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Abstract

Natural latex harvest is pushing the boundaries of unmanned agricultural production in
rubber milk collection via integrated robots in hilly and mountainous regions, such as the
fixed and mobile tapping robots widely deployed in forests. As there are bad working
conditions and complex natural environments surrounding rubber trees, the real-time
and precision assessment of rubber milk yield status has emerged as a key requirement
for improving the efficiency and autonomous management of these kinds of large-scale
automatic tapping robots. However, traditional manual rubber milk yield status detection
methods are limited in their ability to operate effectively under conditions involving
complex terrain, dense forest backgrounds, irregular surface geometries of rubber milk,
and the frequent occlusion of rubber milk bowls (RMBs) by vegetation. To address this
issue, this study presents an unmanned aerial vehicle (UAV) imagery rubber milk yield
state detection method, termed YOLOv8n-RMB, in unstructured field environments instead
of manual watching. The proposed method improved the original YOLOv8n by integrating
structural enhancements across the backbone, neck, and head components of the network.
First, a receptive field attention convolution (REFACONV) module is embedded within
the backbone to improve the model’s ability to extract target-relevant features in visually
complex environments. Second, within the neck structure, a bidirectional feature pyramid
network (BiFPN) is applied to strengthen the fusion of features across multiple spatial
scales. Third, in the head, a content-aware dynamic upsampling module of DySample
is adopted to enhance the reconstruction of spatial details and the preservation of object
boundaries. Finally, the detection framework is integrated with the BoT-SORT tracking
algorithm to achieve continuous multi-object association and dynamic state monitoring
based on the filling status of RMBs. Experimental evaluation shows that the proposed
YOLOv8n-RMB model achieves an AP@0.5 of 94.9%, an AP@0.5:0.95 of 89.7%, a precision of
91.3%, and a recall of 91.9%. Moreover, the performance improves by 2.7%, 2.9%, 3.9%, and
9.7%, compared with the original YOLOv8n. Plus, the total number of parameters is kept
within 3.0 million, and the computational cost is limited to 8.3 GFLOPs. This model meets
the requirements of yield assessment tasks by conducting computations in resource-limited
environments for both fixed and mobile tapping robots in rubber plantations.
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1. Introduction

Natural rubber milk is one of the four most important and scarce industrial materials,
along with steel, oil, and coal, and it is a raw material used in more than 70,000 products
due to its excellent resilience, electrical insulation, wear resistance, air tightness, and
flexibility [1]. Moreover, the global demand for natural rubber milk is still quickly rising,
and it is not being satisfied by natural latex production [2]. Natural rubber milk is obtained
from the latex tubes of rubber trees through regular tapping, and rubber plantations are
mostly located in hilly and mountainous areas with uneven terrain. In these regions, manual
inspection and harvesting are limited by poor accessibility and high labor demands [3].
However, traditional production processing remains heavily reliant on manual intensive
labor for bark cutting and yield inspection, and it requires skilled tapping and collection
workers under a bad working environment at night-time in the forest. Thus, the labor
shortage corresponding with aging is a critical bottleneck in the natural rubber milk
industry. Luckily, such challenges are typically addressed by replacing manual labor
with automated agricultural robotic systems, like both “one tree one machine” (OTOM)
fixed-position and mobile rubber tapping robots [4].

Unmanned and automatic tapping robots are generally concentrated on the tapping
procedure in terms of tapping depth, tracing, start points via RGB, and Lidar-based vi-
sion [5]. The OTOM fixed robot is attached to one rubber tree and automatically taps
the tree following the previous tapping tracing, lines, and depth [6] every three or four
days. Meanwhile, the mobile robot is carried by a tapping machine, and it travels among
the trees, tapping a tree with the assistance of tapping line image recognition and spatial
control [7]. The tapping robots are triggered by fixed time-counter control, and they start
the tapping operation guided by images [8] or laser scanning 3D points to achieve precise
trajectory fitting, with strong adaptability to trees with irregular diameters and complex
surface structures [9]. However, current OTOM and mobile tapping robots primarily focus
on tasks such as tapping path planning and initial line positioning, while the perception
of rubber milk collection status remains underexplored. Actually, in a real scenario of
large-scale robots, the failure to recognize the remaining rubber milk in the rubber milk
bowl (RMB) may easily result in rubber milk overflow or the repeated tapping of trees,
leading to resource waste and reduced production efficiency. After tapping, rubber milk
naturally flows into the rubber milk bowl through the incision, forming a visible liquid
level. Based on the height of the rubber milk, the yield status of each rubber milk bowl
can be classified into three categories: empty, partially filled, and full. So, the state of
RMB, like filled and unfilled, is one of the key issues facing unmanned robot tapping robot
management, especially related to robots’ decision of the suitable time of starting and
natural latex harvest.

The status of RMB can be determined by images from different scales of ground
vehicles, satellites, and unmanned aerial vehicles (UAVs) [10]. Conventional approaches
to rubber milk bowl image recognition typically involve mounting cameras directly onto
tapping machines. However, such configurations face practical challenges for both OTOM
and Mobility. For example, each unit of OTOM with an independent vision system can
significantly increase equipment costs and energy consumption in a large-scale plantation.
And mobile tapping robots often encounter operational limitations in complex terrains,
including difficulty in adjusting camera angles and frequent target occlusion. On the other
hand, satellite-based imagery for the rubber yield prediction has been explored [11] to
estimate monthly rubber production at the plantation scale, with the overarching goal of
stabilizing national rubber prices [12]. But such methods suffer from limited real-time
applicability and relatively low accuracy, rendering them unsuitable for daily rubber milk
collection monitoring at the individual farmer level. To overcome these issues, a UAV-
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based low-altitude visible-light imaging could be a suitable potential solution for efficient,
cost-effective, and non-contact yield recognition of rubber milk bowls in hilly and forested
areas. The scenarios are shown in Figure 1a. By integrating UAV imagery with computer
vision algorithms to extract rubber milk level features, an artificial intelligence model
can automatically determine the current yield status of each bowl. This enables precise
localization and quantification of harvestable targets, providing robust perception support
for intelligent rubber tapping systems.
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Figure 1. Scenarios and concept of UAV-assisted rubber milk tapping robot management. (a) The
data capture and transmission via drones; (b) the control logic of the rubber tapping machine via
improved YOLOv8n-RMB.

UAV-imagery crop detection and counting by combining machine vision methods
have been successfully applied, like tree crown defoliation by extracting vegetation indices
from multispectral imagery [13], and estimating equivalent water thickness in wheat under
field conditions [14]. These early works of target detection and counting exhibit poor ro-
bustness to complex backgrounds and varying lighting conditions, limited generalizability
across crop varieties, and reduced computational efficiency in high-resolution imaging
environments. And the base models of You Only Look Once (YOLO) have been improved
to address these challenges by changing and modifying network structures. The UAV-based
imaging method has been deployed in 0il palm fruit detection [15], cotton crop [16], pine
tree disease identification [17], and pine tree disease detection [18]; in improving YOLOv3
for strawberries flowering and fruit counting [19]; and in localization and accurate counting
of peanut seedlings through frame-by-frame analysis via improved YOLOvS [20]. These
UAV imagery recognition works provide technical models and a base for rapid dynamic
monitoring and large-scale rubber bowl detection and counting.

The UAV imagery and target detection models have specific requirements in terms of
the features of procedures, robot control, RMB, and the environment, as shown in Figure 1b.
Generally, a rubber milk harvesting process contains several tasks: in Task 1, the UAV
captures the images and video the RMB and recognizes the status; in Task 2, the tapping
robots, including fixed and mobile, take action according to tapping decision from the
Task1; in Task 3, the tapping robots are selected to start working and the harvest robots to
collect the milk in RMB. In real scenarios, since RMBs typically have a dark color, visual
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confusion often arises between the bowls and background elements, such as fallen leaves
and tree trunks, which share similar chromatic features. This color similarity increases the
likelihood of false detections. Moreover, the subtle visual differences between the “Not
Filled” and “Filled” states frequently lead to mutual misclassification, thereby complicating
the accurate assessment of rubber yield status. Thus, this work is expected to explore the
RMB yield status counting method based on the improved YOLOv8n-RMB model using
real-time drone images to accurately identify the yield status under the influence of the
complex background of rubber forests, for the unmanned tapping industry. The main
contributions are listed below:

(1) An original and novel dataset for detecting rubber milk bowls to support large-scale
tapping robot control is built and reported. As the best as we know from the literature
review, this work is the first to capture and present UAV imagery of natural rubber
milk in the hilly and mountainous forests.

(2) Animproved YOLOv8n-RMB is presented for real-time natural rubber milk status
recognition. The proposed model integrates the receptive field attention convolution
(RFACONYV) module, replaces the bidirectional feature pyramid network (BiFPN),
and introduces the dynamic sampling module DySample into the upsampling stage.

(3) A pilot experiment of UAV imagery RMB target detection is implemented in real
scenarios. The proposed YOLOv8n-RMB can be used in computing consumption
devices and count and predict the rubber milk in real time.

2. Materials and Methods
2.1. Data Collection and Annotation

The RMB images and videos in the dataset were originally collected from the main
planting areas of the rubber tree in Hainan Province in 2025 and Yunnan Province in 2024,
China, as shown in Figure 2a. The training images of rubber liquid in the RMB come from
the natural rubber forest of Danzhou city of Hainan Province (19°32’ N, 109°28" E) and
Ruili city of Yunnan Province (24°04’ N, 97°52 E), China. The images were captured using
an iPhone 15, and the videos were taken by a DJI FLIP drone, with both resolutions at
1920 x 1080 pixels. Moreover, the images were collected at three time intervals of 1 h, 12 h,
and 24 h after tapping. There are 1500 original images in total, saved in PNG format, with
the number of original images for the three labels (none, not filled, and filled) being 268,
683, and 549, respectively. To enable real-time and dynamic monitoring of rubber yield, a
DJI FLIP drone was selected to conduct low-altitude flights among rubber trees for imaging
and video capturing, as shown in Figure 2b. It was recorded and UAV-assisted for the
recognition and counting of RMB states. The UAV flight scenario is illustrated in Figure 2c,
and a sample of the recognition output is shown in Figure 2d.

Since the dataset samples were captured under complex background conditions, they
pose greater recognition challenges. This strategy not only enriches the variability of
rubber milk volumes in the RMBs but also ensures environmental diversity within the
plantation. Representative sample images from the dataset are shown in Figure 3. The
rubber milk surfaces in the RMBs were manually annotated using the image annotation
software Labellmg (version 1.8.6), and the marking format was VOC. Three labels were
assigned: none, not filled, and filled. These three states constitute a dataset in TXT format.
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Danzhou City
Hainan Provice Experimental Forest
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Figure 2. (a) The location of Danzhou City on the map, (b) the experimental rubber plantation, (c) the
experimental scene, and (d) the UAV-based recognition view.

(d) Plant occlusion. (e) Low-light environment. (f) Interference bark texture.
Figure 3. UVA imagery BMW status (a—c) and samples in complex background environment (d—f).

2.2. Data Enhancement

The performance of deep learning models depends on the quality of the dataset, with
key factors including richness, diversity, and annotation accuracy. This dependency is
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particularly observed in the visual inspection of rubber tapping surfaces within complex
rubber forest environments. Environmental interference factors, such as dynamic lighting
changes, complex background noise, and vegetation occlusion, can easily lead to charac-
teristic deviations in the collected sample data, which in turn causes the model to overfit
and reduce its spatial generalization ability. In this study, random enhancement operations
were applied to the original dataset images. These operations included image flipping;
addition of Gaussian noise; and adjustment of brightness, color, and contrast, as shown
in Figure 4. Finally, the number of enhanced data sets reached 2100 images, which were
randomly divided into training and validation sets in a ratio of 7:3 using the code.

(d) Ralny day 51mulat10r1 (e) Increased contrast. (f) Fog effect.

Figure 4. Data enhancement of image flipping; addition of Gaussian noise; and adjustment of
brightness, color, and contrast.

2.3. Standard YOLOwv8 Network Structure

YOLOVS is a version of the YOLO object detection model released by Ultralytics in
2023 [21]. Maintaining the fundamental principle of “single-stage detection with high real-
time performance,” YOLOVS integrates a series of architectural refinements and algorithmic
innovations, markedly enhancing detection accuracy, robustness, and computational ef-
ficiency [22]. Due to these improvements, YOLOVS has been widely used in areas such
as precision agriculture, industrial inspection, and autonomous systems. The model pro-
vides five scalable variants—YOLOv8n (nano), YOLOvS8s (small), YOLOv8m (medium),
YOLOVSI (large), and YOLOv8x (extra-large)—to meet different performance and hardware
needs. Given the real-time inference requirements and limited computational resources in
rubber tapping scenarios, this study adopts the lightweight YOLOv8n model as the base
detection architecture to balance accuracy and efficiency. In this study, the lightweight
object detection model YOLOv8n was used as the baseline architecture. YOLOvVS8n is the
smallest model in the YOLOVS series. It provides fast inference and low computational cost,
making it suitable for deployment on resource-limited platforms and in real-time detection
tasks. It was used to improve the detection accuracy and classification consistency of RMBs
in complex forest environments.

The overall architecture of YOLOVS is organized into three functional parts: the back-
bone, the neck, and the head. The input image is first processed by the backbone network,
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which applies modules such as CBS (Convolution-BatchNorm-SiLU), SPPF (Spatial Pyra-
mid Pooling—Fast), and C2F (Cross-Stage Partial Fusion) to extract multi-scale semantic
and spatial features. These features are then passed through the neck, which uses a Path
Aggregation Feature Pyramid Network (PAFPN) to enhance feature integration across
scales while preserving contextual information. The head network outputs object cate-
gories, confidence scores, and bounding box coordinates, enabling accurate detection under
complex environmental conditions.

3. Improvement in YOLOv8n-RMB Network
3.1. The Improved Network Architecture of YOLOv8n-RMB

The YOLOv8n-RMB integrates three core modules: RFACONYV, BiFPN, and DySample.
This design maintains model compactness while improving detection accuracy. The model
performs well in identifying the three states of RMBs—empty, partially filled, and fully
filled—under various complex field conditions. The overall network structure of YOLOv8n-

RMB is shown in Figure 5.
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Figure 5. Structure of YOLOv8n-RMB. The red dashed boxes in the figure indicate the modules that
replace components of the original YOLOv8n. In RFAConv, AvgPool is used to capture global infor-
mation within each receptive field, and SoftMax emphasizes important features. In C2f, MaxPool2D
denotes the max pooling operation.
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3.2. Improvement in Backbone Network

In YOLOVS, standard convolution operations use the same parameters for all receptive
fields. Feature information is extracted through convolutional kernels without considering
positional variation. This uniform approach often causes redundant information to appear
in the extracted data. The introduction of spatial attention mechanisms allows models to
focus on salient features [23-25]. This improves the network’s ability to capture fine-grained
feature representations.

At present, spatial attention mechanisms such as the Convolutional Block Attention
Module (CBAM) and Channel Attention (CA) are widely used to improve the performance
of convolutional neural networks. The structures of CA and CBAM are shown in Figure 6.
However, these spatial attention mechanisms mainly focus on spatial features and do not
effectively handle the issue of parameter sharing in convolutional kernels.

l Input l Input

CxHxW Residual Residual CxHxW
COx1x1 Global Avg Pool CxHx1 X Avg Pool Y Avg Pool Cx1xW
Y A A
C/rx1x1 Fully Connected Concat+Conv2d C/rx1x(W-+H)
\ \
Clrx1x1 Non-linear BatchNorm+Non-linear Clrx1x(W-H)
Y \ \ A
Cx1x1 Fully Connected CxHx1 Conv2d Conv2d Cx1xW
Cx1x1 CxHx1 Cx1xW
\/ \/
CxHxW Re-weight Re-weight CxHxW

l Output l Output

Figure 6. The structure of CA and CBAM.

To overcome the limitations of existing spatial attention approaches, this study intro-
duces a novel receptive field attention convolution [26] (RFAConv). RFAConv not only
emphasizes the importance of distinct features within the receptive field window but
also prioritizes the spatial features of receptive fields, effectively addressing the problem
of parameter sharing in convolution operations [27]. As shown in Figure 7, the RFAConv
structure uses 3 x 3 convolutional kernels. In this structure, C, H, and W represent the
number of channels, input height, and input width, respectively. “3 x 3 Group Conv”
refers to a 3 x 3 group convolution operation, and “AvgPool” represents an average
pooling operation.
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Figure 7. The structure of RFAConv.

First, the convolution layer applies an initial convolution to the input features to
extract low-level information and produce a preliminary feature map, and the model
adjusts the contribution of each feature based on this map to better capture the most
important information in the input. The feature weights are then updated through a
reweighting mechanism. Next, average pooling is used to aggregate the global infor-
mation of each receptive field to reduce the computational overhead caused by the
interaction between features, nd a1 x 1 group convolution is applied to enable informa-
tion interaction, and Softmax is used afterward to emphasize the importance of features
within each receptive field.

In general, the computation of receptive field attention (RFA) can be expressed as follows:

P Softmax<g{i><i}(Angool(X))) y ReLu<NO,,m(g{k><k}(X))> =Appy < Fopp ()

where g{iXi} represents a grouped convolution of size i x i, and k represents the convolution
kernel size, Norm represents normalization, X represents the input feature map, and F is
obtained by multiplying the attention map Arf with the transformed receptive field space
feature Fy,¢). Compared with traditional convolutional attention modules, RFA generates
attention maps for individual receptive field features.

3.3. Improvement in Neck Network

Feature fusion is important in target detection tasks and helps combine information
from different scales to improve detection accuracy. Traditional FPN combines features
across levels (P3 to P7) using a top-down information flow, as shown in Figure 8a. However,
due to the characteristics of unidirectional transmission, FPN has certain limitations in
processing positioning information, which easily leads to the loss of spatial details. To
this end, the path aggregation network (PANet) introduces a bottom-up path based on
FPN to form a bidirectional information flow, as shown in Figure 8b, which effectively
compensates for the lack of positioning features and enriches semantic features. In YOLOVS,
the feature extraction network adopts a combination of FPN and PANet, and improves
the representation of the feature pyramid through feature fusion of P4-N4 and P5-Nb5.
However, the PAN-FPN structure still suffers from several limitations in the context of RMB
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O

(2)FPN

detection under complex background conditions, including feature redundancy, insufficient
utilization of shallow features, and low feature reuse efficiency. These shortcomings reduce
the model’s ability to capture key cues such as bowl edge contours and subtle differences
in yield states.

O

(b)PANet (¢)BIFPN

Figure 8. Comparison of neck network structure.

To solve the above limitations, this paper introduces a bidirectional feature pyramid
network [28] (BiFPN), whose structure is shown in Figure 8c. BiFPN was proposed by
Google in EfficientDet to improve the transfer and combination of features across different
scales. It introduces a bidirectional structure that allows information to move both upward
and downward between layers and applies learnable weights to adjust the contribution
of each input during feature merging. Compared with PANet, BiFPN uses a simpler
structure and eliminates nodes that have only one input, which helps reduce unnecessary
computations. At the same time, new paths are introduced that link input and output
features within the same resolution layer, which further improves the diversity and quality
of the fused features. In addition, BiFPN introduces a weighted fusion mechanism, which
avoids the information loss problem caused by simple feature superposition by assigning
learnable weights to different input features, and adopts a fast normalization method to
improve training speed and data consistency.

The integration of BiFPN not only preserves the advantages of both FPN and PAN
structures but also enhances feature interaction through the addition of two lateral path-
ways. The introduction of the P2 layer provides higher-resolution feature maps, which are
beneficial for capturing fine-grained details such as RMB edges and yield states. Further-
more, the repeated two-way feature pathways in BiFPN support full multi-scale integration,
which improves the model’s response to state changes and increases classification accuracy
in complex background conditions. In summary, BiFPN offers a structurally simple yet
computationally efficient feature fusion strategy, making it an effective architectural en-
hancement for addressing the challenges posed by environmental variability and inter-class
similarity in rubber plantations. This provides essential support for intelligent agricultural
tasks, including yield estimation and automated RMB counting.

3.4. Improvement in Upsampling Module

To effectively balance the semantic information of deep features with the spatial in-
formation of shallow features during the feature fusion stage, neural networks typically
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employ upsampling operations to restore spatial resolution. In the original YOLOVS archi-
tecture, bilinear interpolation is commonly used for upsampling, where sampling locations
are fixed and independent of the input image content. This static interpolation strategy
presents limitations in complex scenes or for irregular objects, as it fails to adapt sampling
based on the characteristics of the feature map, thereby compromising the precision and
robustness of feature fusion.

To solve this problem, the DySample mechanism is introduced to adjust the upsam-
pling process in YOLOVS8 based on input feature characteristics [29]. DySample dynamically
generates sampling locations based on feature content. Its core concept lies in learning spa-
tial offsets for each pixel in the input feature map to adaptively adjust sampling positions.
Specifically, DySample first transforms the input features via a linear layer to generate
displacement offsets, which are then multiplied by a scaling factor to compute relative
coordinate shifts. These are embedded into the feature map using a pixel shuffle operation
and added to the base sampling coordinates to obtain dynamic sampling positions. Feature
resampling is subsequently performed using grid sampling based on these coordinates.

As illustrated in Figure 9, the DySample module consists of key components such as
the input feature map, linear transformation layer, offset computation, pixel shuffle, and
grid sampling. Unlike fixed interpolation methods, DySample adjusts the upsampling
strategy based on image content. This approach is effective in complex backgrounds,
unstructured environments, and cases involving uneven target distribution. In rubber
plantations and other natural environments, DySample improves the model’s ability to
adapt to uneven terrain and detect edge objects. This leads to more accurate feature
restoration and fusion, resulting in balanced and detailed feature representations.

sHj 2 sH

N % Pizel o
ul| o | [ Linear [ & shurle s

A
[

sH| X sH 3

> Grid Sample <

Figure 9. The structure of Dysample.

3.5. Real-Time Video Counting Algorithm

This study developed a video analysis system that integrates the YOLOv8n-RMB
model with the BoT-SORT algorithm to achieve automated detection, state recognition,
and accurate counting of RMBs in UAV aerial videos. The system first establishes a
stable video streaming platform by configuring an NGINX server with the RTMP module,
which streams real-time plantation footage captured by the UAV to the server using the
RTMP protocol, ensuring low-latency and high-frame-rate video input. Subsequently, the
detection script utilizes multimedia processing libraries such as OpenCV and FFmpeg,
and employs cv2. VideoCapture to continuously acquire frames from the RTMP stream,
thereby providing real-time input for the target analysis module. For each frame, the
optimized YOLOv8n-RMB model is applied to detect RMB targets and classify their
yield status into three categories: empty, partially filled, and fully filled. The BoT-
SORT (ByteTrack with Transformer-enhanced appearance features) multi-object tracking
algorithm is then used to assign a unique identifier (ID) to each target. By leveraging
motion trajectories and appearance features, the algorithm achieves robust cross-frame
association and tracking, ensuring coherent and stable target trajectories under complex
plantation backgrounds. Based on the identified status of each bowl, the model draws



Agriculture 2025, 15, 2075

12 of 23

corresponding bounding boxes and labels while maintaining a record of its historical
positions and recognition states.

To ensure accurate counting, the system predefines reference lines or zones in the video
frames. When a detected target crosses these boundaries or is consistently classified as
“Fully Filled” over consecutive frames, it is added to the count of RMBs ready for collection,
effectively minimizing duplicate counting. All processed frames are displayed in real time
on the front-end interface with detection and counting results and optionally stored as
video files for traceability and accuracy verification. By integrating detection, recognition,
tracking, and counting functionalities, this system provides a comprehensive and efficient
video-based intelligent processing solution for unmanned rubber milk collection operations.

3.6. Experimental Environment and Model Evaluation Indicators

3.6.1. Experimental Environment

The experiments in this study were implemented using the open-source machine
learning framework PyTorch 1.11. The hardware environment consisted of an Intel® Xeon®
Platinum 8352V CPU @ 2.10 GHz, 64 GB of RAM, and an NVIDIA RTX 4090 GPU with
24 GB of video memory, operating under CUDA 11.3. The software platform was based on
Ubuntu 18.04 with Python 3.8.

Model training was conducted over 100 epochs with a batch size of 32. The initial
learning rate was set to 0.01, while the momentum parameter was configured at 0.937 to
accelerate convergence and suppress oscillation. Furthermore, a weight decay coefficient of
0.0005 was applied to prevent overfitting by penalizing large weights during optimization.

3.6.2. Model Evaluation Indicators

The evaluation of model performance in this study is based on both detection accuracy
and inference efficiency. Specifically, precision (P), recall (R), Average Precision (AP), and
mean Average Precision (mAP) are adopted as the primary metrics to assess detection
accuracy. In addition, to evaluate the inference speed with respect to hardware constraints,
model parameters, floating point operations (GFLOPs), frames per second (FPS), and
latency are used as the main speed-related indicators. The calculation formulas for precision,
recall, AP, and mAP are defined as follows:

TP
_ 2
P=Tp1rp @)
TP
R=Tpren ®)
1
AP = / P(R)dR @
0
1 N
mAP = Nc; AP, (5)

In the equations, TP is the number of true positives, FP is the number of false positives,
and FN is the number of false negatives. Let P(R) be the precision at each recall level. N
is the total number of object classes, and AP, is the average precision for class c. P is the
ratio of true positives to all predicted positives—it reflects how well the model avoids false
positives. R is the ratio of true positives to all actual targets. It shows the model’s ability to
reduce missed detections. AP is the area under the precision-recall curve. It is calculated
by summing precision over different recall thresholds. mAP is the average of AP over all
classes. It is often used to measure object detection performance. A higher mAP means
better accuracy and stability.
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4. Results and Discussion
4.1. Comparison of Model Before and After Improvement

To further evaluate the performance of the proposed YOLOv8n-RMB model, this study
compares the training loss curves of the original YOLOv8n and the improved YOLOvS8n-
RMB. Loss curves show how the loss function changes across training epochs. They
help assess the effect of each loss component and offer information about the model’s
generalization and training stability on the validation set. The comparison results are
shown in Figure 10. The comparison results are shown in Figure 10. Box_loss is the
bounding box regression loss. It measures the error between predicted boxes and ground-
truth boxes, and this value reflects the accuracy of object localization. Dfl_loss is the
distribution focal loss. It captures uncertainty in classification and localization. cls_loss is
the classification loss, measuring the model’s ability to correctly predict object categories.
In general, lower and more stable loss values are indicative of better model performance.
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Figure 10. Comparison of loss curves before and after model improvement.

As shown in Figure 10, the YOLOv8n-RMB model gives lower box_loss and dfl_loss
in most training epochs. This result indicates better bounding box regression and higher
localization accuracy compared to the original YOLOv8n. Furthermore, the improved
model exhibits smaller fluctuations, indicating enhanced training stability. Although
the cls_loss curve of YOLOv8n-RMB shows minor oscillations during the initial training
phase, it converges to a lower value in the later epochs, reflecting improved classification
performance in distinguishing between the three RMB states—* None”, “Not Filled”, and
“Filled”—especially under complex background conditions. The comparative loss curves
substantiate the performance advantage of the YOLOv8n-RMB model in the RMB state
recognition task within visually challenging environments.

Figure 11 provides a visual comparison of the PR curves before and after model
enhancements. AP measures the area under the PR curve, where a larger area indicates
higher detection accuracy for a given class. (a) illustrates the performance of the original
YOLOvS8n model across the three RMB states, while (b) presents the PR curves of the
improved YOLOv8n-RMB model incorporating RFA, BiFPN, and DySample modules. It
is evident that YOLOv8n-RMB exhibits higher precision and recall across all classes, with
significantly larger enclosed areas under the curves, particularly for the “Not Filled” and
“Filled” categories, which are more prone to misclassification.

As shown in Table 1, the proposed YOLOv8n-RMB model outperforms the baseline
in terms of mAP across all three RMB states. Specifically, the mAP for the “None” class
improved from 99.2% to 99.5%, marking a 0.3 percentage point gain. For the “Not Filled”
category, mAP increased from 89.0% to 93.1%, and for the “Filled” class, it rose from
88.0% to 91.9%, representing improvements of 4.1 and 3.9 percentage points, respectively.
These results underscore the enhanced discriminative capability of the improved model in
fine-grained classification of RMB states.
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Figure 11. Comparison of P-R curves. The left shows the PR curve of YOLOVS8n, and the right shows
the PR curve of YOLOv8n-RMB.

Table 1. mAP comparison before and after improvement.

Models Category mAP
None 99.2%

YOLOv8n Not Filled 89.0%
Filled 88.0%

None 99.5%

YOLOv8n-RMB Not Filled 93.1%
Filled 91.9%

Figure 12 presents a comparative analysis of detection results before and after model
enhancement. As shown in Figure 12b, the original model was prone to false positives
in complex backgrounds and low light quality, often misled by visual interference from
leaves and tree trunks. Additionally, it occasionally misclassified “Not Filled” bowls
as “Filled”, indicating limitations in fine-grained state discrimination. In contrast, the
improved YOLOv8n-RMB model substantially reduced the false detection rate and exhib-
ited enhanced capability in distinguishing between different bowl states. As illustrated
in Figure 12c, the refined model produced more accurate and reliable detection results,
demonstrating its robustness in challenging field conditions.

To intuitively analyze the differences in attention to RMB target regions before
and after model improvement, we employed heatmap visualization to compare the
feature response regions of the YOLOv8n and YOLOv8n-RMB models, with the results
presented in Figure 13. In the heatmaps, brighter colors represent regions with higher
model attention, while darker colors indicate lower attention. A comparative analysis
reveals that the original YOLOv8n model exhibits relatively limited attention regions,
with some heat-activated areas failing to fully cover the RMB body and even misfocusing
on background regions. In contrast, the improved YOLOv8n-RMB model demonstrates
a broader and more concentrated attention range, with significantly enhanced focus on
the RMB itself. The YOLOv8n-RMB model shows higher response intensity and more
precise spatial localization of the target region. This result supports the effectiveness of
the structural changes in improving detection accuracy and robustness under complex
background conditions.
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Figure 12. Comparison of model effects before and after improvement. Among them, (a) is the image
before processing, (b) is the image detected by YOLOvS8n, and (c) is the image detected by YOLOvS8n-
RMB. The blue boxes indicate misclassified objects, the red boxes represent missed detections, and
the pink boxes denote false positives caused by background misclassification.

Overall, the proposed YOLOv8n-RMB model achieved optimal performance in the task
of RMB and counting. Compared with the original YOLOv8n model, it showed increases
of 2.8% in mAP\@0.5, 2.9% in mAP\@0.5:0.95, 3.9% in precision, and 9.7% in recall. These
results reflect improvements in detection accuracy and robustness across multiple metrics.
Notably, while maintaining high detection precision, the YOLOv8n-RMB model retained
its lightweight architecture. This was achieved by embedding the RFACONYV module to
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strengthen local feature extraction, introducing the BiFPN structure to adjust feature fusion
across scales, and incorporating the Dysample module for high-quality upsampling. These
structural enhancements collectively improved the model’s feature representation capacity
while maintaining computational efficiency.

Original YOLOvSn YOLOv&8n-EMB  Original YOLOvS8n YOLOv&8n-RMB  Original YOLOv8n YOLOvSn-RMEB

-

Figure 13. Comparison of heatmaps before and after model improvement. (a) presents the heatmap-
based recognition results for close-up views of RMBs, while (b) shows the results for distant views.
In each group of images, the sequence from left to right represents the original image, the recognition
results from the baseline model, and the results from the improved model, respectively. In the
heatmaps, brighter colors represent regions with higher model attention, while darker colors indicate
lower attention.

4.2. Ablation Experiment

Compared with the original YOLOv8n detection model, the RMB yield detection and
RMB counting model proposed in this study has been improved in three aspects. Part I: the
convolution RFAConv with a receptive field attention mechanism replaces the conventional
convolution module in the backbone network; Part II: the neck network adopts an improved
BIFPN structure to enhance the multi-scale feature fusion capability; Part III: in the head
detection network, the DynamicHead detection head is introduced to improve detection
accuracy and robustness. In order to verify the contribution of various improvements to
the overall model performance, this study conducted ablation experiments on the RMB
yield detection and RMB counting models under complex backgrounds. The results are
shown in Table 2.
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Table 2. Ablation experiment results.

Models mAP50/% mAP95/% Precision/% Recall/% Gflows/G
Yolov8n 92.1 86.9 87.4 82.2 6.9
Yolov8n + RFA 92.7 87.2 86.5 83.0 8.2
Yolov8n + BIFPN 93.4 88.2 89.2 83.4 6.9
Yolov8n + DySample 93.3 88.4 90.4 85.4 6.8
Yolov8n + RFA + BIFPN 92,5 87.5 87.4 85.6 8.3
Yolov8n + RFA + DySample 94.1 88.8 90.4 84.9 7.0
Yolov8n + BIFPN + DySample 93.2 87.5 88.3 90.0 7.0
Yolov8n-RMB 94.9 89.7 91.3 91.9 8.3

After incorporating the RFA convolution module into the backbone network, the
model exhibited a notable improvement in feature extraction under complex backgrounds.
Compared to the unmodified baseline, the model enhanced with RFA convolution achieved
an increase in recall from 82.2% to 83.0%, and an improvement in mAP@0.5 by 0.6%. Al-
though the precision decreased slightly from 87.4% to 86.5%, the overall gain in recall
indicates that RFA convolution effectively enlarges the receptive field and adaptively fo-
cuses on objects of varying scales and shapes. This enhancement is effective in scenes with
strong background interference. It increases the model’s capacity to recognize detailed
characteristics of RMBs. However, the increased feature sensitivity may have also led to a
marginal rise in false positives, slightly lowering precision. Introducing the BiFPN structure
into the neck network optimized multi-scale feature fusion and transmission. In experi-
ments using only BiFPN, precision improved to 89.2%, mAP@0.5 reached 93.4%, and recall
increased to 83.4%, all without increasing the model’s parameter GFlows. These results
show that BiFPN, with its learnable fusion weights, effectively enhances the expressive
power of features while maintaining computational efficiency. By adaptively weighting
feature importance, BiFPN enables robust detection across varying scales. Further improve-
ments were observed when the DySample module was integrated into the upsampling
process. Both precision and recall increased significantly, reaching 90.4% and 85.4%, respec-
tively. Moreover, improvements were also observed in mAP@0.5 and mAP@0.5:0.95. These
gains affirm that DySample enhances feature resolution recovery and spatial alignment,
especially under complex background conditions. The content-aware dynamic sampling
mechanism significantly improves feature reconstruction and overall detection accuracy in
challenging environments.

When submodules were combined, synergistic effects became more apparent. The
integration of RFA and BiFPN further increased recall but caused a slight drop in preci-
sion, suggesting that while these modules jointly enhance fine-grained feature modeling
and multi-scale fusion, further refinement is needed to balance false positive suppression.
The combination of RFA and DySample yielded a precision of 90.4% and mAP@0.5 of
94.1%, demonstrating that the interplay between high-level feature extraction and adap-
tive upsampling substantially enhances detection performance in complex scenes. The
BiFPN-DySample configuration significantly improved recall to 90.0%, underscoring the
complementary strengths of feature fusion and dynamic sampling in recall-oriented tasks.

The fully integrated model incorporating RFA, BiFPN, and DySample achieved the
best overall performance: mAP@0.5 reached 94.9%, mAP@0.5:0.95 achieved 89.7%, and
precision and recall improved to 91.3% and 91.9%, respectively. These results confirm that
the proposed YOLOv8n-RMB framework effectively optimizes feature extraction, feature
fusion, and detection decision making across the backbone, neck, and head stages. The
combined improvements significantly enhanced the model’s accuracy, robustness, and
practical applicability in RMB detection and yield estimation under complex backgrounds,
all while maintaining a low parameter of GFlows count and computational cost.
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Figure 14 provides an intuitive visualization of performance trends across differ-
ent model configurations during training. In the first 30 epochs, all metrics—including
precision, recall, and mAP—rose rapidly, indicating strong convergence behavior. The im-
provements introduced did not cause training instability despite the increased architectural
complexity. As shown in Figure 14a, YOLOv8n-RMB consistently maintained the highest
precision throughout training, with superior stability emerging after 50 epochs. Figure 14b
shows that YOLOv8n-RMB also achieved the highest recall, with earlier and more substan-
tial gains, verifying the effectiveness of BiFPN and DySample in detecting small objects.
Figure 14d,c present the trends of mAP@0.5 and mAP@0.5:0.95, respectively. The full
model incorporating RFA, BiFPN, and DySample not only attained rapid improvements
under the looser mAP@0.5 criterion but also maintained its lead under the more stringent
mAP@0.5:0.95 standard. This confirms its superiority in both localization accuracy and
classification robustness. Furthermore, the volatility in early training stages was lower for
all improved models compared to the baseline, indicating that the proposed architectural

modifications improved convergence stability without introducing negative side effects
during training.
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Figure 14. Results of each experiment. (a) The change curve of precision, (b) the change curve of

recall, (c) the change curve of mAP (0.5), (d) the change curve of mAP (0.5:0.95).
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4.3. Comparison Between Different Models

To comprehensively evaluate the effectiveness of the proposed YOLOv8n-RMB model
in the RMB detection task, a comparative analysis was conducted against several state-of-
the-art lightweight object detection models, including RT-DETR, YOLOv3-Tiny, YOLOv5n,
YOLOv10n, and YOLOv8n. As shown in Table 3, the YOLOv8n-RMB model outperformed
all counterparts across all evaluation metrics, achieving a precision of 91.3%, a recall of
91.9%, mAP@0.5 of 94.9%, and mAP@0.5:0.95 of 89.7%. Compared to the baseline YOLOvS8n,
the YOLOv8n-RMB-enhanced variant achieved an improvement of 2.8% in mAP@0.5 and
2.8% in mAP@0.5:0.95, highlighting the significant gains in detection accuracy created by
the proposed architectural enhancements.

Table 3. Performance comparison of different models with proposed YOLOv8n-RMB.

Models mAP50/% mAP95/% Precision/% Recall/%  Gflows/G
RT-DETR 84.3 78.3 87.4 81.0 103.4
Yolov3-Tiny 90.6 814 84.5 85.1 14.3
Yolov5n 89.7 79.6 89.7 77.7 5.8
Yolov10n 91.3 85.7 86.0 83.2 8.2
Yolov8n 92.1 86.9 87.4 82.2 6.9
YOLOv8n-RMB 94.9 89.7 91.3 91.9 8.3

Despite these improvements, the YOLOv8n-RMB model maintained a lightweight
design, with a computational cost of only 8.3 GFLOPs, marginally higher than YOLOv8n
(6.9 GFLOPs), but substantially lower than RT-DETR (103.4 GFLOPs), demonstrating its
superior suitability for deployment in resource-constrained environments. While YOLOv5n
and YOLOv3-Tiny showed moderate performance, both precision and recall were consis-
tently lower than those of YOLOv8n-RMB, and a marked performance drop was observed
under the stricter mAP@0.5:0.95 metric (79.6% and 81.4%, respectively), indicating reduced
robustness in complex scenes and near-boundary object detection. YOLOv10n provided a
balance between accuracy and complexity but showed lower mAP and recall compared to
YOLOv8n-RMB. Notably, RT-DETR exhibited the highest computational cost among all
models and failed to demonstrate any significant performance advantage in this task.

In summary, the YOLOv8n-RMB model provides high detection accuracy and ro-
bustness while keeping computational cost low. This makes it suitable for real-time,
high-precision deployment in UAV-based RMB recognition tasks. Its strong performance
under complex environmental conditions validates its effectiveness for intelligent rubber
yield assessment and precision plantation management.

4.4. Rubber Bowl Production Status Counting Experiment

To evaluate the practical counting performance of the proposed RMB status detection
and counting model, three field experiments were conducted in the same natural rubber
plantation involving a total of 590 bowls. In each experiment, the number of RMBs in
the three states, empty, not filled, and filled, was first recorded by manual counting, and
the YOLOv8n-RMB-based detection and counting model was then used to automatically
identify and count the same RMBs in real time using UAV images. The model’s output was
compared with the manually recorded ground truth counts. The results of the experiment
are listed in Table 4.

The experimental results demonstrate that the proposed YOLOv8n-RMB model ex-
hibits strong practicality and generalization capability in complex rubber plantation envi-
ronments. Compared with manual counting, the model reached accuracy rates of 97.6%,
98.4%, and 97.6% in three field trials for identifying and counting RMB states. In terms of
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efficiency, the YOLOv8n-RMB model needed about 21 min on average to complete one full
counting task per scene, while manual counting took around 43 min. This result shows
more than twice the efficiency.

Table 4. Counting test results: proposed UAV imagery method vs. manual.

Counting . . o . .

Method None Not Filled Filled Rate (%) Time (Min)
Testl 99.2% 69 479 100 43
Test2 Artificial 89.0% 53 491 100 47
Test3 88.0% 119 463 100 38
Testl 99.5% 69 465 97.6 18
Test2 YOLOv8n-RMB 93.1% 53 482 98.4 24
Test3 91.9% 133 454 97.6 20

In addition, using real-time video streams from UAVs, the YOLOv8n-RMB model
shows better adaptability and easier deployment compared to traditional methods based
on static images. This makes the model suitable for large-scale unmanned rubber-tapping
operations. The integration of RFACONYV, BiFPN, and DySample modules significantly
improves both accuracy and inference speed, confirming the model’s potential for real-
world engineering applications. The deployment of this model offers technical support for
rubber yield monitoring and intelligent tapping systems. It also supports the development
of forestry informatization and the modernization of the rubber industry.

4.5. Discussion and Future Work

This study proposes a rubber milk bowl recognition and counting model based on
an improved YOLOv8n-RMB algorithm. This model significantly improves upon the
existing model’s performance, enhancing the accuracy of rubber bowl detection in complex
backgrounds. And the experiments and testbed show that compared with the baseline
YOLOvV8n model, YOLOv8n-RMB achieves substantial improvements in all detection
metrics, with mAP@0.5, mAP@0.5:0.95, precision, and recall increasing by 2.8%, 2.9%,
3.9%, and 9.7%, respectively. These gains are attributed to BiFPN’s enhanced feature
expression via frequent bidirectional fusion and DySample’s dynamic sampling mechanism
for optimized spatial reconstruction. Although the model’s parameters increased from
2.7 M to 3.0 M and FLOPs rose from 6.9 G to 8.3 G, the inference speed stayed high at 91 FPS.
This meets the real-time detection needs in UAV-based rubber plantation monitoring.
These results show that the model maintains a balance between detection accuracy and
speed, indicating its applicability in real field conditions. Moreover, in comparison with
several mainstream lightweight detectors, the YOLOv8n-RMB model achieves the highest
mAP@0.5 and mAP@0.5:0.95 scores, at 94.9% and 89.7%, respectively. Visualized results
demonstrate its ability to stably and accurately detect the three RMB states with clear target
boundaries and a low false detection rate, outperforming baseline models such as YOLOv8n
and YOLOv5n. While RT-DETR shows low detection accuracy (84.3% mAP@0.5, 78.3%
mAP@0.95), its large computational cost (103.4 GFLOPs) makes it unsuitable for real-time
UAV deployment on resource-constrained edge devices. Furthermore, in three field tests,
the YOLOv8n-RMB model achieved recognition and counting accuracies of 97.6%, 98.4%,
and 97.6%, respectively, demonstrating strong generalization and adaptability across real
plantation conditions. Furthermore, the model significantly outperforms manual counting
in terms of time efficiency, completing each task in an average of 21 min compared to
43 min manually—more than doubling the operational efficiency. By processing UAV video
streams in real time and using the BoT-SORT multi-object tracking algorithm, the model
performs automated detection and counting of RMBs in three states.
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The proposed method is a possible and suitable solution for rubber yield counting
tasks based on drone imagery, providing a basis for secondary tapping and rubber milk
harvesting decisions by tappers. Previous research has demonstrated significant progress in
tapping line detection [30], tapping key point detection [4], and tapping pose estimation [1]
using image recognition technology, providing strong technical support for intelligent
rubber tapping robots. Their research complements ours, with the former addressing
“tapping actions” and the latter completing “harvesting judgment,” jointly building a closed-
loop perception system for the entire intelligent tapping process. By integrating our rubber
bowl recognition system into the existing tapping robot’s perception module, the robot’s
ability to determine operating timing and path planning can be effectively enhanced, laying
a solid foundation for building a truly autonomous, efficient, and intelligent unmanned
tapping system.

However, the proposed recognizing and counting method still suffers from false
negatives and false positives. Furthermore, the current experiments were conducted only
in rubber plantations in Hainan and Yunnan Provinces of China. Given the significant
differences in planting density, tree trunk morphology, lighting conditions, and background
interference across regions, the generalizability of the proposed model to other rubber
plantations remains to be verified. In the future, some related directions may continue
to expand the dataset to encompass a wider range of environmental conditions, thereby
enhancing the model’s feature learning capabilities. Furthermore, we will further explore
architectural improvements to reduce false positives and missed detections. In future
research, the proposed YOLOv8n-RMB framework is expected to continue to expand in
key procedures of harvesting, like being embedded in mobile rubber tapping robots to
control the tapping time and duration, integrated in a digital twin system for rubber milk
production prediction and simulation from the high-resolution RMB data, etc.

5. Conclusions

UAV imagery is an efficient way to manage natural rubber robot tapping and har-
vesting, via monitoring and tracking the status of RMB in hilly and mountainous forest
environments. This study proposes a novel RMB yield recognition and counting model,
YOLOv8n-RMB, designed for UAV imagery detection tasks in rubber plantations with
complex forest backgrounds. First, RFACONYV is added to the backbone to address the
limited ability of standard shared-parameter convolution kernels in capturing long-range
features. This significantly enhances the model’s ability to perceive edge details and subtle
textures of RMB under complex conditions. Second, BiFPN is introduced to improve fusion
between shallow and deep semantic features. This helps reduce feature degradation and
remove redundant information. Finally, a content-aware dynamic resampling module,
DySample, is incorporated during the upsampling stage to achieve precise recovery of fine-
grained spatial details and clearer classification boundaries for RMB states. In real-world
scenarios characterized by diverse backgrounds, variable object scales, and high visual
similarity between RMBs and environmental elements, the proposed model successfully
identifies and counts three distinct RMB states—empty, partially filled, and fully filled.
This provides robust visual support for target selection and yield estimation in automated
rubber tapping operations. The proposed method meets the real-time detection needs
in UAV-based rubber plantation monitoring, and the experiment and pilot testbed show
that the proposed lightweight model maintains a balance between detection accuracy and
speed, indicating its applicability in real rubber forest conditions. It achieves substantial
improvements in all detection metrics, with mAP@0.5, mAP@0.5:0.95, precision, and re-
call increasing by 2.8%, 2.9%, 3.9%, and 9.7%, respectively, compared with the baseline
YOLOv8n model. In addition, the computational complexity of GFLOPs increased from
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6.9 G to 8.3 G. Moreover, the model performs automated detection and counting of RMBs
in three states by processing UAV video streams in real time and using the BoT-SORT
multi-object tracking algorithm. The model provides a potential resolution for large-scale
rubber robot observation and control.
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