, soil moisture content, bulk density, total organic carbon (TOC), total
nitrogen (TN), total phosphorus (TP), total potassium (TK), ammonium nitrogen (AN),
nitrate nitrogen (NN), available phosphorus (AP) and available potassium (AK) content
were analyzed. Measurements of TN, TP, and TK were made following the methods
of [30], using the H2SO4-H2O2 digestion method with modifications. Measurements of
available nutrients were based on the methods of [30]. Among them, AN and NN were
determined using the KCl extraction method, AP was measured by the NaHCO3 dissolution
method, and AK was analyzed via the NH4OAc extraction method. Soil temperatures
were monitored at a depth of 20 cm using temperature and humidity loggers (RC-4HC
(Jiangsu Jingchuang Electric Co., Jiangsu, China)). A total organic carbon analyzer (TOC-
L03030135) was used to determine the TOC. TN, TP, TK, AN, NN, AP, and AK contents
were determined by an AA3 continuous flow analyzer (Flowsys03030402).

2.3. Soil DNA Extraction and Illumina Sequencing

Microbial DNA was extracted with HiPure Soil DNA Kits (Magen, Guangzhou, China)
in accordance with the manufacturer’s protocols. Amplification and sequencing of the
V3—V4 regions of the bacterial 16S rRNA gene used primers 341F (CCTACGGGGNG-
GCWGCAG) and 806R (GGACTACHVGGGTATCTAAT) [31]. And amplification of the
ITS1 region of the fungal DNA gene used primer pairs ITS1F (CTTGGTCATTTAGAG-
GAAGTAA) and ITS2 (GCTGCGTTCTTCATCGATGC) [32]. Purification was performed
using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA)
according to the manufacturer’s instructions, and quantification was performed using the
ABI StepOnePlus Real-Time PCR System (Life Technologies, Foster City, CA, USA). Puri-
fied amplicons were subjected to double-end sequencing (PE250) on the Illumina platform
according to standard practices.

2.4. Statistical Analysis

The data on soil characteristics were organized in Microsoft Office Excel 2017, analyzed
using IBM SPSS Statistics 21, and plotted using GraphPad Prism 6. Prior to conducting
a one-way ANOVA, the data were tested for normality and homogeneity of variance.
The p-values of the data were all greater than 0.05. This indicated that the data were not
statistically significant, followed a normal distribution, and exhibited an homogeneity
of variance. The threshold for statistical significance was set at p < 0.05 for the one-
way ANOVA and Duncan’s multiple comparison tests. The multiple comparison test
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was employed solely for the purpose of facilitating comparisons between treatments.
The analysis of biological information was conducted utilizing Omicsmart (http://www.
omicsmart.com accessed on 17 February 2025).

3. Results
3.1. Differences in Soil Characteristics Within Two Treatments and Control

In this experiment, the characteristics of the soil were observed under two mulch
treatments (BLF and GBM) and a control in the years 2021 and 2022. There were significant
differences between the treatments in the observed soil parameters. The GBM significantly
reduced the soil bulk density and increased the soil moisture content. Soil TOC, TN, and
TK content increased significantly under the two mulch treatments. However, the effect
of the mulch on TP content differed between years. Of these, the TOC and TN content
varied consistently across all three sites, with GBM > BLF > control. In addition, the overlay
increased AN, NN, AP, and AK contents. Among them, the change pattern of AP content
was consistent over the two years, showing GBM > BLF > control in Table 1.

Table 1. Soil characteristics of two treatments (BLF and GBM) and control at harvest.

Soil Parameters Years Control BLF GBM

Soil temperature (°C) 2021 24.8 ± 0.19 a 25.29 ± 0.59 a 24.47 ± 0.81 a
2022 24.4 ± 0.54 a 25.48 ± 0.38 a 23.22 ± 0.23 b

Soil moisture content (%) 2021 19.45 ± 2.39 b 14.61 ± 3.79 b 28.82 ± 3.34 a
2022 8.34 ± 1.3 c 10.12 ± 0.42 b 14.65 ± 0.93 a

Bulk density (g/cm3)
2021 1.31 ± 0.03 b 1.43 ± 0.08 a 1.19 ± 0.05 c
2022 1.26 ± 0.03 a 1.06 ± 0.02 b 1.09 ± 0.11 b

Total organic carbon
(TOC) (%)

2021 1.29 ± 0.05 c 1.52 ± 0.04 b 2.16 ± 0.06 a
2022 1.1 ± 0.02 c 1.25 ± 0.01 b 2.05 ± 0.01 a

Total nitrogen (TN)
(g/kg)

2021 1.39 ± 0.01 c 1.46 ± 0.03 b 1.69 ± 0.04 a
2022 1.34 ± 0.02 c 1.44 ± 0.05 b 1.87 ± 0.01 a

Total phosphorus (TP)
(g/kg)

2021 0.42 ± 0.02 a 0.25 ± 0.02 b 0.22 ± 0.02 b
2022 0.27 ± 0.04 a 0.17 ± 0.03 b 0.14 ± 0.07 b

Total potassium (TK)
(g/kg)

2021 10.64 ± 0.32 b 10.89 ± 0.18 ab 11.3 ± 0.29 a
2022 8.1 ± 0.24 ab 8.02 ± 0.29 b 8.51 ± 0.07 a

Ammonium nitrogen
(AN) (mg/kg)

2021 6.89 ± 0.31 a 6.48 ± 0.06 b 7.22 ± 0.12 a
2022 4.64 ± 0.34 b 5.78 ± 0.3 a 6 ± 0.43 a

Nitrate nitrogen (NN)
(mg/kg)

2021 20.6 ± 1.99 b 23.07 ± 0.64 b 28.32 ± 1.31 a
2022 13.8 ± 1.58 c 35.57 ± 2.3 a 26.48 ± 0.43 b

Available phosphorus
(AP) (mg/kg)

2021 9.64 ± 1.83 c 26.51 ± 0.57 b 63.83 ± 5.57 a
2022 92.23 ± 4.03 c 103.84 ± 3.5 b 139.56 ± 6.57 a

Available potassium
(AK) (mg/kg)

2021 369.64 ± 5.79 b 289.4 ± 5.79 c 627.08 ± 5.79 a
2022 231.98 ± 7.81 c 272.52 ± 7.81 b 565.31 ± 15.6 a

Notes: One-way ANOVA was performed only between treatments for the same indicator in the same year, with
different lowercase letters indicating significant differences (p ≤ 0.05).

3.2. Differences in Soil Microbial Community Characteristics Within Two Treatments and Control

A total of 3,703,772 and 4,379,172 valid 16S rRNA and ITS rRNA sequences were
obtained from 36 soil samples from 2021 and 2022. Among them, there were 1,849,980 16S
sequences and 2,180,769 ITS sequences in 2021, and clusters with a 97% similarity were
assigned to 82,421 bacterial and 14,788 fungal OTUs, respectively. And there were
1,853,729 16S sequences and 2,198,403 ITS sequences in 2022, and clusters with a 97%
similarity were assigned to 84,366 bacterial and 17,139 fungal OTUs, respectively.

http://www.omicsmart.com
http://www.omicsmart.com


Agriculture 2025, 15, 927 5 of 21

The number of bacterial core OTUs identified in 2021 in the three groups of soils
totaled 2295, with 750, 839, and 443 unique OTUs in the BLF, GBM, and control soils,
respectively (Figure 1a). Then, the fungal OTUs Venn diagram showed that there were
357 core OTUs in the three groups, and soils from the BLF, GBM, and control had 118, 153,
and 221 unique OTUs, respectively (Figure 1b). The number of core OTUs identified in
2022 in the three groups of soils totaled 2427, with 550, 582, and 471 unique OTUs in the
BLF, GBM, and control soils, respectively (Figure 1c). Then, the fungal OTUs Venn diagram
showed that there were 515 core OTUs in the three groups, and soils from the BLF, GBM,
and control had 140, 164, and 110 unique OTUs, respectively (Figure 1d).
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Figure 1. Venn diagrams demonstrating the shared and unique bacterial and fungal species in
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in 2021 (b), the number of bacterial species in 2022 (c), and the number of fungal species in 2022 (d).

The NMDS plots based on confidence intervals (p < 0.05) revealed the clear separation
of the three groups of soil samples, indicating significant differences in the bacteria and
fungi floras of the three soil groups (Figure 2). The UPGMA-based clustering dendrograms
revealed significant differences in bacterial and fungal communities between the three
groups of soils (Figure 3), indicating that ground cover had a significant impact on soil
microbial communities. As the number of sequences per sample increased, the sparse
profile of the operational taxonomic units (OTUs) reached a plateau. This emphasizes that
40,000 and 60,000 sequences per sample were sufficient to characterize the soil bacterial
and fungal communities in the studied soils (refer to Figure 4).
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The presence of ground cover has been demonstrated to significantly enhance the
diversity of bacterial communities. The control soil bacterial Simpson index, Shannon
index, Chao 1 index, and ACE index exhibited the lowest values at 10.08, 0.9966, 4780.65,
and 5100.1, respectively, in 2021. The highest bacterial Shannon and Simpson indices were
observed in GBM, with values of 10.39 and 0.9978, respectively. The BLF exhibited the
second-highest indices. In a similar manner, the Shannon index for bacteria in GBM in
2022 exhibited the highest value at 10.21. The BLF exhibited the highest Chao 1 index and
ACE index, with values of 5471.6 and 5727.44, respectively. It is noteworthy that both BLF
and GBM exhibited a Simpson’s index of 0.9974, which was considerably higher than that
observed in the control group. The results demonstrated that GBM exhibited superior
performance in terms of soil fungal community diversity. Nevertheless, the differential
performance of fungi was not as favorable as that of bacteria in Table 2.
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Table 2. Soil microbial α-diversity index.

Sequences Years Different
Samples

Shannon
Index Simpson Index Chao1 Index ACE Index

Bacterial
community

2021
control 10.08 ± 0.03 c 0.9966 ± 0.0001 b 4870.65 ± 117.06 b 5100.1 ± 128.85 b

BLF 10.22 ± 0.06 b 0.9967 ± 0.0002 b 5206.77 ± 67.83 a 5397.37 ± 76.38 a
GBM 10.39 ± 0.09 a 0.9978 ± 0.0003 a 5188.86 ± 167.05 a 5416.83 ± 168.61 a

2022
control 10.22 ± 0.07 a 0.9964 ± 0.0003 b 5205.02 ± 107.78 b 5435.88 ± 103.81 b

BLF 10.42 ± 0.07 b 0.9974 ± 0.0002 a 5471.6 ± 128.09 a 5727.44 ± 134.18 a
GBM 10.21 ± 0.13 a 0.9974 ± 0.0006 a 4852.92 ± 151 c 5087.74 ± 165.35 c

Fungal
community

2021
control 5.36 ± 0.07 c 0.9362 ± 0.0051 b 711.94 ± 26.96 a 711.66 ± 24.54 a

BLF 5.92 ± 0.07 b 0.957 ± 0.0051 a 653.12 ± 20.84 b 647.77 ± 29.95 b
GBM 6.06 ± 0.09 a 0.9604 ± 0.0075 a 686.07 ± 33.15 ab 685.74 ± 31.42 ab

2022
control 6.39 ± 0.24 a 0.9518 ± 0.0068 a 789.95 ± 24.99 ab 785.13 ± 33.66 ab

BLF 6.74 ± 0.1 a 0.975 ± 0.0027 a 806.49 ± 27.46 a 803.94 ± 28.32 a
GBM 6.93 ± 0.57 a 0.982 ± 0.0474 a 751.42 ± 50.27 b 750.89 ± 36.78 b
Notes: One-way ANOVA was performed only between treatments for the same indicator in the same year, with
different lowercase letters indicating significant differences (p ≤ 0.05).

3.3. Differences in Microbial Community Composition Across Mulch Treatments

At the level of the phylum, operational taxonomic units (OTUs) were classified into
different classes in order to identify the ten most prevalent bacterial gates in terms of
relative abundance. The dominant bacterial phyla were Proteobacteria, Acidobacteriota,
Bacteroidota, Planctomycetota, Actinobacteriota, Verrucomicrobiota, Chloroflexi, Myxo-
coccota, and Gemmatimonadota in the two years. The most prevalent of these were the
strains Proteobacteria and Acidobacteriota, which constituted 21.2% and 18.28% of all
bacterial isolates in 2021 and 18.05% and 19.31% in 2022, respectively. The application of
both mulch treatments resulted in a notable increase in the abundance of Planctomycetota
and Myxococcota when compared to the control treatment. It is noteworthy that the relative
abundance of Verrucomicrobiota exhibited an increase in 2021, followed by a decline in
2022. Conversely, Proteobacteria exhibited a decline in 2021, followed by an increase in
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2022. The most prevalent phyla of fungi were Ascomycota, Mortierellomycota, Basidiomy-
cota, Glomeromycota, Mucoromycota, Rozellomycota, Chytridiomycota, Zoopagomycota,
and Kickxellomycota. The most dominant of these was Ascomycota, which accounted for
43.01% and 58.68% of all fungi in 2021 and 2022, respectively. Both types of soil mulch
treatments increased the abundance of Basidiomycota and Rozellomycota and decreased
the abundance of Chytridiomycota in comparison to the control. There was an inconsistent
performance of Zoopagomycota and Mortierellomycota over the two years (Figure 5).
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Figure 6 depicts the top ten most prevalent genera in terms of relative abundance.
The most prevalent bacterial genera were RB41, Flavobacterium, Sphingomonas, MND1,
Pirellula, Nitrospira, Chryseolinea, and Bryobacter. The most dominant of these was RB41,
which accounted for 4.54% and 5.8% of all bacteria in 2021 and 2022, respectively. The
abundance of MND1 and Chryseolinea colonies exhibited a tendency to increase, while that
of Bryobacter exhibited a tendency to decrease, in both ground cover soils. In comparison to
the control group, the relative abundance of Pirellula and Nitrospira exhibited an upward
trend in 2021, while that of Sphingomonas demonstrated a downward trend. In contrast,
the relative abundance of Pirellula and Nitrospira exhibited a downward trend in 2022,
while that of Sphingomonas demonstrated an upward trend. The most prevalent genera
of fungi were Mortierella, Tetracladium, Acremonium, Solicoccozyma, Fusarium, and
Alternaria. The abundance of Tetracladium, Solicoccozyma, and Alternaria exhibited an
increasing trend, whereas that of Acremonium exhibited a decreasing trend in both ground
cover soils. While the abundance of Mortierella exhibited a decline in 2021, it demonstrated
an increase in 2022.
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3.4. Correlations Between Soil Characteristics and Soil Microbial Communities

The correlation between soil properties and microbial community diversity is illus-
trated in Figure 7. The Simpson’s index of soil bacteria was found to be positively correlated
with soil water content, total organic carbon (TOC), total nitrogen (TN), total potassium
(TK), available nitrogen (AN), nitrate nitrogen (NN), available phosphorus (AP), and avail-
able potassium (AK) and negatively correlated with soil bulk density and total phosphorus
(TP). The diversity in soil fungal communities exhibited a comparable pattern of change.
The Shannon index and Simpson index demonstrated a decline with an increase in TP,
while an increase was observed with an increase in TOC, TN, TK, NN, and AP.
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The composition of soil microbial communities is the result of a complex interplay
between multiple environmental factors and is not determined by a single factor alone.
To quantify the relative contribution of different environmental factors to the observed
variation in microbial community composition, the Variable Partitioning Analysis (VPA)
method was employed. The results demonstrated that these 11 variables collectively
explained the observed variation in microbial communities in soil. The combined two-
year results demonstrated that soil moisture content, AK, TN, TOC, and AP exerted a
more pronounced influence on soil bacteria, whereas TP, AP, and NN exhibited a more
pronounced influence on soil fungi. Notably, soil temperature exhibited no discernible
effect on the fungal community (Figure 8).
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A correlation analysis was conducted between soil characteristics and microbial com-
munities (Figure 9). Among the bacteria, Gammaproteobacteria, Blastocatellia, Gemmati-
monadetes, Polyangia, Acidobacteriae, Nitrospiria, OM190, Acidimicrobiia, bacteriap25,
Methylomirabilia, Thermoleophilia, and Bacilli exhibited the greatest sensitivity to envi-
ronmental factors. Among the bacteria, Blastocatellia exhibited a significantly negative
correlation with soil water content, total organic carbon (TOC), total nitrogen (TN), total
potassium (TK), available nitrogen (AN), nitrate nitrogen (NN), available phosphorus (AP),
and available potassium (AK), while exhibiting a significantly positive correlation with soil
capacity. The TOC, TN, AP, and AK exhibited a notable negative impact on Gemmatimon-
adetes. Conversely, Polyangia demonstrated a significant and positive correlation with soil
water content, TOC, TN, TK, AN, NN, AP, and AK. However, it exhibited a notable negative
correlation with bulkiness and TP. Furthermore, OM190 demonstrated an increasing trend
with increasing TOC, TN, NN, and AP content. Conversely, it exhibited a decreasing trend
with an increase in TP content. The water content, TOC, TN, and AK exhibited a significant
negative effect on Thermoleophilia. The Bacilli exhibited a significant negative correlation
with AN and NN, and a significant positive correlation with soil bulkiness. Among the
fungal groups, those belonging to Tremellomycetes, Glomeromycetes, Mucoromycetes, and
Microbotryomycetes were particularly susceptible to environmental influences. Among
the fungi, Tremellomycetes demonstrated an increase in abundance with an increase in
soil water content, total organic carbon (TOC), total nitrogen (TN), available nitrogen (AN),
available phosphorus (AP), and available potassium (AK). In contrast, Glomeromycetes
exhibited a positive correlation with bulk density and a negative correlation with water
content and AK. Mucoromycetes demonstrated a decrease in abundance with an increase
in total phosphorus (TP) content. Microbotryomycetes had a significant positive effect on
TP and a significant negative effect on TOC, TN, AP, and AK.
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4. Discussion
4.1. Mulching Practices Contribute to Soil Quality

The practice of mulching can alter the physicochemical environment of the soil, en-
hance soil properties, and facilitate plant growth. It is a crucial strategy for soil and water
conservation in agricultural and horticultural settings [33]. Soil bulk density serves as an in-
dicator of soil health and compaction. It has a significant impact on soil porosity, the efficacy
of plant nutrients, and soil microbial activity. Consequently, it serves as a crucial indicator
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of soil degradation [34]. The present study found that GBM significantly reduced the soil
bulk density, which is in agreement with the findings of [35]. Soil moisture represents the
primary source of water for plants, existing in soil pores in both liquid and vapor form. The
process of mulching can influence the rate of evaporation and transpiration, which in turn
maintains soil moisture [36]. These findings are in alignment with the results of the present
study. Soil organic matter is widely acknowledged as an effective indicator of soil health
and fertility. Additionally, nitrogen (N), phosphorus (P), and potassium (K) are essential
mineral nutrients required for optimal grape growth. The application of mulching resulted
in an increase in soil organic matter and nutrient element content. In the BLF treatment,
humic acid substances were directly added to the soil, while in the GBM treatment, humus
was formed through the degradation of grapevine branches. Both approaches regulated
the dissolution and transport of nutrients [37], thereby improving the efficiency of nutrient
utilization [38]. Furthermore, using GBM was observed to be more effective than BLF. Both
GBM and BLF mulches contain organic matter. The primary source of organic matter input
during GBM cover is the decomposition of plant residue. The decomposition of grapevine
branches may facilitate the accumulation of soil nitrogen (N) by reducing the leaching of
nitrate (NO3-N) from the soil [39,40]. Consequently, the implementation of GBM coverage
in this study yielded a favorable outcome with respect to the most TN, NN, and AN content.
BLF contains humic acid-like substances that also act as a source of organic matter for the
soil. Humic acid is one of the main components of soil organic matter (SOM). Directly
incorporating humic acid into the soil as an SOM supplement is an important aspect of
sustainable agriculture [41]. Nevertheless, BLF materials are subject to degradation over
time and do not offer the same level of coverage as GBM. In conclusion, the application of
organic mulching materials has been demonstrated to enhance the soil ecology and increase
soil nutrients in a manner that is consistent with the findings of previous studies [42–44].

4.2. Effects of Mulching Treatments on the Diversity and Composition of Bacterial and
Fungal Communities

Alpha diversity is a measure of the diversity of microorganisms within a sample and
plays a pivotal role in maintaining soil quality and the functioning of ecosystems [45,46].
Herein, the BLF and GBM treatments resulted in an increase in bacterial and fungal commu-
nity alpha diversity, which may be associated with the observed rise in soil organic matter.
The application of BLF enhances the diversity of microbial communities in rhizosphere
soil [47]. Organic matter constitutes an essential resource for microbial survival, and an
elevation in soil organic carbon is known to enhance the diversity and composition of both
bacterial and fungal soil communities [48,49]. Furthermore, the stable and moist environ-
ment of the soil provides an optimal environment for the growth of microorganisms [50,51].
Additionally, the elevation in soil moisture levels within the BLF and GBM applications
influenced microbial diversity, including bacteria and fungi. The practice of tillage has been
observed to impede microbial growth in soil, resulting from the loss of soil organic carbon
and the direct disturbance to the microbial population.

The relative abundance of dominant gates varies contingent on the specific material
utilized for the cover. The most prevalent bacterial phyla were Proteobacteria and Aci-
dobacteriota. The relative abundance of Planctomycetota and Myxococcota was higher
in BLF and GBM than in the control. Planctomycetota are oligotrophic bacteria that are
capable of processing carbon sources that are otherwise difficult to utilize. They are also the
dominant nitrogen-fixing bacteria in soil [52–54]. The microorganism is capable of secreting
β-glucosidase and xylanase, which are involved in the breakdown of plant residues [55].
The majority of Myxococcota exhibit a comprehensive array of genes pertaining to glycoly-
sis and the tricarboxylic acid (TCA) cycle. Additionally, these organisms are renowned for
their prolific synthesis of bioactive secondary metabolites [56–58]. Myxococcota are known
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to exhibit a predatory or carrion lifestyle, characterized by the ability to swarm [59]. The
humic acid analogues present in the BLF material, in association with the rotting grapevine
branches subjected to GBM treatment, both constituted an optimal environment for the
survival of the Myxococcota. The most abundant fungus was identified as Ascomycota. The
relative abundance of Basidiomycota and Rozellomycota was observed to be higher than in
the control in BLF and GBM, while the relative abundance of Chytridiomycota was found
to be lower than in the control. The phylum Basidiomycota is a significant component of
the fungal kingdom, representing 28–40% of fungal diversity and exhibiting a proclivity for
oligotrophic environments [60–64]. Basidiomycota are likely to be a significant contribu-
tor to the decomposition of wood and apoplastic material, including the degradation of
various components of wood that play a pivotal role in carbon recovery [65,66]. It was
thus demonstrated that the mulching measures employed in this experiment resulted in an
increase in the abundance of Basidiomycota. Chytridiomycota represents the sister group to
Monoblepharidomycota and Neocallimastigomycota [52]. As saprophytes, members of the
Chytridiomycota are capable of decomposing chitin and keratin while also facilitating the
accumulation of soil nitrogen [67]. It is hypothesized that Rozellomycota may have evolved
from an ancestor with an almost complete set of classical fungal-specific traits as divergent
fungi. It is most notable that the members are characterized by a conspicuous absence
of chitin cell walls during the process of food uptake [68]. Rozellomycota are capable
of acquiring nutrients through the process of phagocytosis [69]. The presence of humic
acids in BLF and nutrients resulting from the degradation of grapevine branches creates an
environment conducive to the growth of Rozellomycota. Additionally, Rozellomycota is an
intracellular parasitic bacterium that proliferates as naked protoplasts within the host [70].
They are capable of attaching to the surface of host cells and forming tubular structures
with the objective of penetrating and entering host cells. In addition, a subset of these
species are even able to ingest host organelles through a process called phagocytosis [71].
This may be the reason why the abundance of Rozellomycota and Chytridiomycota de-
veloped in opposite directions under cover conditions. Furthermore, the soil microbial
response to ground cover exhibited interannual variability. The results of this experiment
demonstrated that certain microorganisms exhibited divergent behaviors over a two-year
period following the covering. These included Verrucomicrobiota and Proteobacteria in the
bacterial kingdom and Zoopagomycota and Mortierellomycota in the fungal kingdom.

At the level of the genus, it was observed that there was a higher relative abundance
of MND1 and Chryseolinea in both the BLF and GBM treatments in comparison to the
control treatment. This finding may have beneficial implications for soil health and plant
growth. MND1, a significant microbial taxon that plays a pivotal role in nitrification, is
a member of the Nitrosomonadaceae, as well as a key genus in the process of nutrient
cycling [72]. The elevated NN content observed in this experiment may be attributable
to the ammonia oxidation (AMO) effect of MND1. It can be reasonably deduced that
Chryseolinea plays a significant role in the conversion of precursors to humus. There
is a possibility that it is responsible for the biological processes of biodegradation and
humification of lignocellulose [73,74]. Increased Chryseolinea provides nutritional support
for plant growth. Bryobacter belongs to the phylum Acidobacteria, strictly aerobic, slow-
growing, chemoautotrophic, living in acidic wetlands and soils [75]. Bryobacter shows
chemo-organotrophic activity and is able to use sugars, polysaccharides, and organic
acids as a source of energy [76]. Dimethylsulfonylpropionate, sulfonates, and carbon
monoxide can be used to obtain energy from members of the genus Acidibiotic [77]. In
this experiment, the decrease in the abundance of Bryobacter under cover conditions could
be related to an increase in the content of AN. Tetracladium is a filamentous bacterium
that is widespread in both aquatic ecosystems and terrestrial habitats, with the main
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drivers of the composition of the community being crop management practices and soil
nutrients [78–80]. It is a widespread root-colonizing endophyte with a strong preference for
roots [80]. Tetracladium was found to coexist with root pathogens and correlated positively
with crop yield, suggesting potential plant health benefits [80,81]. The cover conditions
in this experiment increased the abundance of Tetracladium and had a positive effect on
the health and yield of the grapes. Solicoccozyma is a yeast that has been isolated from
soil and is biologically degradable [82]. It was involved in the degradation of humic acids
and in the rot of vine branches under the BLF and GBM treatments, respectively. A wide
range of saprophytic and pathogenic species belong to the genus Alternaria [83]. Coverage
increases Alternaria’s abundance. However, studies have shown that its ability to produce
a large number of mycotoxins has become a major concern for food safety [84].

In summary, micro-organisms are forced to adapt to new habitats as a result of an-
thropogenic soil disturbance, which alters the balance of ecosystems [85]. The tillage and
cover treatments in this study acted as disturbances and therefore had an impact on soil
nutrients and micro-organisms. Mineral elements and organic matter in the soil are the
necessary conditions for the life activities of micro-organisms, the production of metabolites
that are returned to the soil. Inevitably, the plant root system is involved in this process.
Autotrophic bacteria compete with the plant’s root system for mineral elements to produce
organic matter, saprophytic bacteria break down humic acids and grapevine shoots to
provide nutrients for the root system, and parasitic bacteria complement the root system.
We therefore analyzed the relationship between nutrient elements and microorganisms in
the soil.

4.3. Environmental Factors Affecting the Soil Microorganisms

In light of the profound influence soil management exerts upon soil microbial commu-
nities, there is mounting evidence indicating that agricultural practices, including but not
limited to fertilization, tillage, crop rotation, and cover crops, have the capacity to modify
soil microbial communities, which subsequently impact an agroecosystem’s functional-
ity [86]. Soil physicochemical parameters exert a significant influence on soil microbial
diversity [87,88]. Our findings indicate that different soil physicochemical factors exert
varying effects on soil microbial diversity. In particular, soil TOC, TN, TK, NN, and AP
were identified as the most significant in shaping the microbial community, exhibiting
the strongest positive correlation with microbial diversity. The present study revealed a
positive correlation between soil TOC and TN and the majority of microorganisms. The
total organic carbon (TOC) enters the soil through the decomposition of a variety of plant
and animal residues, root secretions, and living and dead microorganisms, as well as soil
biota, thereby serving as a primary source of energy for microorganisms inhabiting the
soil [89]. As a ubiquitous macronutrient essential for the sustenance of plant life, soil
nitrogen plays a pivotal role in plant growth and metabolic processes [90–92]. It is typically
the case that biological processes, such as the decomposition of plant litter and the secretion
of root exudates, are the primary sources of soil organic carbon (SOC) and total nitrogen
(TN) [93,94]. This experimental investigation demonstrates that both humic acid present in
the BLF material and organic matter derived from grapevine branches in GBM were instru-
mental in providing and enriching C and N. The results of the correlation analysis indicated
that the levels of Gammaproteobacteria, Blastocatellia, Gemmatimonadetes, Polyangia,
Acidobacteriae, Nitrospiria, OM190, Acidimicrobiia, bacteriap25, Methylomirabilia, Ther-
moleophilia and Bacilli in bacteria and Tremellomycetes, Glomeromycetes, Mucoromycetes,
and Microbotryomycetes in fungi were significantly influenced by soil nutrient content.
Prior research has demonstrated that the structure of soil microbial communities is subject
to a multitude of influences, including tillage practices, fertilization, vegetation genotypes,
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land use patterns, and geographic locations [95–97]. At the same time, changes in the soil
microbial community structure are determined by changes in soil physicochemical proper-
ties under different mulching regimes. Changes in the soil microbial community induced
by different types of ground cover management were found to be related to soil organic
matter input, nutrient efficiency, and fruit tree growth [98]. Effective nitrogen plays an
important role in the fungal composition of the soil [99]. However, correlations between soil
properties and microbial communities vary between soil systems. For example, significant
correlations have been reported between soil actinomycetes and ascomycetes and soil OM,
TN, and TP [100]. Soil TP was positively correlated with Actinobacteria and negatively
correlated with Thick-Walled Bacteria [101]. Consistent with the results of previous studies,
the correlation analysis in this study revealed a complex relationship between the soil mi-
crobial community’s composition and diversity and changes in the soil’s physicochemical
properties, with soil nutrients having a more significant effect on the bacterial community’s
composition. However, the relationships and interaction mechanisms between microbial
community characteristics and soil physicochemical properties, as well as agricultural
management practices, need to be further investigated due to the complexity of the soil
environment and microbial community composition and function.

5. Conclusions
The present study employed a series of soil physicochemical and microbiological

analyses, to evaluate the impact of diverse mulch treatments (BLF and GBM) on vineyard
soils during the harvest period across two vintages. The results obtained were then
compared with those from a control treatment, which served to provide a baseline for
comparison. The findings of the study indicated that the application of mulching reduced
the bulk density, increased the moisture content, enhanced the organic matter and elevated
the nutrient content in the soil. Furthermore, the nutrient content was observed to be
higher in GBM than in BLF. Microbial growth was stimulated by the introduction of mulch
treatment, which provided additional fresh substrate. The abundance and diversity of soil
micro-organisms, closely related to the physicochemical properties of the soil, increased
with both types of cover. A heterogeneous soil environment for microbial growth should
be created by the differences in nutrient levels produced by different mulching methods.
The composition and diversity of the soil microbial community and changes in the physical
and chemical properties of the soil have a complex relationship, in which soil nutrients
have a more significant effect on the composition of the bacterial community.
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