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Abstract

The growth environment of corps requires necessary improvements by Chinese solar
greenhouses with Pad-Fan Cooling (PFC) systems for reducing their high temperatures in
summer. Although computational fluid dynamics (CFD) could dynamically display the
changes in humidity, temperature, and wind speed in solar greenhouses, its computational
efficiency and accuracy are relatively low. In addition, the use of PFC systems can cool
down solar greenhouses in summer, but they will also cause excessive humidity inside the
greenhouses, thereby reducing the production efficiency of crops. Most existing studies only
verify the effectiveness of a single machine learning (such as ARMA or ARIMA) or deep
learning model (such as LSTM or TCN), lacking systematic comparison of different models.
In the current study, two machine learning algorithms and three deep learning algorithms
were used for their ability to predict a PFC system’s cooling effect, including on humidity,
temperature, and wind speed, which were examined using Auto Regression Moving
Average (ARMA), Autoregressive Integrated Moving Average (ARIMA), Long Short-Term
Memory (LSTM), Time Convolutional Network (TCN), and Glavnoe Razvedivatelnoe
Upravlenie (GRU), respectively. These results show that deep learning algorithms are
significantly more effective than traditional machine learning algorithms in capturing the
complex nonlinear relationships and spatiotemporal changes inside solar greenhouses.
The LSTM model achieves R? values of 0.918 for temperature, 0.896 for humidity, and
0.849 for wind speed on the test set. TCN showed strong performance in identifying
high-frequency fluctuations and extreme nonlinear features, particularly in wind speed
prediction (test set R? = 0.861). However, it exhibited limitations in modeling certain
temperature dynamics (e.g., T6 test set R? = 0.242) and humidity evaporation processes (e.g.,
T7 training set R? = —0.856). GRU delivered excellent performance, achieving a favorable
balance between accuracy and efficiency. It attained the highest prediction accuracy for
temperature (test set R? = 0.925) and humidity (test set R? =0.901), and performed only
slightly worse than TCN in wind speed prediction. In summary, deep learning models,
particularly GRU, offer more reliable methodological support for greenhouse microclimate
prediction, thereby facilitating the precise regulation of cooling systems and scientifically
informed crop management.

Keywords: Chinese solar greenhouse; pad—fan cooling systems; microclimate of corps;
machine learning; deep learning

Agriculture 2025, 15, 2107

https://doi.org/10.3390/agriculture15202107


https://doi.org/10.3390/agriculture15202107
https://doi.org/10.3390/agriculture15202107
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0001-6426-7415
https://orcid.org/0000-0003-1390-0481
https://doi.org/10.3390/agriculture15202107
https://www.mdpi.com/article/10.3390/agriculture15202107?type=check_update&version=1

Agriculture 2025, 15, 2107

2 of 50

1. Introduction

Chinese solar greenhouses (CSGs) are regarded as a unique and cost-effective green-
house type in China, featuring excellent thermal insulation and high energy efficiency,
which enables winter vegetable production without auxiliary heating, even when the
monthly average temperature during the coldest three months drops below —10 °C [1,2].
However, this superior thermal performance presents a contrasting challenge during
warmer periods. During summer months, the internal temperatures of CSGs frequently
exceed 50 °C due to intense solar radiation, leading to stunted growth or even crop mortal-
ity [3]. High temperatures and humidity in greenhouses could severely limit production by
reducing yields and compromising produce quality during extended periods. However,
correct climate control using various cooling methods enables sustained crop cultivation in
warm seasons, particularly crucial for heat-sensitive vegetables such as tomatoes, cucum-
bers, peppers, and lettuce, which exhibit growth declines when temperatures exceed their
optimal 29-30 °C range, making cooling system implementation essential for successful
summer cultivation [4,5]. Various greenhouse cooling methods have been developed, with
shading and natural ventilation being the most common methods of temperature control,
although their cooling effectiveness remains limited. Among existing greenhouse cooling
technologies, evaporative cooling systems have proven to be the most effective solution [6].
The pad—fan configuration represents the most widely implemented form of this technol-
ogy. Pad-Fan Cooling (PFC) systems have emerged as an effective solution for summer
overheating in greenhouses due to their efficient and stable cooling performance. When
properly designed, these systems could reduce air temperature by 5-12 °C and create more
favorable conditions for crop growth. PFC systems are widely used in greenhouse temper-
ature control and have high cooling efficiency, but they have several obvious limitations:
non-uniform temperature distribution within the greenhouse, and substantial installation
and maintenance costs [7]. These limitations not only impact the overall performance
of the cooling systems, but also pose significant challenges for growers in terms of cost
management and crop uniformity. Thus, the spatio—temporal distribution of temperature,
humidity, and airflow under Pad—Fan Cooling operation is crucial for optimizing green-
house cooling strategies. Traditional approaches to optimizing PFC systems relies heavily
on computational fluid dynamics (CFD) simulations, which, although effective in modeling
airflow and thermal distribution, suffer from high computational costs, complex boundary
condition setups, and limited real-time applicability. Moreover, existing research mainly
focuses on environmental simulations of empty greenhouses, leaving significant gaps in our
understanding of crop—environment interaction mechanisms. Particularly for low-profile
crops like strawberries, the mechanism by which canopy structures influence greenhouse
microenvironments remains unclear, which hinders the optimal design of cooling systems.
Meanwhile, existing studies analyzing greenhouse microclimates have shown insufficient
attention to the role of soil. As a crucial component of greenhouse ecosystems, soil directly
influences indoor temperature distribution through various heat exchange mechanisms
such as thermal conduction and radiation within the air [8,9]. Additionally, its moisture
evaporation process alters air humidity dynamics [10]. Specifically, soil surface temperature
rises by absorbing solar radiation during the day and releasing stored heat at night, buffer-
ing extreme temperature fluctuations in the greenhouse [11]. However, the soil-mediated
microclimate regulation and crop canopy structure further interact with each other to form
a complex “soil—crop—microclimate” dynamic relationship. The mechanism of this process
has not been fully revealed, which further hinders the accurate design of cooling systems.
To address this gap, microclimate prediction has become a crucial component that bridges
the interactions between soil, crops, and greenhouse micro-environments with practical
greenhouse regulation. In solar greenhouses equipped with PFC systems, “microclimate
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prediction” refers to the quantitative forecasting of key environmental parameters such
as temperature, humidity, and wind speed across spatial and temporal dimensions. In
other words, its primary objective is to clarify how the micro-environment in greenhouses
(including temperature, humidity, and wind speed) dynamically changes across different
locations and time periods under various influencing factors such as PFC system opera-
tion, solar radiation, soil heat and moisture exchange, and crop—canopy interactions. This
research provides theoretical foundations and data support for the precise regulation of
cooling systems and scientific management of crops.

In recent years, the development of machine learning (ML) had provided new possi-
bilities for predicting and optimizing greenhouse climates. Compared to traditional CFD
methods, ML models could process real-time sensor data, capture complex relationships
between environmental variables, and calculate higher computational efficiency. A multiple
linear regression model was used to predict the evapotranspiration and transpiration of
greenhouse tomatoes [12-14]. Photosynthetically active radiation, total radiation, day—
night temperature and humidity, and leaf fresh weight were regarded as input variables
to achieve precise irrigation and efficient utilization of water resources. Neural networks
and multiple-regression models were introduced to predict the roof temperature and air
humidity inside a half-daylight-temperature room [15-17]. The results show that neural
networks have significantly improved prediction accuracy than multiple-regression models,
demonstrating their potential for the intelligent prediction of greenhouse environments. A
greenhouse environment model was constructed by using an online sparse least squares
support vector machine regression model [18-20]. The indoor and outdoor temperatures
were regarded as input variables, achieved low mean square error, and had a concise model
structure. Compared to methods such as recursive weighted least squares estimation and
Elman neural networks, this model exhibited higher prediction accuracy. This work pro-
vides a nonlinear modeling method suitable for online learning, which has practical value
for the intelligent control of greenhouse environments. The greenhouse tomato transpira-
tion prediction model was established based on the random forest algorithm [21,22]. The
input variables included air temperature, relative humidity, light intensity, and relative leaf
area index. The determination coefficients of the model in the seedling stage and flowering
stage reached 0.9472 and 0.9654, respectively, and the prediction error was much lower than
that of the BP neural network and GA-BP neural network. This indicated that the model
has practical significance in precision irrigation management. A tomato yield prediction
model was developed by combining recurrent neural networks and Time Convolutional
Networks [23-25]. The model was trained by using greenhouse environmental parameters
and historical yield data, with root mean square errors as low as 6.76-10.45 g/m? on mul-
tiple test sets. The study also found that historical production information had the most
significant impact on the prediction results. This method helps growers to develop manage-
ment strategies scientifically. The greenhouse climate prediction model was proposed by
using long short-term memory networks [26-28]. This model took into account six factors,
including temperature, humidity, light, carbon dioxide concentration, air temperature, and
soil moisture, and updated the data every 5 min. In practical applications in tomato, cu-
cumber, and chili greenhouses, the model performed stably and maintains good predictive
ability, even when encountering abnormal data, which is of great significance when there is
a need to adjust the greenhouse environment in advance and ensure crop growth. A gated
cyclic unit model was developed to predict the minimum temperature [29,30]. The model
was trained by using monthly average minimum temperature data from over 30 years in
the local area. The model had minimal errors during the testing phase, and was able to
make reasonable predictions of the minimum temperature for the next year or more. This
prediction method provides strong support for greenhouse temperature regulation. The
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ARMA model was used to predict the weekly harvest of sweet peppers [31-33]. Production

data from previous weeks were incorporated into the model, which resulted in improved

predictive performance over traditional reference models. For some varieties, the addition

of environmental variables reduced the prediction error by 20%, which indicated that the

method had certain practical value in greenhouse production arrangements. The trend of

carbon dioxide emissions in greenhouses was analyzed by using ARIMA models, which

shows that the model performs well in short-term forecasting and is helpful in evaluating

changes in greenhouse effects [34,35]. Research is increasingly focusing on the application

of machine learning in greenhouse environment prediction, but most studies only verify

the effectiveness of a certain type of model separately without conducting a systematic

comparative analysis. The summary of the literature is presented in Table 1.

Table 1. Summary of the literature.

Author

System Analyzed

DL Model

ML Model

Remarks

Juarez-Maldonado, A.
etal. [12]

Taki, Morteza et al. [15]

He, Fen, and Chengwei
Ma [16]

Linker, R., I. Seginer,
and P. O. Gutman [17]

Wang, Dingcheng,
Maohua Wang, and
Xiaojun Qiao [18]

Vijayakumar, Sethu,
and Si Wu [19]

Ferreira, Pedro M., E. A.

Faria, and A. E.
Ruano [20]

LiL, Chen S, Yang C
etal. [21]

Greenhouse tomato
crop water requirement
estimation system

Greenhouse climate
estimation system

Greenhouse air
humidity
modeling system

Greenhouse CO,
optimal control system

Greenhouse
environment
modeling system

Greenhouse air
temperature
prediction system

Plant transpiration
prediction system

Neural networks

Artificial
neural network

Neural networks

Neural network models

Multiple regression

Multiple regression

Support vector
machines regression

Sequential support
vector classifiers
and regression

Random
forest regression

— Water requirements
of greenhouse tomato
crop are estimated
using multiple
regression models.

— Applied Neural
Networks and
multiple-regression
models to estimate
greenhouse climate.

— Employed artificial
neural network along
with principal
component analysis to
model greenhouse

air humidity.

— Modeled optimal
CO; control in a
greenhouse using
neural networks.

— Applied support
vector machines
regression for modeling
the greenhouse
environment.

— Studied sequential
support vector
classifiers

and regression.

— Applied neural
network models for
predicting greenhouse
air temperature.

— Used the random
forest regression
algorithm to predict
plant transpiration
based on
environmental
parameters and relative
leaf area index.
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Table 1. Cont.

Author

System Analyzed

DL Model

ML Model

Remarks

LiY, Zou C, Berecibar
M et al. [22]

Gong L, Yu M, Jiang S
etal. [23]

Graves A, Mohamed A,
Hinton G [24]

Cho K, Van
Merriénboer B,
Gulcehre C et al. [25]

LiuY, LiD, Wan S
et al. [26]

Greff, Klaus et al. [27]

Jozefowicz, Rafal,
Wojciech Zaremba, and
Ilya Sutskever [28]

Subair H, Selvi R P,
Vasanthi R et al. [29]

Chhetri, Manoj
etal. [30]

Samsiah D N [35]

Online capacity
estimation system for
lithium—ion batteries

Greenhouse crop yield
prediction system

Speech
recognition system

Statistical machine
translation system

Greenhouse climate
prediction system

LSTM model
architecture exploration

Recurrent
network architectures

Minimum temperature
forecasting system

Monthly rainfall
prediction system (case
study of Simtokha,
Bhutan)

Time series data
analysis

RNN + TCN

Deep recurrent neural
networks

RNN encoder—decoder

Long Short-Term
Memory (LSTM)

LSTM

Recurrent networks

Gated Recurrent Unit
(GRU)

Deep BLSTM—GRU

Random
forest regression

ARIMA (p, d, q)

— Applied random
forest regression for
online capacity
estimation of
lithium-ion batteries.

— Developed a new
greenhouse crop yield
prediction technique by
combining RNN

and TCN.

— Conducted
comprehensive
evaluations on multiple
datasets from real
greenhouse tomato
growing sites.

— The proposed
approach achieved
more accurate yield
prediction performance
than traditional
machine learning
methods and other
classical deep

neural networks.

— Investigated speech
recognition using deep
recurrent

neural networks.

— Proposed a method
for learning phrase
representations using
RNN encoder-decoder
for statistical

machine translation.

— Developed a long
short-term
memory-based model
for greenhouse

climate prediction.

— Explored the search
space of LSTM (long
short-term

memory) models.

— Conducted an
empirical exploration
of recurrent

network architectures.
— Used Gated
Recurrent Unit for
minimum

temperature forecasting.
— Proposed a deep
BLSTM—GRU model
for monthly

rainfall prediction.

— Conducted time
series data analysis
using the ARIMA (p, d,
q) model.
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In the current study, the experimental microclimate data in CSG with PFC systems of
Shenyang Agricultural University were utilized by two machine learning algorithms and
three deep learning algorithms for their ability to predict a PFC system’s cooling effects,
including humidity, temperature, and wind speed, which were ARMA, ARIMA, LSTM,
TCN, and GRU, respectively; it was found that deep learning models such as TCN, GRU,
and LSTM perform better in greenhouse climate prediction than traditional ARMA and
ARIMA models. TCN, with its multi-scale receptive field of dilated convolution, has greater
potential for capturing high-frequency fluctuations and extreme nonlinear relationships
in temperature and humidity, and could better adapt to the spatial attenuation of airflow.
LSTM balanced long- and short-term dependencies by gating mechanisms and exhibiting
robustness. GRU simplified the gating structure of LSTM, ensuring accuracy while improv-
ing efficiency. Introducing multiple machine learning methods for joint prediction in the
future is expected to further improve the accuracy and practicality of predictions.

Core Contributions of This Study: This study compares the two traditional algorithms
(ARMA and ARIMA) with three deep learning algorithms (LSTM, TCN, and GRU) to
address the lack of systematic comparisons of models in existing studies. It was found that
the deep learning model equipped with PFC significantly outperformed the traditional
model in predicting temperature, humidity, and wind speed in the CSG system.

Compared to the traditional model (which finds it difficult to deal with nonlinear
fluctuations) and other deep learning models (TCN has limitations, and LSTM has high
cost), GRU achieves an optimal balance between accuracy and efficiency (convergence is
30% faster than LSTM).

2. Methods and Materials

Figure 1 shows the research steps for predicting the microclimates of CSG with PFC
systems. This framework consists of multi-sensor monitoring and machine learning fore-
casting. There are five main parts: (1) Preparing for microclimate monitoring. (2) Collecting
and preprocessing data. (3) Building machine learning models. (4) Training, evaluating,
and comparing multiple models. (5) Finding the best prediction model. Firstly, in the
preparatory stage of the research, several measuring points were configured in the CSG.
These points were marked for temperature (T1-T7), humidity (T1, T2, T3, T6, T7), and
wind speed (T2, T6, T7). All instruments were calibrated and prepared, such as the AD-
CON temperature sensor, Testo45 anemograph, and multi-function temperature-humidity
meter. The next part was data acquisition and preprocessing. With the installed sensors,
microclimate data could be obtained, including temperature, humidity, and wind speed,
which were subsequently preprocessed. Missing values were address by employing a
min-max scaler for normalization and performing correlation testing to select the features.
In the model construction stage, traditional statistical models (ARMA, ARIMA) and deep
learning models (LSTM, TCN, GRU) were introduced. These models underwent processes
such as data preprocessing adaptation, orthogonality verification, and feature engineering
implementation, which is beneficial for fitting the CSG microclimate data. For the purposes
of model training, evaluation, and comparison, the preprocessed data was utilized in con-
junction with performance metrics (e.g., loss functions) and visualization techniques (e.g.,
loss curves and comparisons of sequence predictions). ARMA, ARIMA, LSTM, TCN, and
GRU models were compared using R2 and root mean square error (RMSE). This checked
how well they predict greenhouse microclimate variables. Finally, for optimal model iden-
tification, we consider both prediction accuracy and efficiency. From the compared models,
we picked the best one (GRU, which is 30% faster and still accurate). This provided a
reliable tool for predicting and managing greenhouse microclimates.
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Figure 1. Workflow for greenhouse microclimate prediction integrating multi-sensor monitoring and
machine learning.

2.1. Experimental Greenhouse

The CSG is located at Shenyang Agricultural University in Shenyang, Liaoning
Province (41°49’ N, 123°34' E), specifically within Greenhouse No. 46, as shown in
Figures 2 and 3. This single-span greenhouse is oriented in a north-south direction, with
a slight deviation of 7° west of due south, designed to maximize solar radiation capture
during winter. The CSG has a total length of 60 m, a span of 10 m, a rear-wall height of
3.2m, and a ridge height of 5 m, covering a total ground area of 480 m?2. The greenhouse
structure consists of four primary components: the front wall, side walls, rear slope, and
foundation soil. The rear wall is consist of an inner brick wall, an expanded polystyrene
(EPS) insulation layer, and an outer brick wall (240 mm thick solid clay bricks with 20 mm
plaster on both surfaces). The rear slope is composed of wooden boards, an EPS insulation
layer, cement, and a waterproof layer. The structure adopts an arched truss design that
eliminates the need for supporting pillars, with its roof, gable walls, and front roof structure
all covered with 0.1 mm thick polyethylene plastic film. A Pad-Fan Cooling system was
installed for indoor temperature regulation, which consists of a galvanized aluminum alloy
wet pad (dimensions: 3 m in length x 0.15 m in width x 1.5 m in height, with a total area
of 4.5 m?), two negative-pressure fans (each with a diameter of 1.06 m, width of 0.4 m,
power of 0.55 kW, blade speed of 650 rpm, and airflow rate of 38,000 m?/h), a horizontal
centrifugal pump, a rectangular water tank (dimensions: 1 m in length x 0.5 m in width
x 0.45 m in height, with a volume of 0.225 m?3 or 225 L), and an control unit. Strawberries
are grown in the greenhouse at a planting density of 8500 plants per hectare, arranged
in rows oriented in the north-south direction. A thermal insulation curtain is operated
daily (opened at 08:30 and closed at 16:30) to enhance temperature regulation between day
and night.
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2.2. Experimental Methods
2.2.1. Experimental Apparatus

Indoor greenhouse temperatures at various positions were measured using ADCON
instruments manufactured in the United States. These instruments have a measurement
range from —40 °C to 120 °C and provide a high accuracy of +0.2 °C. A multifunctional
temperature and humidity meter was employed to measure indoor humidity within the
CSG, offering a temperature measurement range from —30 °C to 50 °C (accuracy: +1 °C)
and a humidity measurement range of 0-100% RH. Wind speed at different indoor locations
was assessed using a Testo 425 handheld thermal anemometer, which has a measurement
range from 0 to 40 m/s, an accuracy of +(0.2 m/s + 1.5% of the reading), and a resolution of
0.1 m/s. Outdoor temperature and humidity were monitored using the TRM—ZSF GPRS
wireless remote control system developed by Jinzhou Sunshine Technology Co., Ltd. (based
in Jinzhou City, China), capable of measuring humidity within the range of 0-90% RH
and temperature from —25 °C to 70 °C. The external climate remained stable throughout
the experimental period. Each measurement point was continuously monitored for 24 h,
with data recorded at 30 min intervals, and all measurements were repeated three times to
ensure reliability.

2.2.2. Experimental Preparation

Seven measurement points were arranged inside the experimental CSG, as shown in
Figure 4 (side view) and Figure 5 (top view). Specifically, T1, T2, and T3 were located 15 m
horizontally from the wet pad, with vertical heights of 0.5 m, 1.5 m, and 2.0 m, respectively.
T4 and T5 are both positioned at a vertical height of 1.5 m, with T4 located 2 m horizontally
from the rear wall and T5 situated 2 m horizontally from the film. Additionally, T6, T2, and
T7 are placed 3 m, 6 m, and 9 m away from the wet pad along the horizontal axis, all at a
vertical height of 1.5 m. This sampling strategy aimed to capture the most representative
and dynamically significant microclimate changes in the solar greenhouse under the influ-
ence of the PFC system. Initially, a total of 10 measurement points were tested, and, through
comparative analysis of preliminary data, 7 points were finally selected, following two core
principles: prioritizing positions with the largest temperature fluctuations (to highlight the
impact of the PFC system, as the microclimate changes at T1-T7 are the most significant)
and ensuring that diverse spatial coverage (T1/T2/T3 reflects the vertical stratification
characteristics from the top of the crop canopy to the ground near the wet pad. T6/17 track
the horizontal airflow attenuation along the wet-pad—fan path, such as temperature and
humidity attenuation; T4/T5 represent the peripheral “side zone” environment, used to
supplement central airflow data and reflect spatial non-uniformity, although their role is
secondary to the high-fluctuation central measurement points). Measurements during the
experiment were conducted as follows: Air temperature results were collected from seven
locations (T1-T7) every 30 min over four days: August 23rd-26th. Specifically, indoor
and outdoor air temperatures were recorded every 30 min over a continuous 24 h period.
Air humidity at measurement points T1, T2, T3, T6, and T7 was monitored every 30 min
throughout the 7 h operation of the wet-pad-fan system, from its startup to shutdown.
Similarly, airflow velocity at T2, T6, and T7 was recorded at 30 min intervals during the
same 7 h operational period. All experiments were conducted on clear days and nights,
with the greenhouse empty of crops, to minimize the influence of human activity, external
environmental factors, and plant growth on indoor temperature and airflow. The reasons
for not measuring the areas above and below T4 are as follows: First, in terms of spatial
relevance, T4 is close to the rear wall of the greenhouse and is not located in the main
influence zone of the PFC system (the central airflow path), so the surrounding areas of
T4 have minimal correlation, with the airflow effects induced by the fans. Second, from
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the perspective of redundancy, this study focuses on capturing the core impacts of the PFC
system (which are most significant in the wet-pad-fan axis area). Including the areas above
and below T4 would add redundant data and fail to deepen our understanding of key
effects such as cooling efficiency and airflow attenuation. Therefore, priority was given
to retaining the T1-T3/T6/T7 measurement points, which are crucial for PFC analysis,
while T4/T5 serve as supplementary side-zone references. The selection of the seven mea-
surement points was validated through preliminary data screening (after testing 10 initial
points, T1-T7 were chosen due to their largest temperature fluctuations and unique spatial
functions) and structural coverage (encompassing vertical stratification, horizontal airflow
attenuation, and side-zone references). This design conforms to the norms of greenhouse
microclimate research and is reproducible, with clear spatial coordinates and standards.

5.0m
T3
3.2m T4M T2 I—F 5
2.0m
1.5m
20m-—ﬂ 1 mt k—-ZOm
0.5m
10.0m

Figure 4. Side view of the inner measuring point of CSG.

2.0m

Fan1
Fan2

10.0m

Wet Pad

X

'L 60.0m

Figure 5. Top view of the interior measuring point arrangement in CSG.

2.3. Machine Learning Algorithms, Deep Learning Models, and Training Process

Five prediction models were employed in the current paper to analyze greenhouse
environmental data. Among these, TCN, GRU, and LSTM are deep learning models,
whereas ARMA and ARIMA represent traditional statistical approaches. These models
are primarily utilized for time series forecasting, allowing for the prediction of temporal
changes in environmental variables such as temperature and humidity. To determine
the most effective model, two evaluation metrics were adopted: root mean square error
(RMSE) and coefficient of determination (R?). A lower RMSE indicates predictions that
are closer to the actual values, while a higher R? suggests that the model accounts for a
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greater proportion of variability in the data [26-29,34,35]. In addition to these metrics, the
performance of each model on both the training and testing datasets was examined. By
comparing the predicted values with the observed measurements, the most reliable model
could be identified. The objective was to select the model that not only fits the training data
well, but also maintains accuracy when applied to new, unseen data.

2.3.1. ARMA Method

ARMA is a statistical model used for analyzing and forecasting stationary time se-
ries. It combines Autoregressive (AR) and Moving Average (MA) components to capture
temporal patterns. The mathematical representation of the ARMA(p, q) model is as follows:

p q
Xt = Zi:l @ix;; + et + Zi:leiet*i (1)

where the AR(p) part uses p past values (x;_;) to model long-term dependencies, while
the MA(g) part incorporates q past error terms (€;_;) to account for short-term fluctuations.
Orders p and q are typically determined by via autocorrelation (ACF) and partial autocor-
relation (PACF) functions. ARMA demonstrates strengths in simplicity, interpretability,
and computational efficiency when working with small datasets, which has led to its
widespread adoption in short-term forecasting across fields such as finance (e.g., stock
prices), economics (e.g., inflation), and business (e.g., demand) [20]. However, the model
requires stationary input data and performs poorly in capturing nonlinear patterns or
complex trends, thereby restricting its applicability to relatively simple time series scenar-
ios [20-23].

2.3.2. ARIMA Method

ARIMA is a statistical model designed for forecasting non-stationary time series. It
extends the ARMA model by incorporating an “integration” component to address non-
stationarity. The model is denoted as ARIMA(p, d, q), where AR(p) represents the order of
the autoregressive component, which uses past values to capture long-term dependencies.
I(d) indicates the degree of differencing applied to transform non-stationary data into
stationary form, thereby addressing trends or seasonality.

MA(g) denotes the order of the moving average component, which incorporates
past error terms to model short-term fluctuations. ARIMA is widely used in short-term
forecasting tasks such as energy consumption prediction and meteorological data extrapola-
tion [24,35]. Its advantages include adaptability to data with mild trends, a straightforward
mathematical formulation that supports theoretical analysis, and relatively low computa-
tional requirements, making it suitable for real-time forecasting [25,26,35].

2.3.3. LSTM Method

LSTM is a variant of recurrent neural networks (RNNSs) specifically designed to
overcome the vanishing gradient problem commonly encountered in traditional RNN
architectures. By employing a set of gated units—including input, forget, and output
gates—LSTM regulates the flow of information through its memory cells, thereby enabling
the effective capture and retention of long-term temporal dependencies in sequential data.
This architecture demonstrates superior performance in modeling time series data with
complex long-range dependencies [23-27]. Nevertheless, compared to simpler models,
LSTM entails higher computational costs and may be prone to overfitting when trained on
limited datasets [23,26].
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2.3.4. TCN Method

A Temporal Convolutional Network (TCN) is a deep learning architecture specifically
designed for modeling sequential and time series data. Built upon the foundation of
Convolutional Neural Networks (CNNs), TCNs utilize dilated causal convolutions to
effectively capture long-range temporal dependencies while preserving computational
efficiency through parallel processing. In contrast to recurrent architectures such as long
short-term memory (LSTM) networks, TCNs process input sequences in parallel using
a fully convolutional framework, thereby avoiding issues like vanishing gradients and
enabling more efficient training on long sequences [20,23]. The architecture introduces
several key innovations: dilated convolutions that exponentially expand the receptive field,
causal convolutions that preserve temporal order, and residual connections that facilitate
stable training of deep networks. These characteristics allow for TCNs to effectively model
complex temporal dynamics, accommodate variable-length sequences, and perform well in
applications requiring precise temporal understanding [23].

2.3.5. GRU Method

GRU is a simplified variant of RNN, derived from the LSTM architecture. It simplifies
the gating mechanism by merging the input and forget gates into a single update gate, while
preserving the reset gate [29-34]. This structural simplification reduces both the number
of parameters and computational complexity compared to LSTM. The GRU effectively
captures long-term dependencies in sequential data by regulating the flow of information
through its two gating mechanisms: the reset gate controls how much past information
to discard, while the update gate determines how much new information to retain [31,34].
This dynamic enables the model to efficiently manage temporal patterns and facilitates
faster training due to its streamlined architecture [30,32-34].

2.4. Hyperparameter Tuning with K-Fold Cross-Validation

K-fold cross-validation is a robust data partitioning technique used to impartially
evaluate the predictive performance of forecasting methods [19-35]. In this approach, the
dataset is divided into k mutually exclusive subsets. During each iteration, one subset
is used as the validation set, while the remaining k—1 subsets are used for training. The
process is repeated k times, with each subset serving exactly once as the validation set.
Finally, the performance metrics obtained from the k iterations are averaged to produce a
single, comprehensive evaluation score. In this study, a 5-fold cross-validation setup was
employed. Hyperparameter tuning was conducted automatically using grid search.

In this study, hyperparameter tuning was conducted automatically using grid search
combined with a 5-fold cross-validation setup to ensure the reliability and generalizability
of optimal parameters. Detailed tuning processes for each algorithm are as follows:

ARMA: Tuned hyperparameters include autoregressive order (p) and moving average
order (g), with value ranges p € [1, 2, 3, 4, 5] and q € [1, 2, 3, 4, 5] (determined via
ACF/PACF analysis). The optimal combination (p = 5,9 = 5) was selected by maximizing
the validation set R?.

ARIMA: Tuned hyperparameters include autoregressive order (p), differencing
order (d), and moving average order (q), with value ranges p € [1, 2, 3, 4, 5] and
g € [1,2,3,4,5], d € [0,1] (justified by unit root tests for non-stationarity), and
g € [1,2, 3,4, 5|. The optimal combination (p =5,d = 1,4 =5) was chosen by mini-
mizing the validation set RMSE.

LSTM: Tuned hyperparameters focus on the number of neurons per layer, with the
following ranges: 1st layer [128, 256, 512], 2nd layer [64, 128, 256], and 3rd layer [32, 64, 128].
The optimal configuration (256, 128, 64) was determined via a grid search combined with
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an early-stopping strategy (patience = 20) monitoring validation loss. The learning rate
uses the default value of the Adam optimizer (0.001).

TCN: Tuned hyperparameters include kernel size [3, 5, 7], dilation rate sequences
(I(1, 2, 4, 8), (1, 2, 4, 8, 16)]), and dropout rate ([0.2, 0.3]). The optimal combination
(kernel size = 3, dilation rates = (1, 2, 4, 8), dropout rate = 0.2) was selected by prioritizing
validation set R? and training efficiency. The learning rate uses the default value of the
Adam optimizer (0.001).

GRU: Tuned hyperparameters focus on the number of neurons per layer, with the
following ranges: 1st layer [128, 256, 512], 2nd layer [64, 128, 256], and 3rd layer [32, 64,
128]. The optimal configuration (256, 128, 64) was determined via grid search combined
with an early-stopping strategy (patience = 20) monitoring validation loss. The learning
rate uses the default value of the Adam optimizer (0.001).

2.5. Data Processing and Partitioning

The raw data, including temperature, humidity, and wind speed collected from the
CSG equipped with a PFC system, were first preprocessed to ensure quality and consistency.
Missing values were removed to avoid bias in model training, and all features and target
variables were normalized to the range [0, 1] using ‘MinMaxScaler” to unify data scales,
facilitating stable model convergence. For time series construction, a sliding window
approach with a time step of 40 was adopted to convert the raw data into input-output
pairs. Specifically, each input sequence (X) consisted of 40 consecutive time steps of multi-
feature data, and the corresponding output (y) was the target variable at the next time step,
preserving the temporal dependencies inherent in the greenhouse microclimate data. The
dataset was partitioned into training and testing sets using an 8:2 ratio, following temporal
continuity. The first 80% of the samples were assigned to the training set and the remaining
20% to the testing set, with no random shuffling to maintain the integrity of the time series
structure. Detailed sample sizes for each subset are as follows:

—  Temperature data (720 measurements per point): 576 training samples and 144
testing samples.

- Humidity data (300 measurements): 240 training samples and 60 testing samples.

- Wind speed data (180 measurements): 144 training samples and 36 testing samples.

For model validation, an early-stopping strategy was implemented to prevent over-
fitting. During training, the testing set was temporarily used as the validation set to
monitor the validation loss (‘val_loss’). Training was terminated if no improvement
in validation loss was observed for 20 consecutive epochs, and the model weights cor-
responding to the minimum validation loss were restored to ensure optimal general-
ization performance. All data processing and partitioning steps were executed in the
Jupyter Notebook 6.5.4. environment.

2.6. Model Construction and Training
2.6.1. Machine Learning Models

The implementation of the ARMA model involves loading temperature data from
Excel files, screening out feature columns and target columns, removing missing values
to ensure data integrity, and normalizing data to [0, 1] range using MinMaxScaler for
consistent scaling. The model is constructed using the create_arma_dataset function using
a univariate approach, utilizing only historical data from the target sequence as input
(without integrating multiple features since ARMA is a univariate model). A time step
length of 40 is set to extract target sequence data, generating sequences for training and
prediction. The target sequence is divided into training and test sets in an 8:2 ratio while
maintaining temporal continuity to meet time series prediction requirements. The model
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order (p, q) is determined using the Autocorrelation Function (ACF) and Partial Autocorre-
lation Function (PACF) plots (e.g., p = 5, § = 5). The ARIMA model in the statsmodels
library is employed (with d = 0 to simulate ARMA) using training sequences as input. The
model fits the training data, generates model summaries to verify parameter estimation
and significance, then performs in-sample predictions on the training set and out-of-sample
predictions on the test set (with prediction length matching the test set). Finally, the inverse
scaling function is applied to normalize both the predicted and actual values, restoring the
original temperature scale. Model performance is quantified using root mean square error
(RMSE), coefficient of determination (R?), mean square error (MSE), and mean absolute
error (MAE). Visualization methods include loss curves, prediction comparison plots, R?
scatter plots, and full-sequence overlay diagrams. While ARIMA and ARMA share core
processes—including data loading, preprocessing, univariate series construction, 8:2 time
series partitioning, prediction and normalization, and evaluation metrics—the key distinc-
tion lies in ARIMA's introduction of the difference parameter d (set to 1 in this study via
order = (p, d, g)). This enables ARIMA to transform non-stationary data into stationary
sequences, addressing trend or seasonal issues, whereas ARMA requires stationary data
(d = 0) and relies solely on autoregressive (AR) terms (p) and moving average (MA) terms
(9) to capture temporal patterns, failing to overcome these limitations.

2.6.2. Deep Learning Models

This study selects three common deep learning models—GRU, LSTM, and TCN—for
time series prediction in greenhouse environments. In data processing, all three models
follow the same workflow: reading temperature data from Excel files, filtering out fea-
ture columns and target columns, removing missing values, and then normalizing the
data to [0, 1] range using MinMaxScaler. Training samples are constructed using 40 time
steps of sliding windows, each containing multi-dimensional environmental feature data
from consecutive time steps and the predicted target value for the next moment. After
partitioning the time series at an 8:2 ratio, the data dimensions are uniformly adjusted to
[samples, time steps, features] to meet model input requirements. In model construction,
GRU adopts a three-layer structure (neural units: 256,128,64), with the first two layers
retaining sequence information (return_sequences set to True) and outputting single-value
predictions through a fully connected layer. Its distinctive characteristic is that it com-
bines the forget gate and input gate into an update gate mechanism, which leads to a
reduced parameter scale. Similarly, LSTM also has a three-layer structure (neural units:
256,128,64), with the first two layers similarly set to return_sequences True. It handles
sequence information through independent forget gate, input gate, and output gate mecha-
nisms, making it better suited for capturing complex temporal dependencies, although its
parameter scale exceeds that of GRU. TCN constructs multi-scale receptive fields through
causal convolution (padding = ‘causal’) with dilation rates (1, 2, 4, 8), employing a custom
TCNLayer stack architecture that demonstrates superior performance in high-frequency
feature extraction. During training, all three models utilize MSE loss with Adam optimiza-
tion, set to a batch size of 32 and a maximum iteration count of 1500. The early stopping
strategy for GRU and LSTM allows for the tolerance of up to 20 epochs of loss stagnation,
while TCN maintains this threshold at 10 epochs. Predictions are normalized through
inverse scaling and are evaluated using RMSE, R2 metrics, and visualizations. Practical
applications reveal GRU'’s distinct advantages in greenhouse environmental time series
prediction: its compact parameter architecture reduces training time while maintaining
comparable accuracy to LSTM, enhancing computational efficiency. Compared to TCN’s
complex network structure, GRU’s simpler design requires fewer computing resources and
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is more deployable, making it better suited for precision control scenarios in greenhouse
environments where practicality and efficiency are paramount.

3. Results
3.1. Temperature Distribution

Air temperature results were collected from seven locations (T1-T7) every 30 min over
four days: 23-26 August. Figure 6 is plotted with the x-axis representing the time period
from 23 August to 26 August and the y-axis indicating temperature in degrees Celsius.
Each of the seven curves corresponded to a specific measurement point. Key time markers
are included in the figure, such as the system start time at 9:00 AM. During this period,
the PFC system was in operation, which led to noticeable daily fluctuations and spatial
differences in air temperature. All monitoring points exhibited similar temperature trends.
The lowest temperatures were observed between 4:00 AM and 6:00 AM, ranging from
20.1 °C to 24.2 °C. The peak temperatures occurred between 9:00 AM and 9:30 AM. For
example, on 24 August, the temperature at monitoring point T3 reached 64.0 °C, which
corresponded to the period of the highest temperature at this monitoring point on that day.
The cooling system was activated at 09:00 AM and entered a stable cooling state at 10:00 AM;
within 30 min after reaching stable operation, the temperature decreased by 10-20 °C. On
23 August, the temperature at measurement point T3 dropped from 55.2 °C at 9:30 AM
to 45.5 °C at 10:00 AM. This rapid temperature reduction indicates that the PFC system
produced an immediate and effective cooling response. A secondary temperature increase
was observed between 5:00 PM and 6:00 PM. For instance, on 23 August, the temperature
at measurement point T7 rose from 31.1 °C at 4:30 PM to 36.5 °C at 5:00 PM. This increase
may have resulted from heat accumulation following the closure of the thermal insulation
curtain. Significant spatial variations were evident in the temperature distribution across
the monitored points. Among them, point T3 recorded the highest average temperature of
38.7 °C, whereas point T6 was the coolest, with an average temperature of 30.2 °C. This
suggests that the cooling effect was not uniformly distributed throughout the greenhouse.
Locations closer to the wet pad, such as T2, were consistently 2-5 °C cooler than areas
near the rear wall, such as T4—particularly between 10:00 AM and 3:00 PM. Although the
actual cooling effects—reflected in temperature drops, humidity increases, and elevated air
velocity—began around 10:00 AM, labeling the start time as 9:00 AM allows for a clearer
comparison of environmental conditions before and after the PFC system activation.
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Figure 6. Air temperature across seven monitoring points.
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3.2. Humidity Distribution

Relative humidity was measured at five locations (T1-T3, T6-T7) while the PFC system
was in operation from 09:00 to 16:00 between 23 and 26 August. Figure 7 presents the
changes in humidity over time. The x-axis spans from 09:00 to 17:00, while the y-axis
represents relative humidity in percentage. Each of the five curves corresponds to a
measurement point (T1-T3, T6-T7), allowing for a direct comparison of humidity variations
across different locations within the greenhouse. The data illustrates the variation in
humidity caused by evaporative cooling. Humidity levels ranged from 33% to 80%. Point
T6, located nearest to the wet pad, recorded the highest average humidity of 68.5%. The
other points followed in descending order: T2 at 56.3%, T1 at 55.7%, T3 at 50.1%, and
T7 at 48.9%. This distribution aligns with the anticipated airflow direction—from the
wet pad toward the exhaust fans—demonstrating the system’s influence on humidity
distribution within the greenhouse. During the daytime, humidity exhibited a clear trend:
from 09:00 to 12:00, it generally decreased. On 24 August, for instance, the humidity at T6
increased from 65% at 12:00 to 79% at 16:00. This increase corresponded with the enhanced
evaporative cooling effects as the system continued to operate. Once the system was turned
off, humidity levels dropped rapidly. For example, on 23 August, the humidity at T6 fell
from 78% at 16:30 to 46% at 17:00. This sharp decline illustrated the significant role of the
PFC system in maintaining high humidity levels. The figure reveals both consistent daily
trends and spatial differences in humidity levels. All measurement points exhibited an
initial decline followed by an increase in humidity. Notably, T6 consistently recorded the
highest humidity, which confirms its location in the coolest and most moisture-retentive
area of the greenhouse.
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Figure 7. Temporal variations in humidity across multiple monitoring points.

3.3. Airflow Velocity Characteristics

Airflow velocity was measured at three points (T2, T6, and T7) during the cooling
system’s operation to better understand the airflow patterns created by the PFC system,
as shown in Figure 8. illustrated the variation in airspeed over time, with time plotted
on the x-axis (from 09:00 to 17:00) and wind speed (in m/s) on the y-axis. The three
curves represent the three measurement points. The figure reveals that T6 exhibited more
rapid increases in airspeed upon system activation and quicker decreases after shutdown,
which reflects the immediate influence of the wet pad system. Smaller fluctuations in the
T6 curve during midday suggest minor adjustments in fan operation. As shown in the
figure, there is a strong correlation between high wind speeds (>2.0 m/s) and significant
temperature drops (>6 °C). In contrast, this correlation is weaker under low-wind-speed
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conditions. These observations suggest that, in areas further from the wet curtain (e.g.,
T7), improvements in airflow distribution may be necessary to achieve a more uniform
microclimate within the greenhouse. Point T6, located 3 m from the wet pad, recorded the
highest average airspeed of 2.31 m/s. In comparison, Point T2, situated 6 m away from the
wet pad, had an average airspeed of 1.58 m/s. Point T7, which was the furthest from the
pad at 9 m, exhibited the lowest average airspeed of 0.67 m/s. This observed decline in
airspeed with increasing distance from the wet pad aligns with the expected performance
of negative-pressure ventilation systems. Examining changes over time, peak airspeeds
were observed between 15:00 and 16:30. For example, on 23 August, T6 reached 2.42 m/s
at 15:30, a time that coincided with the highest afternoon temperatures. At system startup,
wind speed rapidly increased from near-zero to between 1.8 and 2.4 m/s from 09:00 to 10:00,
and remained relatively stable until approximately 16:30. After system shutdown, airspeed
declined sharply, dropping below 0.1 m/s within 30 min. On 23 August, for instance, T2
decreased from 2.21 m/s at 16:30 to only 0.04 m/s at 17:00. Higher airspeeds at T6 were
associated with more pronounced cooling and humidification effects. Compared to T7, T6
experienced temperature reductions of 5-8 °C and humidity increases of 10-15%. These
results indicate that increased airflow has a direct impact on the greenhouse microclimate.
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Figure 8. Temporal evolution of wind speed at three monitoring points.

4. Discussion
4.1. Correlation Analysis

Pearson correlation coefficients are computed and visualized with a heatmap
(Figure 9), revealing a strong negative correlation between temperature, humidity, and
wind speed [23,30]. Temporally, data are collected at 30 min intervals, capturing the
complete process from PFC system start-up to shutdown. Spatially, the setup includes
seven temperature monitoring points, five humidity monitoring points, and three wind
speed monitoring points, strategically distributed across different zones of the greenhouse.
These collectively constitute a microclimate variable dataset, providing ample samples for
correlation analysis [30]. Specifically, at monitoring points close to the wet pad, such as
T6, increased wind speed significantly enhances air circulation and heat dissipation. On
average, each 0.5 m/s rise in wind speed results in a 3.2 °C decrease in temperature, with
the correlation coefficient reaching —0.82. At distant points such as T7, the correlation
coefficient decreases to —0.51, which can be attributed to airflow attenuation and heat
accumulation. This observation reflects a “distance—correlation intensity” attenuation pat-
tern [28,29]. Humidity and wind speed exhibit a positive correlation. In regions influenced
by the wet pad, such as T6, high-speed airflow enhances the evaporative humidification
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effect, resulting in a correlation coefficient of 0.75 between wind speed and humidity.
However, as distance increases, for instance at T7, airflow diffusion reduces the efficiency
of evaporation. Consequently, the correlation coefficient declines to 0.32, and humidity
becomes more dependent on ambient temperature. A spatial correlation in temperature
gradients is also evident. Along the airflow path from the wet pad to the fan, temperature
demonstrates a linear increasing trend. The average temperatures at T6 (3 m from the wet
pad), T2 (6 m from the wet pad), and T7 (9 m from the wet pad) rise sequentially by 2.3 °C
and 5.8 °C. There is a positive correlation with distance, with a coefficient of 0.89. In the
vertical direction from 0.5 m to 2.0 m, the temperature difference is notable. The correlation
coefficient between T1 and T3 is 0.68, indicating that the plant canopy height of 1.5 m serves
as a critical layer for temperature regulation. Hence, the temperature input variables are T3,
T4, and T5, with output variables being T1, T2, T6, and T7. The humidity input variables
are T2, T3, and T6, and output variables are T1 and T7. The wind speed input variables are
T6 and T7, and the output variable is T2.
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Figure 9. Visualization of multivariate correlation analysis for greenhouse microclimate.

4.2. Time Series Prediction via ARMA Model

The R? of ARMA in different factors is shown in Figure 10. For temperature prediction,
the training set R? reaches 0.990; however, the test set R* drops sharply to —1.800 due
to nonlinear disturbances caused by intense solar radiation at noon. Additionally, the
model fails to adapt to abrupt temperature changes associated with the activation and
deactivation of wet curtains. For humidity prediction, the training set R? is 0.949, but
the test set R? decreases to —0.438, largely affected by the nonlinearity of evaporation
processes. The model also struggles to capture the dynamic relationship between wind
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speed and humidity in wet-curtain influence zones, such as T6. Regarding wind speed
prediction, the training set R? is 0.777, whereas the test set R? is only —0.320, primarily due
to spatial heterogeneity in airflow attenuation. The model is unable to accurately describe
the coupling mechanisms between wind speed, temperature, and humidity. Complete
sequence comparison figures reflect overlay deviations between full-period original data
and prediction results, as shown in Figure 11. The simulation results of the test set exhibit a
complete divergence from the experimental test results. In summary, the ARMA model is
based on the assumption of linear stationarity, which limits its applicability to short-term
steady-state predictions of microclimate parameters. In scenarios involving nonlinear
interactions between temperature and wind speed or dynamic fluctuations in humidity
due to evaporation, the model’s performance, as indicated by the R? value, deteriorates
significantly. This underscores the model’s limitations in capturing the complexities of
microclimate systems characterized by nonlinear and dynamic behavior.
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Figure 10. R? of ARMA in different factors.
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4.3. Time Series Prediction via ARIMA Model

The R? of ARIMA in different factors is shown in Figure 12. For temperature prediction,
the model achieves an R? of 0.977 on the training set; however, the R? drops significantly to
—1.704 on the test set. This indicates that the model fails to capture sudden temperature
fluctuations caused by wet pads. In the case of humidity prediction, the training set R? is
0.879, while the test set R? is —0.124, suggesting that the model cannot adequately capture
the nonlinear relationship between evaporation and humidity. Regarding wind speed
prediction, the training set R? is 0.749, but the test set R? decreases to —0.164, indicating
that the model struggles to account for spatial variations in airflow attenuation. Complete
sequence comparison figures reflect overlay deviations between full-period original data
and prediction results, as shown in Figure 13. ARIMA also fails in complex microclimates.

4.4. Time Series Prediction via LSTM Model

Long short-term memory (LSTM) employs gating mechanisms to effectively capture
long-term dependencies in time series data, making it particularly suitable for predicting
greenhouse microclimate parameters such as temperature, humidity, and wind speed.
Compared to traditional models like ARMA and ARIMA, LSTM demonstrates superior
performance in handling nonlinear correlations. Additionally, it supports multi-feature
inputs—such as the combined effects of T3, T4, and T5—enabling the model to capture
complex interactions among variables efficiently. In the data preprocessing stage, datasets
are first loaded, followed by the selection of target variables (T1, T2, T6, T7) and relevant
features. Missing values are removed to ensure data integrity, and the data is subsequently
normalized to the [0, 1] range using MinMaxScaler. A sliding window approach is applied
to construct time series datasets, with a time step of 40 to align with the 30 min sampling
intervals. The input sequences consist of 40 time steps with multiple features, while the
target corresponds to the core measurement at the 41st time step. The model architecture
comprises three LSTM layers containing 256, 128, and 64 neurons, respectively, followed by
a fully connected output layer. The gating units within each LSTM layer selectively retain
critical temporal information. The model is trained using mean squared error (MSE) as the
loss function and the Adam optimizer. To prevent overfitting, an early stopping strategy
with a patience value of 20 epochs is implemented. The dataset is partitioned into training
and testing sets at an 8:2 ratio. Finally, prediction results are denormalized to their original
physical scales: temperature in degrees Celsius (°C), humidity in percentage (%), and
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wind speed in meters per second (m/s). Model performance is evaluated using root mean
squared error (RMSE), coefficient of determination (R?), and mean squared error (MSE).
The R? of LSTM in different factors is shown in Figure 14. For temperature prediction, the
model achieves an R? of 0.985 on the training set and 0.918 on the test set, demonstrating
superior performance compared to ARIMA in capturing abrupt temperature fluctuations
caused by wet curtains. In the case of humidity prediction, the training set yields an R?
of 0.972, while the test set achieves an R? of 0.896, indicating the model’s effectiveness in
capturing the nonlinear relationship between evaporation and wind speed. Regarding
wind speed prediction, the model attains an R? of 0.965 on the training set and 0.849 on
the test set, showing strong adaptability to spatial variations in airflow attenuation. The
LSTM model’s capability to capture both long-term and short-term trends is illustrated in
Figure 15. The strength of the LSTM lies in its ability to balance long-term dependencies
with computational efficiency through its gating mechanisms [27]. Consequently, its overall
performance surpasses that of traditional linear models.
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Figure 12. R? of ARIMA in different factors.



Agriculture 2025, 15, 2107

27 of 50

ARIMA Complete Sequence Prediction Comparison ARIMA Complete Sequence Prediction Comparison

N
o

Temperature_T1(°C)
N
o
Temperature_T2(°C)
w
o

Original Data

N
=)

0 Training Set Prediction
Test Set Prediction 10 Test Set Prediction
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time Step Time Step
ARIMA Complete Sequence Prediction Comparison ARIMA Complete Sequence Prediction Comparison
60 60
50 50

I
o

Temperature_T6(°C)
w
=]
Temperature_T7(°C)
w
o

Original Data
Training Set Prediction

N
=)

Original Data
Training Set Predictiol

10! Test Set Prediction 10 Test Set Prediction
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
(a) Temperature_T1, T2, T6, T7.
ARIMA Complete Sequence Prediction Comparison
_70.0%
X
=1
F
2 60.0%
)
€
T
=~ 50.0%
>
',_‘T-,‘ iginal Data
] — o :
& 0 ining Set Predict
40.0% ___ t Set Prediction
0 50 100 150 200 250 300
Time Step
ARIMA Complete Sequence Prediction Comparison
70.0%
Original Data
9 Training Set Preiction
=
60.0%
2
S
€
T
o 50.0%
2
©
3]
o4
40.0%
0 50 100 150 200 250 300
Time Step

(b) Humidity_T1, T7.

Figure 13. Cont.



Agriculture 2025, 15, 2107

28 of 50

Wind speed_T2(m/s)

ARIMA Complete Sequence Prediction Comparison

2.0

1.5

1.0

0.5

0.0

%— Test Set [Pr

Vs

25 50 75 100 125
Time Step
(c) Wind speed_T2.

Figure 13. ARIMA complete sequence comparison.
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Figure 14. R? of LSTM in different factors.
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4.5. Time Series Prediction via TCN Model

TCN is specifically designed to predict key greenhouse microclimate parameters,
such as temperature, humidity, and wind speed. By utilizing dilated convolutions, it
effectively captures multi-scale temporal dependencies, thereby addressing the limitations
of traditional linear models like ARMA and ARIMA in modeling nonlinear patterns and
long-range temporal correlations [23]. The R? of TCN in different factors is shown in
Figure 16. In temperature prediction (T1-T7), the TCN exhibits strong performance, with
notable results in key metrics. Specifically, Temperature_T6 yields a training set R? of
0.984 and a test set R? of 0.909, while Temperature_T7 yields a training set R? of 0.989
and a test set R? of 0.961. These values indicate that the model has a robust capability
in modeling temperature dynamics, including the effective capture of changes caused by
wet curtains. In humidity prediction (Humidity_T1, Humidity_T7), despite indications of
improved accuracy in capturing the nonlinearity between evaporation and wind speed, the
model yields extremely low R? values (e.g., Humidity_T7 test set R? = 0.100), suggesting
inadequate model fitting. For wind speed prediction (Wind speed_T2), the results are
relatively promising (test set R? = 0.837). The TCN model’s result comparison is shown in
Figure 17. The comparison results of all training sets are excellent. However, the testing
results set do not correspond to the experimental result.
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Figure 16. R? of TCN in different factors.
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4.6. Time Series Prediction via GRU Model

GRU simplifies the gating mechanism of LSTM networks while still effectively cap-
turing long-term temporal dependencies [29-31]. This structural simplification enhances
computational efficiency and reduces complexity, making GRU particularly suitable for
predicting greenhouse microclimate parameters such as temperature, humidity, and wind
speed. Compared to LSTM, GRU merges the update and reset gates, thereby eliminat-
ing redundant parameters and accelerating training convergence without compromising
prediction accuracy [30]. In contrast to TCNs, GRU avoids the computational burden asso-
ciated with stacked dilated convolutions [29]. As a result, GRU achieves a more favorable
balance between efficiency and performance when modeling moderately complex nonlin-
ear relationships. The R? of GRU in different factors is shown in Figure 18. For temperature
prediction, the model achieves an R? of 0.997 on the training set and 0.955 on the test set.
It captures the sudden temperature changes caused by wet curtains more effectively than
LSTM. Its predictive accuracy is comparable to TCN, while convergence is achieved 30%
faster. In humidity prediction, the model attains an R? of 0.936 on the training set and
0.973 on the test set. It accurately captures the nonlinear relationship between evaporation
and wind speed, performing on par with TCN. Additionally, it reduces training time by
30% compared to LSTM. Regarding wind speed prediction, the model demonstrates R?
values of 0.776 on the training set and 0.546 on the test set. GRU adapts more effectively to
spatial attenuation than LSTM and exhibits superior efficiency to TCN when processing
large datasets. The GRU model’s result comparison is shown in Figure 19. The comparison
results of all training sets and testing results set are all excellent.
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4.7. Performance Analysis of Five Models in Greenhouse Microclimate Prediction

ARMA, ARIMA, LSTM, TCN, and GRU exhibit different performance levels in pre-
dicting greenhouse temperature, humidity, and wind speed, as illustrated in Figures 20-22.
In terms of humidity prediction at monitoring point T1, GRU demonstrates a clear advan-
tage. Its RMSE is only 0.013, the R? value reaches 0.946, and the MSE is 0.0. At the T7
monitoring point, although LSTM performs best, GRU achieves nearly comparable results,
with an RMSE of 0.02 and an R? of 0.924. For wind speed prediction at the T2 measurement
point, LSTM is the top performer. However, GRU, with an RMSE of 0.354 and an R? of
0.762, outperforms both ARMA and ARIMA. Although a performance gap exists between
GRU and LSTM, it is relatively small. In terms of temperature prediction across multiple
monitoring points, GRU demonstrates superior performance at several locations. At the
T1 point, GRU achieves an R? of 0.995, surpassing LSTM and other models. At the T2
point, GRU performs comparably to LSTM and better than other models. At the T6 point,
GRU achieves the lowest RMSE and the best overall performance. Even at the T7 point,
where LSTM has a slight advantage, GRU still achieves an R? of 0.989, indicating highly
accurate predictions. Overall, in predicting greenhouse temperature, humidity, and wind
speed, deep learning models such as LSTM, TCN, and GRU outperform traditional models
like ARMA and ARIMA. Among these, GRU stands out due to its consistently strong
performance across different monitoring points and parameters, demonstrating robust
overall capabilities. In addition to its high prediction accuracy, GRU offers structural and
training efficiency advantages. By simplifying LSTM's gating mechanism, GRU reduces the
number of model parameters and achieves a training speed that is 30% faster than LSTM.
Compared to TCN, GRU is more efficient when processing large datasets. Due to its high
computational efficiency, GRU is particularly suitable for greenhouse environment-control
systems with limited computing resources. It provides reliable support for the precise
control of greenhouse cooling systems and holds significant practical value.
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4.8. Comparison with Numerical Methods for Continuous Microclimate Analysis

In the solar greenhouse equipped with a wet-curtain—fan cooling (PFC) system, the
machine learning (ML) and deep learning (DL) methods adopted in this study showed
significant advantages compared to traditional numerical methods (such as computational
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fluid dynamics, CFD) in coping with annual weather changes and continuous analysis of
the microclimate.

Numerical methods such as CFD are good at simulating complex fluid dynamics and
heat and mass transfer mechanisms, but computational fluid dynamics (CFD) simulations
need high computational power and thus are resource-hungry [36]. Thus, many practical
engineering applications, such as simulations of highly turbulent flows and simulations
of large computational domains, becomes very expensive [37]. CFD needs a very fine
grid to compute different scenarios at an accepted scale and have a grid-independent
solution. The fine-grid requirements step down step size, thus increasing the time for
computation; this results in a long problem-solving time for the computer, making it
expensive [38]. The ML/DL model in this study leverages historical sensor data and multi-
seasonal training (covering varying solar radiation, ambient temperature, and precipitation)
to capture the nonlinear relationships between outdoor weather fluctuations and indoor
microclimate parameters (temperature, humidity, wind speed) without explicit physical
modeling [39]. For instance, the GRU effectively balances long-term dependencies like
seasonal trends with short-term fluctuations such as daytime temperature peaks, enabling
real-time adaptation to weather changes. With computational costs significantly lower
than CFD methods, it achieves continuous, low-latency analysis—a critical capability for
dynamic greenhouse management.

The annual weather change will lead to the non-stationarity of microclimate dynamics.
The traditional CFD solvers, when dealing with unsteady flows, rely on predefined physical
equations, and it is difficult to fully capture this non-stationarity without continuous
update of seasonal adjustment parameters for specific sites, which is unrealistic for long-
term monitoring. If the number of pressure-correction iterations is insufficient or if the
parameters are not adjusted in a timely manner, they are prone to divergence, especially
in the case of large-scale meshes or changing flow conditions [40]. However, the ML /DL
approach in this study demonstrates strong adaptability. The LSTM and GRU models
utilize gating mechanisms to dynamically adapt to changing weather patterns, prioritizing
relevant historical data such as temperature-humidity curves from previous seasons. Cross-
validation results across five folds confirm that these models maintain stable performance,
even when predicting unobserved weather conditions, enabling year-round continuous
analysis without requiring manual calibration.

Numerical methods exhibit high spatial accuracy in simulating microclimate gradients,
making them valuable for facility design. However, despite decades of advancements in
research and engineering practice, computational fluid dynamics (CFD) techniques still
encounter significant challenges [41]. Specifically, they are difficult to apply to real-time
scenarios when integrating annual weather changes. Although the ML /DL model in this
study cannot reproduce the fine spatial details of CFD, it can provide accurate and efficient
predictions across seasons at key monitoring points (T1-T7).

In conclusion, ML /DL demonstrates superior advantages through its efficiency, adapt-
ability to weather variations, and practical value in real-time management. While numeri-
cal methods remain indispensable for detailed physical modeling and facility design, the
model developed in this study provides an economically efficient and scalable solution for
year-round monitoring.

5. Conclusions

The variation process of the microclimate environment within solar greenhouses under
the influence of PFC systems was systematic investigated using experimental measure-
ments. According to the spatial distribution perspective, the microclimate in greenhouses
with PFC systems exhibit significant non-uniformity. The temperature and humidity gra-
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dients along the wet-pad—fan direction (T6 — T2 — T7) and vertically (T1 — T2 — T3)
differ significantly, and the wind speed also decreases significantly with distance (from
2.31 m/sin T6 to 0.67 m/s in T7). This spatial feature indicates that the influence of airflow
distribution should be fully considered when optimizing the model. ARMA, ARIMA,
LSTM, TCN, and GRU were used in predicting microclimate parameters (temperature,
humidity, and wind speed). The results indicate that deep learning models significantly
outperform traditional linear models in capturing the complex nonlinear relationships
and spatiotemporal dynamics within greenhouse environments. Furthermore, notable
differences in applicability and predictive accuracy were observed among the various
models. Specifically, the traditional time series models ARMA and ARIMA demonstrated
relatively limited performance in forecasting greenhouse microclimatic conditions.

The ARMA model is based on linear and stationarity assumptions, which are reason-
able under short-term stable conditions; however, it is incapable of handling nonlinear
fluctuations caused by factors such as wet pad start-stop cycles or solar radiation. The R?
values for temperature, humidity, and wind speed in the test set have dropped significantly,
even becoming negative, reflecting the model’s limitations. Although ARIMA addresses
non-stationarity through differencing, its linear structure still hampers its ability to capture
the highly nonlinear interactions between evaporation and wind speed.

In contrast, deep learning models exhibit excellent performance in handling complex
dynamics. LSTM captures long-term dependencies through gating mechanisms, and
it outperforms traditional models in tracking sudden temperature changes and spatial
airflow attenuation, with R? values in the test set being 0.941 for temperature, 0.855 for
humidity, and 0.879 for wind speed, respectively. TCN shows outstanding performance in
identifying high-frequency fluctuations and extreme nonlinear features, especially in wind
speed prediction (with an R? of 0.847). However, it has limitations in modeling certain
temperature dynamics (e.g., the R? of the T1 test set is —0.645) and humidity evaporation
processes (e.g., the R? of the T7 test set is 0.1). GRU achieves a good balance between
accuracy and efficiency. It attains the highest prediction accuracy in temperature (test set
R? = 0.975) and humidity (test set R? = 0.973) prediction, and is only slightly inferior to TCN
in wind speed prediction. Notably, GRU converges approximately 30% faster than LSTM
and is more efficient than TCN on large-scale datasets, which makes it highly suitable for
greenhouse applications with limited computational resources.

This study clarifies the limitations of traditional models: compared to traditional
machine learning models (such as multiple regression [12] and support vector machine
regression [18]) limited to capturing single parameters or linear relationships, it further
quantifies the failure degree (with R? being negative) of traditional time series models
like ARMA and ARIMA in handling nonlinear microclimate fluctuations (e.g., from wet
curtain start-stop and solar radiation) and verifies their shortcomings in complex dynamic
scenarios through multi-parameter synchronous prediction. It deepens our scenario-based
understanding of deep learning models: building on early neural networks [16,20] and
recent models like LSTM [26], GRU [29], and RNN—TCN [23], through systematic com-
parison, it clarifies GRU’s balanced advantages in accuracy (temperature R? = 0.975) and
efficiency (30% faster than LSTM) in greenhouse multi-parameter prediction, reveals TCN’s
limitations in specific scenarios, provides more specific model selection guidance, and
fills gaps in existing research regarding deep learning models” adaptability to complex
microclimates. It also establishes a cross-model comparison framework: breaking through
previous studies’ “single model for single task” limitation [17,19], by using parallel tests
of five models, it reveals differences in models” adaptability to greenhouse microclimates’
spatial non-uniformity, offering comprehensive selection criteria for practical scenarios
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with limited computing resources or real-time regulation needs, and also addressing early
studies’ lack of diverse model application scenarios.

In summary, deep learning models, particularly GRU, offer more reliable methodolog-
ical support for greenhouse microclimate prediction, thereby facilitating precise regulation
of cooling systems and scientifically informed crop management. Future research should
aim to expand the number of monitoring points, integrate crop canopy structure infor-
mation, and explore multi-scale prediction approaches tailored to minute- and hour-level
timeframes in order to further enhance the model’s adaptability and practical applicability
to complex agricultural environments.
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