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Abstract: The creation of the CRISPR-Cas system has provided unprecedented oppor-
tunities in plant genome research and crop genetic improvement. In recent years, this
system has been continuously improved to meet human needs through the expansion and
modification of Cas proteins, the diversification of targeting locations, and the optimization
of CRISPR vectors. In this review, we systematically describe the Class II Cas proteins that
have been used in plants, deactivated Cas9 (dCas9) and its role in transcriptional regula-
tion, precision editing systems, Cas9 protein variants, as well as methods and examples of
CRISPR—Cas systems targeting various regions with different breadths. In addition, we out-
line the optimization plans based on CRISPR constructs that can overcome the pleiotropy of
genes or accelerate the generation of transgene-free plants and the applications of CRISPR
systems in plant breeding practices. Finally, we discuss the theory and development of
“CRISPR plus”, and the integrated application of existing systems in more species.
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1. Introduction

The increasing climate alterations and the diversity of human needs require an efficient
system to achieve rapid plant improvement [1]. Since 2013, the clustered regularly interspaced
short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system, which is based
on an adaptive phage immune system in prokaryotes, was first applied in plants [2,3]. It has
been favored by researchers for its advantages of easy operation, high efficiency, stability, and
its application has achieved genetic improvement in many species [4,5].

To promote the application of the CRISPR-Cas system, constant improvements and
evolutions of the system have been developed through the efforts of many research
teams [4]. It involved the expansion and modification of Cas proteins, the diversity of
editing regions, and the addition of cofactors, among others. Different Cas proteins can
target different templates and provide a smaller volume [6,7]. Based on the modifications
of the Cas9 protein, the generated base editors, including cytosine base editors (CBEs) and
adenine base editors (ABEs), can achieve accurate base editing. And the generation of
prime editors (PEs) achieves accurate editing in a wider range [8,9]. Specific variants of
Streptococcus pyogenes Cas9 (SpCas9), such as SpCas9-NG and SpRY, enable gene editing
without protospacer adjacent motif (PAM) restrictions, which could contribute to the design
of more efficient single guide RNAs (sgRNAs) [10-13]. Deactivated Cas9 (dCas9) retains its

Agriculture 2025, 15, 29

https://doi.org/10.3390/agriculture15010029


https://doi.org/10.3390/agriculture15010029
https://doi.org/10.3390/agriculture15010029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0001-5781-6121
https://doi.org/10.3390/agriculture15010029
https://www.mdpi.com/article/10.3390/agriculture15010029?type=check_update&version=1

Agriculture 2025, 15, 29

2 of 32

ability to target specific regions, enabling the transcriptional regulation of genes [14-17]. In
addition, the characteristics of the CRISPR—Cas system allow for the expression of multiple
sgRNAs simultaneously, enabling targeted editing of multiple genes, which is convenient
for the study of functional redundancy between genes. Moreover, the editing region is
not limited to the coding sequences (CDSs) of genes; cis-regulatory elements (CREs) in
the promoter and upstream open reading frames (UORFs) can also be targeted [18,19].
To understand the gene functions better and faster, CRISPR screening has also been per-
formed in multiple species, resulting in the generation of many mutants with different
phenotypes [20,21]. In CRISPR—Cas constructs, the use of tissue-specific promoters aids
in the improvement of editing efficiency and the study of pleiotropic genes [22,23]. More-
over, different applications can be achieved through the addition of cofactors, including
conventional reporter genes to identify transgenic plants, morphogenetic genes to pro-
mote regeneration, and male sterility (MS) or embryonic lethal genes to reduce or directly
block the generation of transgenic plants in offspring [24-27]. These strategies, which
are constantly undergoing improvement, provide guidance for the efficient use of the
CRISPR—Cas system in plants. After the construction of a suitable CRISPR-Cas system,
how to obtain regenerated plants is also the focus of researchers, and the delivery methods
of editing reagents and regeneration strategies are also being innovated [28,29]. These
findings indicate that CRISPR-Cas systems show great potential, especially in species for
which functional studies are just beginning, and a detailed application guide is needed.

This review focuses on the integrated applications of the CRISPR-Cas system, and
that are relatively easy to implement in most laboratories. The expansion and modification
of Cas proteins, the various target regions with different breadths, the optimization of the
CRISPR toolset, the upgrade of delivery methods and the application of the CRISPR-Cas
system in plant breeding practices are systematically summarized in this review (Figure 1),
to provide readers with a navigation map of a comprehensive CRISPR—Cas system. This
review also discusses new opportunities for the application of CRISPR systems in the
future, with less focus on the specific functions of genes. Our goal is to provide a reference
for researchers focusing on gene function or crop genetic improvement and to promote
better application of the CRISPR system in more plant species.
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Figure 1. Overview of CRISPR system extensions, modifications, upgrades, and optimizations, and
its delivery methods and applications in breeding practice.
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2. Diversity and Modification of Cas Proteins

Archaea and bacteria achieve adaptive immunity through a series of CRISPR-Cas
systems, each consisting of the combination of Cas proteins and CRISPR RNA (crRNA) [30].
The different CRISPR—Cas systems are divided into two categories: Class I (types I, III, and
IV) systems use multiple Cas proteins and crRNA to form complexes, whereas Class II
(types 1I, V, and VI) systems combine large single-component Cas proteins with crRNA to
mediate targeted cleavage, such as the well-characterized Cas9 [7,31].

Since the dCas9 protein still retains its targeting ability, transcriptional regulation
can be achieved by binding dCas9 to transcriptional activators or suppressors [32,33].
Most of the changes caused by double-strand breaks (DSBs) are knockout mutations, and
the resulting edits are often random, which makes it difficult to meet the demands of
breeding improvement. To solve this problem, base editors that combine Cas9 nickase
(Cas9n) with cytidine or adenosine deaminase to produce targeted base editing have been
proposed [34,35], and the creation of PEs addresses the limited number of base transitions
and enables precise insertions and deletions [8]. The SpCas9 is the most commonly used Cas
protein, but due to its characteristic of recognizing NGG PAMs (where N is any nucleotide),
suitable or efficient sgRNAs for the required region cannot be designed for numerous genes.
Hence, several Cas9 variants targeting a wider range of PAMs have been developed [12].

2.1. Class II Cas Proteins

Cas9 belongs to Class II type 11, type V, and type VI Cas proteins, and has also been
utilized in plants, providing new opportunities for CRISPR-Cas systems because of the
differences in structures, sizes, targeting abilities, and specificities (Figure 2). Cas9 contains
an HNH nuclease domain inserted into the RuvC domain, which together cleaves double-
stranded DNA (dsDNA) [6]. Cas12 proteins, which belong to type V, contain a single RuvC
nuclease domain that targets and collaterally cleaves single-stranded RNA (ssRNA) and
ssDNA, and can also perform dsDNA nicking and cleavage [7]. The type VI protein Cas13
targets ssRNAs, which provides unique advantages in the regulation of RNA levels and
virus defense [36].
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Figure 2. Different Cas systems of class II applied in plants. (A) The Cas9 system contains an
HNH nuclease domain inserted into the RuvC domain, and requires the combination of crRNA and
transactivating crRNA (tracrRNA), ultimately producing blunt ends proximally upstream of the
NGG PAMs. (B) The Casl2a system only requires crRNA, and produces staggered ends and large
deletions located distally downstream of the TTTV PAM (V = A, C, or G). (C) The Cas12b system
requires both crRNA and tracrRNA, and produces staggered ends and large deletions located distally
downstream of the VITV PAM. (D) The Cas® is approximately half the size of Cas9, and recognizes
a TBN PAM (B = G, T or C). (E) The Cas13 system contains two structurally distinct higher eukaryote
and prokaryote nucleotide-binding (HEPN) domains that provide RNase activity, recognizes and
cleaves ssSRNA but cannot cleave dsDNA.
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2.1.1. Casl2a

CRISPR—Cas12a (Cpfl) is another well-studied system in addition to Cas9 [7]. This
system utilizes a T-rich PAM (TTTV) to identify target DNA, which facilitates the targeting
of gene promoters and other AT-rich sites [37]. Unlike Cas9, which requires the combination
of crRNA and tracrRNA into a sgRNA, Casl2a only requires crRNA and has RNase
activity to perform its own crRNA processing. Thus, the CRISPR-Cas12a system is a
good multimodal editing platform [38—41]. The Casl12a cleavage site is located distally
downstream of the PAM sequence rather than proximally upstream like the Cas9 cleavage
site; Cas12a produces staggered ends and large deletions, whereas Cas9 produces blunt-end
DSBs, resulting in small insertions and deletions [42]. The DNA interrogation, cleavage,
and product release activities of Cas12a have been further characterized by single-molecule
fluorescence analysis and biochemical assays [43]. The analysis of editing activity at
different temperatures indicates that the Cas12a system is temperature sensitive, with high
temperatures improving its editing efficiency [44]. Among some improvements, the editing
efficiency of Cas12a has also been improved. A modified tRNA-crRNA array enabled the
editing of multiple genes and the successful editing of target sites that were missed by
crRNA arrays [45]. A total of 17 novel Cas12a orthologs were investigated, and EvlCasl2a
and Hs1Cas12a were proved to have high editing efficiency, with Hs1Cas12a showing
lower temperature sensitivity [46]. Moreover, a more efficient variant of LbCas12a was
obtained through saturation mutagenesis, and LbCas12a-RRV combined with RV and
D156R presented greater editing efficiency in rice and poplar [47].

2.1.2. Casl2b

CRISPR-Cas12b (C2c1) contains RuvC and Nuc domains. This system also tends to
target T-rich PAMs and produces staggered ends. But like Cas9, Cas12b requires both
crRNA and tracrRNA [48-50]. Moreover, Cas12b is considered an attractive option because
of its small size and high specificity, but the optimal temperature for DNA cleavage by
Casl2b is generally greater than 40 °C, complicating its use in plant cells [51]. The editing
efficiency of AaCas12b under different temperature conditions and durations was evaluated
in cotton (Gossypium hirsutum) because of its resistance to high temperatures, and the results
revealed that the editing efficiency was greatest at a temperature of 45 °C and a duration
of 4 days. AaCas12b induced 1-16 base pair (bp) deletions, with most deletions having
a length of 9-14 bp; these deletions are larger than those induced by Cas9 (1-5 bp) [52].
Interestingly, it was found that the editing efficiency of this system was affected by the
chromatin structure [53]. In rice, the editing efficiencies of four Cas12b proteins were
compared; among them, AaCas12b, which preferentially recognized ATTV and GTTG
PAMs, was the most efficient [54]. A comparison of five guide RNA scaffolds revealed
that Aac and Aal.2 significantly increased editing efficiency with no off-target activity, and
the target mutations were largely germline transmitted [55]. In Arabidopsis, Cas12b most
commonly induced 5-13 bp deletions, which is consistent with the results in cotton and rice.
Moreover, Cas12b can successfully induce multiple genome editing, resulting in a deletion
of approximately 1 kb between the two target sites [56]. The Cas12i3-based Multiplex direct
repeats (DR)-spacer Array Genome Editing (iIMAGE) system, which utilizes another Cas12
protein, also produces a greater frequency of chromosomal structural variation compared
to Cas9 [57].

2.1.3. Cas®

Cas® (Casl2j) is a hypercompact Cas protein discovered in huge phages [58]. Cas® is
approximately half the size of SpCas9 and Casl2a (~70 kDa), which means that it can be
packaged in virus-based vectors [7]. The Cas® protein recognizes a TBN PAM, especially
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NTTV; employs a single RuvC domain for DNA cleavage and can also be used for crRNA
processing. Cas® was delivered as ribonucleoproteins (RNPs) for targeting the PDS3 gene
in Arabidopsis protoplasts, and deletions of 8-10 bp were induced at the target site [58]. In
rice and tomato cells, a 7-13 bp deletion frequently occurs at the target site distal to the PAM,
and protospacers of 18 bp or longer are more efficient. Moreover, protoplast regeneration
may be more effective for Cas®-mediated editing in plants [59]. Cas® is not sensitive
to temperature but is sensitive to the chromatin environment, and editing efficiency was
increased when the target site was not methylated. Compared with wild-type (WT) Cas®,
the vCas® and nCas® variants both exhibit greater efficiency and specificity [60].

2.1.4. Casl3

In the type VI CRISPR—Cas system, the Cas13 protein, which contains two structurally
distinct higher eukaryote and prokaryote nucleotide-binding (HEPN) domains that provide
RNase activity, recognizes and cleaves ssRNA but cannot cleave dsDNA; Cas13 can also
target pre-crRNA and process it to create functional crRNA [61,62]. This system is divided
into six subtypes: VI-A (Casl3a, C2c2), VI-B (Casl13b, C2c4), VI-C (Casl3c, C2c7), VI-D
(Casl3d), VI-X (Cas13X), and VI-Y (Cas13Y) [36]. Cas13X and Cas13Y (775 to 803 amino
acids [aa]) are two compact families derived from metagenomic datasets [63]. Abudayyeh
et al. [64] used LwaCasl13a to target EPSPS, HCT, and PDS in rice protoplasts, and most
of the guides achieved over 50% knockdown. And the application of this system in crops
holds particular promise for plant virus interference [65]. CRISPR—Cas13a was used to
interfere with Turnip Mosaic Virus (TuMV) in Nicotiana benthamiana and Arabidopsis, and
the reduction levels were influenced by the RNA targets [66,67]. In addition, CRISPR-
Cas13 efficiently interfered with Potato Virus Y (PVY), Southern Rice Black-Streaked Dwarf
Virus (SRBSDV), Rice Stripe Mosaic Virus (RSMV), and Sweet Potato Chlorotic Stunt Virus
(SPCSV)-RNase3 [68-70]. The CasRX variant (Cas13d from Ruminococcus flavefaciens) is
the smallest of the Cas13a-d variants but has shown the greatest interference activity in N.
benthamiana [71,72]. Simultaneous targeting of multiple potato RNA viruses was achieved
with an endogenous tRNA-processing system (polycistronic tRNA-gRNA [PTG]) [73].
Cas13d has also been used to target a variety of RNA targets, including microRNAs
(miRNAs), long noncoding RNAs (IncRNAs), and circular RNAs (circRNAs) [74]. Moreover,
surprisingly, crRNA designed to guide Cas13 could cause a significant reduction in RNA
levels without the Cas13 protein. Casl13-independent guided induced gene silencing (GIGS)
has been observed in tobacco, tomato, and Arabidopsis, and can be extended to crRNAs
designed by Cas9 with more than 28 bp [75]. In addition, CRISPR-Cas13 has been used to
detect and quantify genes [76].

2.2. dCas9 and Transcriptional Regulation

Overexpression is the most commonly used method for exploring gene function. How-
ever, owing to the large cloning workload, limited vector capacity, and need for multiple
promoters, achieving multigene overexpression via traditional methods is challenging
and inefficient [77]. The RuvC D10A and HNH H841A targeted mutations generate the
dCas9 protein. When combined with guide RNAs and transcriptional effectors, the system
can achieve gene activation or inhibition (Figure 3). The combination of dCas9 and tran-
scriptional activators, such as the EDLL activation domain (dCas9-EDLL), TAL activation
domain (dCas9-TAD), and VP64, a fusion of four tandem repeats of VP16 (dCas9-VP64),
constitutes the CRISPR activation (CRISPRa) system [32,33]. However, the activation of
the target gene by these systems was less effective, so the second generation of CRISPRa
systems was generated. Among them, dCas9-TV relies on six copies of the transcription
activator-like effector (TALE) TAD motif coupled with VP128 [77], dCas9-SunTag combines
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a tandem array of GCN4 peptides that can recruit VP64 transcriptional activators [78], and
CRISPR-Act2.0 is based on the recruitment of VP64 and the modification of guide RNA scaf-
fold [79]. Differences in the ability of these CRISPRa systems to activate target genes led to
the creation of CRISPR-Act3.0, which combines dCas9-VP64, gRNA2.0, 10xGCN4 SunTag,
and 2xTAD activator [16]. And the derived CRISPR-Combo platform, using gRNA1.0 and
gRNAZ2.0 scaffolds with protospacers of different lengths, achieved simultaneous editing
and activation [15,80]. Recent studies have focused on the application of plant transcrip-
tional activation domains (ADs). Zinselmeier et al. [14] noted that the system in which
VP64 is replaced with plant-derived ADs, such as programmable transcriptional activators
(PTAs), has considerable room for improvement. Using Arabidopsis and Seteria protoplasts
as dicotyledon and monocotyledon models, respectively, multiple ADs were tested, and it
was found that DREB2, AvrXal0, DOF1, AtHSFA6b, and DREBI1 had activation efficiencies
equal to or greater than those of the commonly used VP64. However, further validation
is needed. Moreover, plant transcriptional ADs have been identified at the genome scale,
and combining these ADs with continuously improving CRISPR-Cas systems could drive
further developments in transcriptional regulation [81].
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Figure 3. The combination of the dCas9 protein with transcriptional effectors and epigenetic modi-
fications enables transcriptional regulation of target genes. (A) These transcriptional effectors and
epigenetic modifications fused with dCas9 can achieve transcription inhibition. (B) Transcriptional
effectors, plant-derived ADs, and some strategies that can enhance the activation of target genes.
(C) A CRISPR-Combo platform with gRNA1.0 and gRNA2.0 scaffolds can achieve editing and
activation simultaneously.

Currently, the CRISPRa system has been practiced in many plant species. One poten-
tial application of CRISPRa is customizing the plant metabolome by activating selected
enzymes in specific metabolic pathways, for example, selective enrichment of naringenin,
eriodyctiol, kaempferol, and quercetin was achieved in N. benthamiana leaves via dCa-
sEV2.1 [82]. In grape cells, both the dCas9-VP64 and dCas9-TV systems effectively activated
the UDP-glucose flavonoid glycosyltransferase (UIFGT) gene, and the expression level of
CBF4 was increased 3.7- to 42.3-fold via the dCas9-TV system [83]. When CRISPR-Act3.0
was used to target the promoters of seven genes in pears, four of the seven genes were
activated at least ten times [84]. The CRISPRa system has also been applied in Populus,
and the expression of target genes increased 1.2- to 7.0-fold [85]. Recently, parthenogen-
esis and epigenetic factory-mediated transcriptional activation have also been achieved
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in maize and tomato via the CRISPRa tool through specific experimental designs [86,87].
Three new cotton germplasms were also produced with the dCas9-TV system [88]. More-
over, a chemically inducible CRISPRa tool called ER Tag was developed by combining
-estradiol-inducible XVE (LexA-VP16-ER) with dCas9-SunTag, and the system is capable
of temporarily controlling gene expression [89].

When dCas9 is coexpressed with guide RNA, a DNA recognition complex that can
specifically interfere with transcription elongation, RNA polymerase binding, or transcrip-
tion factor (TF) binding is produced; this repurposed CRISPR—Cas system was designated
as CRISPR interference (CRISPRi). CRISPRi can avoid genome-wide uncertainty of RNA
interference (RNAi) and inhibit multiple genes simultaneously [90]. When dCas9 was
fused with the Kriippel associated box (KRAB) domain of Kox1, the GFP signal decreased
five-fold [91]. Combining dCas9 with the SRDX inhibitory domain of ERF TFs (dCas9:SRDX
or dCas9-3X) achieved transcription inhibition [32,33], and deactivated Cas12a fused with
SRDX also exhibited powerful transcription inhibition effects in plants [42]. On the other
hand, the epigenetic strategy is a common implementation of CRISPRi; this strategy uses
the SunTag system with the N. tabacum DRM methyltransferase catalytic domain (DRMcd)
to effectively target DNA methylation to the FWA and SUPERMAN promoters and achieve
gene silencing [78]. Different factors, including SUVH2, J]M]J14, LHP1, HD2C, ELF7, and
CPL2, which represent different epigenetic pathways, were added to the SunTag system.
And target gene silencing was observed in the application of JMJ14 and LHP1, while the
remaining factors resulted in weak silencing [17]. However, compared with CRISPRa,
the application of CRISPRI in plants is relatively limited, and the inhibitory efficiency
varies greatly. Therefore, taking CRISPRa as a reference, more effective strategies, such
as screening for highly effective transcriptional suppressors and modifying sgRNAs, are
needed to increase the inhibition efficiency of CRISPRi [19].

2.3. Precise Editing

The classical CRISPR-Cas system uses nucleases such as Cas9, in which the HNH
domain cleaves the complementary strand (target strand) and the RuvC-like domain
cleaves the noncomplementary one (nontarget strand) [92], resulting in DSBs that serve
as substrates of cellular DNA repair mechanisms, including homologous directed repair
(HDR) and nonhomologous end joining (NHE]) [93]. NHE] often results in imprecise
mutations, whereas HDR can produce precise modifications but is limited by the inherent
inefficiency in higher organisms [19,34,94]. In addition, editing through the creation of
DSBs usually result in cell damage [95]. Efficient genome modification tools require more
precise editing and need to be controllable. An alternative strategy is the use of base editors
that utilize a Cas9ncontaining an Asp10Ala (D10A) point mutation, which inactivates the
RuvC nuclease domain of SpCas9, and generates a single-strand break (“nick”) in the target
strand, [9]. nCas9 (D10A) binds to different deaminases to achieve accurate base conversion.
The PE system, which represents a landmark advance in precise editing, utilizes a clever
combination of nCas9 (H840A) with other tools, that inactivate the HNH domain [8].

2.3.1. Cytosine Base Editing

The commonly used CBE system BE3 consists of nCas9 (D10A), cytidine deaminase,
and uracil DNA glycosylase (UDG) inhibitors (UGIs) [34,94]. The cytidine deaminase
deaminates cytidine to uridine on the nontarget strand, and the UGI prevents UDG from
deaminating cytidine to the apyrimidinic (AP) site. When nCas9 (D10A) induces a nick
in the target strand, the DNA repair pathway is activated, preferentially replacing the
U:G mismatch with the desired U:A, resulting in a C:G-to-T:A base transition after DNA
replication [1].
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In plants, the original CBE system, which was based on the rat cytidine deaminase
APOBECI, generated targeted mutations at positions three to nine in the protospacer and
had a preference for TC motifs [96]. Different cytidine deaminases were used subsequently,
and the use of Petromyzon marinus cytidine deaminase 1 (PmCDA1) improved editing
efficiency [97]. Moreover, the base editing window was extended to 17 bp by using human
APOBEC3A (hAPOBEC3A), and targeted C-to-T mutations were generated very efficiently
in wheat, rice, and potato [98]. Two CBE variants based on A3Bctd deaminase (a truncated
human APOBEC3B cytidine deaminase) eliminated sgRNA-independent off-target editing
in rice and showed improved specificity [99]. Moreover, Ren et al. [100] compared 21
different CBE systems and found that PmCDA1-CBE_V04 and A3A/Y130F-CBE_V04
had high editing efficiency. Several tools have also been used to optimize CBE systems.
AlphaFold? is a structure-based protein clustering method [101]; since a protein’s structure
determines its function, AlphaFold2 provides a simple way to discover and engineer novel
deaminases, which expands the usefulness of CBE systems to more species [102].

In CBEs, UDG activity is inhibited by the UGI, whereas UDG overexpression triggers
base excision repair (BER); UDG recognizes the U: G mismatch, excises the uracil, and
creates a basic site that is nicked by AP lyase. This nick, combined with the one formed by
Cas9 near the DSB, should produce a precise deletion [1,103]. On the basis of this rationale,
APOBEC—Cas9 fusion-induced deletion systems (AFIDs), including cytidine deaminase,
Cas9, UDG, and AP lyase, have been developed to generate precise deletions [103]. In
addition to deletion, ssDNA extensions produced by AFIDs may also be used to create
precise insertions or replacements [9].

2.3.2. Adenine Base Editing

The combination of adenosine deaminase with nCas9 (D10A) generates ABEs. Adeno-
sine deaminase deaminates adenosine to inosine, which is recognized by DNA polymerase
as guanosine during DNA repair and replication, realizing the conversion of A:T to G:C.
Natural adenine deaminase is rare, and highly active ABEs with broad sequence compat-
ibility (ABE6s and ABE7s) were obtained after several rounds of directed evolution [34].
Subsequently, the ABEs was rapidly applied to rice, wheat, and rapeseed [104,105]. Com-
pared with CBEs, ABEs showed greater targeting specificity [106,107]. The addition of
three SV40 nuclear localization sequences to the C-terminus of nCas9, enhanced sgRNA by
modifying the sgRNA scaffold, and the RPS5A gene promoter was used to improve editing
efficiency [104,105]. Compared with the widely used ABE-P1, ABE-P1S (Plant version 1
Simplified) is more effective in rice, possibly because of its greater protein expression [108].
Through phage-assisted non-continuous and continuous evolution (PANCE and PACE) of
deaminase, ABE8e containing eight additional mutations was obtained. Compared with
ABE?.10, the activity (kKapp) of ABE8e was increased 590-fold, and the ability to catalyze
DNA deamination was increased up to 1100-fold [109,110]. Rice ABE8e (rABES8e), which
combines monomeric TadA8e, bis-bpNLS, and codon optimization, exhibited extremely
high editing efficiency in the specific editing window [111]. Moreover, Tad A9 was estab-
lished by incorporating V825/Q154R mutations into TadA8e, and it achieved comparable
or improved editing compared with TadA8e [112].

2.3.3. Dual-Base Editing

CBEs and ABEs can induce only one type of modification [113]; therefore, dual-base
editors were created. The saturated targeted endogenous mutagenesis editor (STEME)
combines nCas9 (D10A) with cytidine deaminase, adenosine deaminase, and UGI. In
rice protoplasts, STEME-1 achieved simultaneous C-to-T and A-to-G substitutions with
efficiency up to 15.10% [114]. Simultaneous wide-editing induced by a single system
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(SWISS), multiplexed orthogonal base editor (MoBE), and plant high-efficiency dual base
editors (PhieDBEs) system are also powerful tools for generating multiplexed base edit-
ing [35,115,116]. However, these systems rely on the simultaneous application of both
cytidine and adenosine deaminases, thus enlarging the size of the vector. TadDE, a dual
base editor derived from TadA-8e, can generate dual base editing with a more compact
structure [117].

2.3.4. Transversion Editing

CBEs and ABEs have been extensively developed in plants, but the types of base
conversion are limited. However, in ABE and CBE applications, researchers have observed
C-to-G transversions [118,119]. To increase the efficiency of this transversion, a C-to-G base
editor (CGBE), composed of nCas9, the cytidine deaminase rAPOBEC1 or its R33A variant,
and Escherichia coli-derived uracil DNA N-glycosylase (eUNG) or rXRCC1 sourced from
rats, was created. eUNG converts uracil to an AP site and initiates BER [119,120]. CGBEs
achieved C-to-G editing with different editing efficiencies in rice, tomato, and poplar. C-to-T
edits and insertions and deletions (indels) were the major byproducts [121,122].

To achieve efficient adenine transversion, ABE8e was combined with mouse alkylade-
nine DNA glycosylase (mAAG) variants, which enabled efficient A-to-C and A-to-T base
transversions [123]. In rice, the fusion of the hypoxanthine excision protein N-methylpurine
DNA glycosylase (MPGv3, also named AAG) with rBE49b generated a novel system called
PAKBE (K = G or T). Compared with mammalian cells, pAKBE exhibited frequent A-to-G
transitions and poor A-to-T transversion efficiency in rice [124,125].

2.3.5. Prime Editing

A revolutionary technology was developed in 2019 and its emergence solved the
problem of the limited number of base transitions.This system can produce all kinds of base
substitutions and allow targeted indels of DNA fragments without the need for DSBs or
donor DNA templates [1,8]. The PE system combines nCas9 (H840A), reverse transcriptase
(RT), and primer editing guide RNA (pegRNA), which consists of an RT template containing
the genetic information for the desired mutation and a primer binding site (PBS). The PBS
pairs with the ssDNA nicks created by nCas9 (H840A), triggering reverse transcription
and integrating genetic information into the genome [1]. Different strategies have been
adopted to improve PE1; PE2 uses engineered RT, and PE3 adds an additional gRNA to
create another nick in the target strand, which stimulates DNA repair [8].

Since its creation, the PE system has been rapidly implemented in plants such as rice,
wheat, maize, and tomato. Through the optimization of codon, promoter, and editing con-
ditions, selection-assisted enrichment of base-edited cells, the design of enhanced sgRNA
(esgRNA) and Tp,-directed PBS length, fusion gene transformation with P2A, and the use
of dual-pegRNA, the efficiency of PE in plants has improved [126-131]. Moreover, the
assessment of off-target activity showed the high specificity of this system [132]. ePPEplus
achieved greater improvements in efficiency through the introduction of V223A substitution
into the RT of the engineered plant prime editor (ePPE), varying nuclear localization signals
(NLSs) and increasing Cas9 activity [133,134]. The more compact and efficient PE6 has been
generated through phage-assisted evolution and protein engineering [135]. Moreover, the
practice of multiplex prime editing in wheat and rice improved the flexibility and appli-
cability of PEs [136]. Compared with sgRNAs used with Cas9 or base editors, pegRNAs
are more difficult to design and play an important role in determining editing efficiency.
Supporting design and analysis tools have also been developed, such as PlantPegDesigner
(http:/ /www.plantgenomeediting.net/) accessed on 24 December 2024 [131], PE-Designer
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(http:/ /www.rgenome.net/pe-designer/) accessed on 24 December 2024, and PE-Analyzer
(http:/ /www.rgenome.net/pe-analyzer/) accessed on 24 December 2024 [137].

Efficient editing is required for accurate genome manipulation, and the DNA mis-
match repair (MMR) system has been shown to promote unwanted indel byproducts.
When a dominant-negative MMR protein (MLH1dn) was coexpressed with the PE2/PE3
system, the average editing efficiency of PE4/PE5 increased from 2.8- to 7.7-fold [138].
However, the effect in plants was poor [139], while direct knockdown of OsMLH1 in the
ePE5c system increased the efficiency from 1.30- to 2.11-fold. At the same time, a condi-
tional excision system was introduced to overcome the partial sterility caused by OsMLH1
knockdown [140].

Prime editing also provides guidance for precise large fragment deletions; an editing
method based on a pair of pegRNAs, PRIME-Del, can effectively induce deletions of up to
10 kb and simultaneously insert short fragments into the genome [141]. Another PE-Cas9-
based deletion and repair (PEDAR) system was generated by fusing Cas9 nuclease with RT
and combining this complex with two pegRNAs, enabling the efficient creation of large
precise genomic alterations [142]. On the other hand, PrimeRoot (prime editing-mediated
recombination of opportune targets) can also produce large DNA insertions [143].

2.4. Cas9 Protein Variants

In the practical applications of CRISPR-Cas technology, the requirement of PAMs such
as NGG or TTN for target recognition limits the genomic sites that can be targeted [144].
As a result, several variants of the Cas9 protein that target a wider range of sites have
been developed, enabling nearly PAM-free targeted editing. Two SpCas9 variants, xCas9
and Cas9-NG, recognize more permissive NG PAMs. xCas9 exhibits nearly the same
editing efficiency as Cas9 at most typical NGG PAMs but shows limited activity at atypical
NGH PAMs (H = A, C, or T). In the case of sgRNA mismatch, xCas9 has better targeting
specificity than Cas9 [10,11,145]. Two Cas9-NG variants, Cas9-NGv1 and Cas9-NG, were
designed to target NGN PAMs [146], with crystal structures indicating that the loss of the
third nucleobase base-specific interaction is compensated with newly introduced non-base-
specific interactions, enabling NG PAM recognition [144]. The editing efficiency of Cas9-NG
is much greater than that of Cas9-NGv1 at NG PAM sites, but the editing efficiency at
NGG PAMs is relatively poor. Cas9-NG also has higher specificity than Cas9 at NGG
PAMs [10,11].

To enable broader PAM targeting, a variant called SpG capable of targeting an ex-
panded set of NGN PAMs was developed; further optimizing developed a nearly PAM-free
variant called SpRY (NRN and NYN PAMs; R=A or Gand Y = C or T) [12]. In plants,
SpG supports NGD PAMs (D = A, G, or T); although it is less efficient than SpCas9-NG,
SpRY achieves efficient editing at a wide range of genomic loci, indicating a preference for
NGD and NAN PAMs [13,147,148]. Several other SpCas9 variants, such as SpCas9-NRRH,
SpCas9-NRCH, and SpCas9-NRTH, recognize NRNH PAMs, thus further broadening the
editing range of the SpCas9 system in plants [149]. Happily, at the same time that differ-
ent Cas9 variants were developed, corresponding transcriptional regulatory systems and
base editors were also developed, and their effectiveness was demonstrated in different
plants [16,149].

3. CRISPR~-Cas Systems Targeting Different Locations with
Different Breadths

3.1. Targeting the CDS

Editing the CDS of genes is the most common use of CRISPR. Since the functions of
different members of the same gene family are often redundant, it is necessary to produce
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mutants that contain multiple genes mutated simultaneously [150]. CRISPR-Cas systems
provide many effective ways to express Cas9 with multiple gRNAs. Based on Golden Gate
ligation or Gibson Assembly, tandem sgRINA expression cassettes have been produced,
each containing a polymerase (Pol) III promoter and terminator. Through this approach,
up to eight sgRNA expression cassettes were inserted into a single binary CRISPR-Cas9
vector, and seven of the eight target genes were mutated in three TO plants [151]. The
endogenous tRNA-processing system performs multiplex editing through the endogenous
tRNA-processing RNA enzymes (RNase P and RNase Z) that recognize tRNA components
and excise them from the PTG into individual gRNAs [152]. CRISPR system yersinia (Csy)-
type ribonuclease 4 (Csy4) was also used to simultaneously express multiple gRNAs, and
the combination of Csy4 and tRNA expression systems was nearly twice as effective as the
single Pol Il promoter for gRNA expression. And the mutagenesis capacity was improved
by the addition of the Trex2 exonuclease [153]. Through crRNA processing activity of
Cas12a, intronic crRNAs can also be cleaved for editing multiple genes [154]. Moreover,
sgRNAs driven by different Pol III promoters were assembled by multiple restriction
enzymes [155], and isocaudomers are widely used, such as Spe I/Nhe I, BamH I/Bgl II, Xba
I/Nhe I, and Xho I/Sal I. The intermediate vectors were digested and finally introduced
into the editing vector [156]. In theory, this system could be used to edit an unlimited
number of genes simultaneously [156]. By reducing the length of the sgRNA promoter,
12 sgRNA expression cassettes were assembled [157]. Moreover, structure-guided site
mutagenesis and random screening were conducted; more than 35 sgRNA scaffold variants
were selected, and numerous functional variants were identified. Using these variants
and different tRNAs, spacer-scaffold-tRNA-spacer units containing up to 9 targets can be
synthesized via fusion PCR; in conjunction with Golden Gate ligation, up to 24 target sites
can be efficiently cloned in one step [158].

The selection of sgRNAs is an important factor in determining the efficiency and
specificity of CRISPR—Cas systems. To date, many plant genome sgRNA design websites
have been established (Table 1), including CRISPR-P 2.0 (http://cbi.hzau.edu.cn/CRISPR2
/) accessed on 24 December 2024 [159], the local sgRNA design tool CRISPR-Local (http://
crispr.hzau.edu.cn/CRISPR-Local /) accessed on 24 December 2024 [160], and the integrated
toolkit CRISPR-GE (http:/ /skl.scau.edu.cn/) accessed on 24 December 2024 [161]. Other
comprehensive tools, including Cas designer (http://rgenome.net/cas-designer/) accessed
on 24 December 2024 and CRISPOR (http://crispor.org) accessed on 24 December 2024, also
cover a substantial amount of plant genome information, and comprehensive consideration
of the results from multiple websites would aid in the selection of better sgRNAs [162-164].

Table 1. Tool sets of sgRNA design and editing result analysis.

Tools Websites References

http:/ /cbi.hzau.edu.cn/CRISPR2, accessed on

CRISPR-P 2.0 24 December 2024/ [159]
http:/ /crispr.hzau.edu.cn/CRISPR-Local/, accessed on

CRISPR-Local 4 1y comber 2024 [160]

CRISPR-GE http:/ /skl.scau.edu.cn/, accessed on 24 December 2024 [161]

. http:/ /rgenome.net/cas-designer/, accessed on

Casdesigner ) 1y ember 2024 [162]

CRISPOR http:/ /crispor.org, accessed on 24 December 2024 [163]

TIDE http:/ /tide.nki.nl, accessed on 24 December 2024 [4]

https:/ /ice.synthego.com, accessed on

ICE 24 December 2024 [4]
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Table 1. Cont.
Tools Websites References
. http:/ /www.hi-tom.net/hitom?2/, accessed on
Hi-TOM2 24 December 2024 [165]
https:/ / github.com/pinellolab /CRISPRess02,
CRISPResso02 accessed on 24 December 2024 [166]
CRISPR- https:/ / github.com/fuhuancheng/CRISPR-GRANT, [167]
GRANT accessed on 24 December 2024
CrisprStitch https://zhangtaolab.org/software/ crisprstitch, [168]

accessed on 24 December 2024

3.2. CRISPR Screen

The CRISPR-Cas9 system, with its specificity only at the 20 nucleotide (nt) target sites,
enables high-throughput editing, which contributes to functional genomic research and can
provide valuable genetic resources for crop improvement [169]. High quality, high coverage,
and uniform distribution are guarantee of the efficient application of CRISPR screens [21].
Two popular CRISPR screening methods have been developed, arrayed screens and pooled
screens; owing to the application characteristics of array screens, pooled sgRNAs are more
widely used in plants [170]. To date, CRISPR screens have been performed in many plants
(Table 2). The practice of large CRISPR screening was initially carried out in rice, that
contains 88,541 sgRNAs to target 34,234 genes, and obtained 91,004 transgenic plants
with an editing efficiency of about 83.9%. Phenotypic changes in fertility, tiller angle,
and leaf color were observed in these transgenic lines [171]. In the same year, a library
containing 25,604 sgRNAs targeting 12,802 genes highly expressed in rice stem tissue was
also reported, generating 14,000 TO plants [172]. In tomato, 4379 sgRNAs were designed
for 990 TFs, and 487 positive plants were obtained, only 92 of which contained a single
sgRNA, with an editing efficiency of 23%. The proportion of plants containing a single
sgRNA was increased to 42% by the transformation of a small library targeting 30 TFs [173].
In rapeseed, a CRISPR library targeting 10,480 genes through 18,414 sgRNAs was also
constructed, and 1 104 TO plants were obtained with an editing efficiency of 55.80% [174].

In fact, current genome-wide CRISPR library construction is still focused mainly on
rice. In other species, CRISPR libraries with small scopes or specific functions have been con-
structed, and mutant libraries of appropriate size exhibit advantages in the study of special
functions. Initially, in tomato, 15 mutant lines were obtained by targeting 54 immune-
associated leucine-rich repeat subfamily XII genes with 165 sgRNAs; phenotypic analysis
revealed that Fis2.1 plays a major role in the leaf response to flg22 [175]. Using seventy
CRISPR—Cas9 vectors to target candidate genes with potential functions in nodulation or
seeds in soybeans, a total of 407 TO lines containing all the sgRNAs were obtained, with
an average mutation frequency of 59.2%, and of which 35.6% lines carried multiple muta-
tions [176]. In maize, 1368 sgRINAs targeting 1244 genes identified from genetic mapping
and comparative genomic analysis were pooled and produced 4356 glyphosate-resistant
TO plants containing 743 target genes, and many unexpected phenotypic changes were
observed [177]. In rice, CRISPR-specific libraries related to MS, receptor-like kinase (RLK),
and seed-preferring genes have also been established [178-180]. Interestingly, CRISPR
libraries based on different traits have also been constructed in a woody plant (cotton),
including genes that are differentially expressed during plant development, endogenous
insect resistance-related genes, and the calcium-dependent protein kinase (CDPK) gene
family [181-183]. The finding of multitarget insertion in these studies also indicated the
importance of building specific CRISPR libraries, which is advantageous when analyzing
the same trait.
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Table 2. A brief summary of CRISPR screen practice in plants.
Species Description Number Mutation Ref
Gene sgRNA Plant Efficiency "
Rice genome-scale 34,234 88,541 91,004 83.90% [171]
highly expressed genes in shoot base tissue 12,802 25,604 14,000 65.30% [172]
anther-specific genes 73 73 333 82.30% [178]
receptor-like kinase (RLK) family 1072 1166 5039 92.10% [179]
seed-preferred genes 310 375 2688 84.06% [180]
Tomato LRR-XII gene family 54 165 31 62.50% [175]
TFs 990 4379 487 23% [173]
Soybean genes with potential functions in nodulation 102 70 407 59.20% [176]
and seeds
Maize genes related to agronomy and nutrition traits 1244 1368 4356 81% [177]
Cotton plant development-related genes 112 116 718 75% [181]
endogenous insect-resistant genes 502 969 2000 97.29% [182]
CDPK gene family 82 246 518 89.49% [183]
Rapeseed genes related to the reproductive organs 10,480 18,414 1104 55.80% [174]

The identification of the sgRNAs of TO plants is mostly based on targeted amplification
sequencing. Chen et al. [179] developed fragment-length markers for distinguishing gRNAs
(FLASH) pipeline; an aligned CRISPR library based on the FLASH pipeline was used to
target 1072 members of the RLK family in rice, and rapid identification of gRNAs was
achieved without sequencing. Recently, many new systems have been proposed to provide
guidance for better use of CRISPR libraries. To overcome functional redundancy, a toolbox
named multi-knock was developed. A total of 59,129 optimal sgRNAs each targeting 2
to 10 genes within a family, for a total of 16,152 genes, were designed and divided into
10 functional sublibraries to allow flexible and targeted genetic screens; by transforming
one of these sublibraries, novel TRPs with hidden functions due to genetic redundancy were
discovered [150]. By combining breeding with gene editing in maize, a BREEDIT system
based on multiplex CRISPR-mediated genome editing and hybridization schemes was
proposed to establish the link between traditional breeding and genetic engineering [184].
All of these systems can be extended to other species.

CRISPR screens have also been used for the CDS of single genes by designing a
wide range of sgRNAs, which were shown to enable saturation mutagenesis and promote
protein evolution. Butt et al. [185] designed 119 sgRNAs based on sites adjacent to the
PAM in the CDS of SF3B1 and produced mutants with varying degrees of resistance to
splicing inhibitors. Owing to the randomness of mutations introduced by CRISPR—Cas9,
precise editing systems were subsequently applied. In conjunction with gRNA libraries,
the directed evolution of herbicide resistance genes, including acetyl-CoA carboxylase
(ACC) [186], acetolactate synthase 1 (ALS1) [187], and 5-enolpyruvylshikimate-3-phosphate
synthase (EPSPS) [100] has been generated. Dual-base editors and the prime editing library-
mediated saturation mutagenesis (PLSM) system were also used to generate the direct
evolution of OsACC [114,188]. More recently, Wang et al. [189] established an efficient
germline-specific system based on an improved base editor and the ability of Arabidopsis
to produce many seeds; through this system, herbicide-resistant EPSPS, ALS, and HPPD
variants were produced.

Sanger sequencing is a common method for detecting mutations, and bioinformatics
tools such as Tracking of Indels by Decomposition (TIDE; http:/ /tide.nki.nl) accessed
on 24 December 2024 and Inference of CRISPR Edits (ICE; https:/ /ice.synthego.com)
accessed on 24 December 2024 can be used to decode Sanger sequencing data containing
different types of mutations [4]. However, the sensitivity of Sanger sequencing is only
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approximately 15%; therefore, edits with a low frequency are likely to be ignored. And it is
cumbersome and expensive when applying pooled strategies, whereas barcode-based high-
throughput next-generation sequencing (NGS) has shown unique advantages in CRISPR
screens. Analytical tools such as Hi-TOM2 [165], CRISPResso2 [166], CRISPR-GRANT [167],
and CrisprStitch [168] have also been developed (Table 1). These tools enable convenient
analysis of the large datasets generated by NGS.

3.3. Targeting CRE in the Promoter and uORFs

CRISPR-Cas systems are able to generate many kinds of genetic variants. For
pleiotropic genes that are active in multiple organs or involved in multiple regulatory
pathways, CRE editing can achieve significantly better effects than CDS editing. In combi-
nation with CRISPR screening, a variety of cis-regulatory alleles with decoupled regulatory
traits can be produced, which can contribute to crop domestication and quantitative trait
improvement [18].

Many CRE editing practices have been carried out in plants. By targeting the ef-
fector binding element (EBEPy,a4) of CsLOBI, increased resistance to citrus canker can
be achieved [190]. CLAVATA 3 (CLV3) and WUSCHEL (WUS) maintains a highly con-
served negative feedback loop to regulate cell proliferation. In tomato, CRISPR-Cas9-
mediated CRE mutation was used to characterize the relationships between CLV3 and
quantitative traits, and elucidate the additive and synergistic relationships between con-
served sequences [191,192]. Moreover, Hendelman et al. [193] engineered many WUSCHEL
HOMEOBOX9 (WOX9) promoter alleles in tomato, revealing the hidden pleotropic role
of WOX9, and extended it to other species. The CLAVATA3/EMBRYO SURROUNDING
REGION-RELATED (CLE) peptide signal in the CLV3-WUS feedback pathway also reg-
ulates meristem size. The use of CRISPR-Cas9 to generate weak CLE alleles improved
yield-related traits [194]. In addition, fine-tuned amylose levels and heading dates were re-
alized through targeted editing of the promoter of Wx and three major heading date-related
genes [195,196].

In rice, Ideal Plant Architecture 1 (IPA1) mutation increased the number of grains per
panicle but reduced the number of tillers. By transforming 39 vectors containing 2—4 sgR-
NAs in the promoter, untranslated regions (UTRs) and downstream regions, tiling deletion
was performed. A 54 bp deletion in the promoter simultaneously increased the number and
size of panicles [197]. This method represents a new type of CRISPR screen compared with
the standard one, involving two sgRINAs simultaneously targeting a sequence that result in
a large deletion. The phenotypic regulation achieved by targeted editing at specific sites
also provides guidance for identifying TF binding sites [197]. Meanwhile, a deep learn-
ing model, BPNet, which uses DNA sequences to predict the base-resolution chromatin
immunoprecipitation (ChIP)-nexus binding profile of pluripotent TFs, was validated by
CRISPR-mediated point mutation [198]. These results suggest that promoter-based editing
plays an important role in uncoupling gene pleiotropy and characterizing the quantitative
relationships between CRE and quantitative traits. However, some properties of promoters,
including AT base enrichment, low sequence complexity, and strong element repeatability,
impose certain requirements on the CRISPR-Cas system [199]. The Cas12a protein and pre-
cision editing tools are highly effective alternative tools [18,200]. In rice, a CRISPR-Cas12a
promoter editing (CAPE) system introduced quantitative trait variation (QTV) continuums
for multiple traits through the editing of gene promoters [201]. Thus, editing systems that
target promoter regions have great potential.

Gene functions are rich and diverse, and in order to create desired traits, in addition
to knocking out, promoting gene expression also plays an important role. As effective
CREs in mRNAs, uORFs play important roles in controlling the translation initiation of
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downstream primary ORFs (pORFs) [202], and they are emerging as a general mechanism
that inhibits protein levels [203,204]. Editing uORF sequences has been shown to achieve
overexpression [19]. In lettuce, editing the uORF of LsGGP2, which is involved in vitamin
C biosynthesis, improved the antioxidant ability and ascorbate content [203]. By editing
the highly conserved uORF of FuebZIPs1.1, the sugar content was increased in strawber-
ries [205]. In addition, when the uORF of SIGGP1 was edited, ascorbate enrichment was
observed, which was linked to MS in tomatoes [206]. Multiple mutagenesis of the uUORF
of the PSBS1 gene in rice revealed an overexpression phenotype and a two- to three-fold
increase in OsPsbS1 protein abundance [207]. These results suggest that editing uORFs pro-
vides a universal and effective way to manipulate mRNA translation, that can be applied
to dissect the mechanisms of biological processes or improve the quality and yield of crops.

4. Optimization of CRISPR-Cas Vectors
4.1. Application of Tissue-Specific Promoters

Cauliflower mosaic virus (CaMV) 355 and ubiquitin promoters are often used to drive the
expression of Cas9, but the application of this system in Arabidopsis is relatively inefficient
compared with rice, and many mutations are not inherited to the next generation [151]. To
achieve efficient delivery of targeted mutations to progeny, the Cas9 protein was driven
by tissue-specific promoters, including the INCURVATA2 and YAO promoters, both are
preferentially expressed in actively dividing cells [208,209]. The SPOROCYTELESS (SPL),
DD45, and tomato LAT52 genes are expressed in sporogenous cells and microsporocytes,
egg cells, and pollen cells, respectively. The promoters of these genes were used to drive
Cas9 expression in germline cells, resulting in the increasing rate of heritable gene muta-
tions [210]. Miki et al. [211] reported a sequential transformation method with which they
compared four germline-specific promoters (DD45, Lat52, YAO, and CDC45), it was found
that the DD45 promoter improved the frequency of sequence replacements. The egg cell
promoter (ECT) has also been used for efficient gene targeting (GT) [212]. Homozygous try
cpc (TRIPTYCHON and CAPRICE) double mutants were observed in the T1 generation via
pWUS and showed improved editing efficiency compared with the EC1.2 promoter [213].

Owing to the pleiotropy of genes, traditional editing systems cannot effectively ana-
lyze the function of genes in specific tissues. Therefore, Decaestecker et al. [214] proposed
a CRISPR-based tissue-specific knockout (CRISPR-TSKO) system, which can generate
somatic mutations in specific cells, tissues, and organs. In tomatoes, genome editing for
fruit-specific gene using the phosphoenolpyruvate carboxylase 2 (PPC2) promoter was shown
to be an effective tool to help bypass the pleiotropic effects of genes [215]. In addition,
cotton pollen was transformed with Cas9 expression vectors driven by the GhPLIM2b and
GhMYB24 promoters via Agrobacterium vacuum infiltration, and targeted gene editing in
cotton pollen was successfully achieved [216]. On the other hand, plants are sessile and rely
on a myriad of signals and defense mechanisms to respond to the external environment.
Many genes are involved in these mechanisms, and most of them have important biological
functions in plant growth and development [22]. The knock-out of these genes is likely
to generate major effects on morphology and yield, while tissue-specific knockout would
be an excellent way to elucidate the underlying mechanisms of defense responses [22,23].
Moreover, for many reported negative regulatory genes, tissue-specific genome editing
(TSGE) could be used to optimize their application. The application of CRISPR-TSGE re-
quires promoters that function well in various tissues, and many tissue-specific promoters
and several TSGE systems that provide guidance for these applications have been de-
scribed [23]. Another major application of TSGE is the improvement of pathogen resistance.
Viruses systematically infect and replicate in specific tissues of plants, using virus-inducible
or tissue-specific promoters where viruses replicate to express Cas9 for locally knocked
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down plant interaction partners can limit the systematic transmission and replication of
viruses [22]. In combination with BEs, PEs, and other tools, TSGE can be better utilized.

4.2. Acceleration of the Generation of Transgene-Free Plants

The use of the CRISPR-Cas9 system has led to revolutionary improvements in crops [1].
However, owing to the existence of transgenes, the continuous editing activity of the Cas9
protein makes it difficult to distinguish between mutations that are inherited or newly
generated and increases off-target effects. This limitation poses a challenge to its further
application, and assessing the heritability and phenotypic stability of CRISPR-edited plants
requires the elimination of constructs [217]. In addition, removing these constructs may be
a prerequisite for edited crops for commercial applications. PCR amplification is a common
way to isolate transgene-free plants from progeny, but this process is time-consuming and
laborious. Commonly used reporter genes such as mCherry, GFP, and its derivative RFP
can be added to Cas9 constructs [218,219], making it easy to distinguish plants that contain
transgenes from those do not, but these fluorescent markers require additional tools. The
-glucuronidase (GUS) reporter gene is also widely used in plants, but expensive substrates
are required [220].

The emergence of RUBY, which converts tyrosine into the vivid red betalain, makes
the presence of transgenes clearly visible to the naked eye [221,222]. In maize, a ViMe-
Box system that enhances the expression of DsSRED2 was developed, and through tissue-
specific promoters, makes Cas9-containing seeds visible to the naked eye under natural
light [223]. Similarly, the seed fluorescence reporter (SFR) system, which expresses DsRED
in endosperm, embryo, or both tissues, was established in maize [224]. Moreover, one
co-expression system, Cas9-PF, expressed PRODUCTION OF ANTHOCYANIN PIGMENTS
1 (PAP1) and Flowering Locus T (FT) through the promoters of Cestrum yellow leaf curling virus
(CmYLCV) and Arabidopsis ubiquitin 10 (AtUbi10), respectively. This system can accelerate
the generation of targeted mutants and transgene-free plants [225]. Other morphogenetic
genes, such as GLABRA1 (GL1) and GL2, play roles in the formation of trichomes, and
mutations in these genes result in hairless leaves and stems; a system that relies on GL2
mutation-based visible selection (GBVS) has been established [226]. These marker genes
can be driven by a single promoter or linked in tandem with the Cas9 protein via the P2A
peptide to indicate the expression level of the Cas9 protein [219].

The addition of reporter genes provides a convenient way to distinguish plants with
and without transgenes, and the direct elimination of transgenic offspring through suicide
genes or MS genes would have a significant impact on the use of CRISPR technology for
crop improvement. By introducing REG2-BARNASE and 355-CMS2 expression cassettes
into the conventional CRISPR-Cas9 vector, He et al. [217] constructed a Transgene Killer
CRISPR (TKC) system; when a plant reached the reproductive stage, toxic proteins would
kill male gametophytes and embryos containing the constructs. However, specific applica-
tions of genome editing, such as haploid induction-coupled editing, require the retention
of transgenes [227,228]. In maize, a pollen self-elimination CRISPR-Cas (PSEC) system
was proposed, and a pollen-specific promoter (polygalacturonase 47, ZmPG47) was used to
drive the alpha-amylase gene AA1 to prevent transgene transmission [26]. The fluorescence
marker and pollen killer-assisted CRISPR-Cas9 system (FMPKC) used DsRed2 to distin-
guish transgenic offspring and pollen killers (RAmy1A or orfH79) to reduce the proportion
of transgenic seeds [27], establishing a balance between the separation of transgene-free
seeds and the acquisition of transgenic seeds.
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4.3. Application of Morphogenetic Genes

For most plants, tissue culture mediated by Agrobacterium is still the main method
of regeneration, and high regeneration efficiency is an important guarantee for achieving
targeted editing. Activation of the AP2/ERF TF WOUND INDUCED DEDIFFERENTIA-
TION 1 (WIND1) strongly promoted bud regeneration in Brassica napus and Arabidopsis,
but inhibited leaf growth [229]. Baby boom (BBM) and WUS have been shown to increase
regeneration efficiency in many species, including Zea mays, Sorghum bicolor, Saccharum
officinarum, Oryza sativa, Malus domestica, and so on [230-232], but these genes may also
cause some abnormal phenotypes, such as dysplasia, distortion, and decreased fertility.
GROWTH-REGULATING FACTOR (GRF) genes belong to a small family of plant-specific
TFs that form a transcription complex with GRF INTERACTING FACTOR (GIF), which
plays a role in regulating plant growth and development [233,234]. The overexpression
of GRF5 improved the transformation efficiency of dicot and monocot species, such as
canola, soybean, sunflower, and maize [235]. The overexpression of wheat GRF4-GIF1
fusion protein significantly improved regeneration efficiency and speed in wheat, triticale,
rice, and even dicotyledon citrus [236]. The transgenic plants were fertile without obvious
developmental defects, and efficient regeneration could be induced without exogenous
cytokinins [236]. Comparing several developmental regulators (DRs) in tomato, including
PLETHORA 5 (PLT5), WIND1, ENHANCED SHOOT REGENERATION 1 (ESR1), WUS and
a fusion of WUS, and BBM (WUS-P2A-BBM), revealed that plants overexpressing PLT5
had the highest regeneration efficiency. PLT5 also promoted regeneration efficiency in
B. rapa and Capsicum annum, but some morphological changes were also observed [237].
Recently, some genes that can improve regeneration efficiency, including WOX5, DOF5.6,
DOF3.4, and LAX1, were identified in wheat, some of which are also effective in maize,
soybean and barley [25,238,239]. Several genes, including LAX2, LAX1, and LOX3, have
also been identified in cotton via single-cell sequencing technology combined with genetic
analysis [240].

The discovery of these morphogenetic genes provides guidelines for high-efficiency
plant regeneration. For genes that may produce adverse growth, weak promoters or tandem
reporter genes can be used to reduce negative phenotypes. The conditioned Cre/loxP SSR
system can also be used with specific treatments to achieve the removal of unfavorable
factors after bud formation [241]. In addition to the usual plant hormones, adenosine
monophosphate (AMP) also has the ability to increase regeneration efficiency [242]. On
the other hand, multiple research teams have applied a ternary vector system in which
morphogenetic genes are added to further improve the regeneration efficiency of sorghum
and maize [24,241,243].

5. CRISPR-Cas System and Plant Breeding Practices
5.1. Bypassing Tissue Culture or Transgene-Free

Although some DRs have been found to promote plant regeneration, the tissue culture
process is still complex and genotype-dependent to a certain degree. Therefore, several new
transformation strategies have been proposed. Agrobacterium carrying DRs and sgRNA
cassettes was injected into Cas9-overexpressing plants from which the meristem was
removed, and gene-edited plants were obtained directly from the generated buds in N.
benthamiana, tomato, potato, and grape [244]. Since plant viruses have the ability to move
between cells [29], some positive-strand RNA viruses, such as the Tobacco Rattle Virus
(TRV) and Barley Stripe Mosaic Virus (BSMV), have been used to deliver sgRNA into
Cas9-overexpressing plant cells [245-249]. Alternatively, Cas9 and sgRNA cassettes can be
simultaneously inserted into negative-strand RNA viruses, including the Barley Yellow
Striate Mosaic Virus (BYSMV) or Sonchus Yellow Net Rhabdovirus (SYNV) [250,251], all
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of which successfully achieve targeted editing. On the other hand, RNA sequences such
as tRNA and FT have the ability to travel long distances within the plant [248]; based
on this characteristic, CRISPR reagents can be transferred from the rootstock to the scion
by grafting. The researchers produced a rootstock containing Cas9-tRNA-like sequences
(TLSs) and gRNA-TLS fusions, and targeted deletions in offspring were observed in the
scions that were grafted onto the rootstock [252]. However, the manufacturing of stock
is a speed-limiting step, and implementing this approach in monocotyledonous plants is
challenging. In addition, nanoparticles are also considered as novel delivery vectors for
genome editing but are limited by the size of nucleases [28].

There are three types of CRISPR—Cas9 delivery reagents: expression plasmids (DNA),
in vitro transcripts (IVTs), and preassembled RNP complexes, which include Cas9 proteins
and guide RNA [19]. Among them, RNPs degrade rapidly once they enter the cell, en-
abling the instantaneous expression of Cas nucleases and reducing off-target effects [253].
Polyethylene glycol (PEG)-mediated RNP transformation has been used in many impor-
tant plant species, including rice, wheat, maize, grape, and apple [254-256]. Transfected
protoplasts were used to produce regenerated plants with different editing efficiencies in
different species [257]. Given the potential toxicity of PEG, several other transformation
methods, including lipofection, particle bombardment, and electroporation, have also been
used [258-260].

5.2. Haploid Induction

Haploid breeding can stabilize the genetic background of hybrids in two generations,
while the traditional method requires six to eight generations, and the key factor for its
successful implementation is efficient haploid induction (HI) [9]. Frameshift mutations
in MATRILINEAL [MTL, also known as NOT LIKE DAD (NLD) or PHOSPHOLIPASE A
(PLAT)], encoding pollen-specific phospholipase, can trigger the elimination of patrilineal
chromosomes in zygotes [261-263], which leads to the formation of haploid maize embryos
and further spread to rice and wheat [264,265]. Moreover, DOMAIN OF UNKNOWN
FUNCTION 679 MEMBRANE PROTEIN (DMP), PHOSPHOLIPASE D3 (PLD3), and POD65
were also shown to trigger maternal HI [266-269]. In Arabidopsis, engineering centromere-
specific histone 3 (CENH3) variants can trigger efficient paternal HI [270], that has also
been applied in wheat [271]. New systems that combine HI techniques with CRISPR-Cas9,
such as HI-Edit, Haploid-Inducer Mediated Genome Editing (IMGE), and gene editing
followed by doubled haploid production (GEDH) [227,228,269], can overcome the barriers
with genotype dependency and achieve rapid homozygosity.

5.3. MS and Self-Incompatibility Manipulation

Owing to hybrid vigor, hybridization is an important way to improve yield and
quality in crop breeding. To produce commercial hybrid seeds, it is necessary to avoid
self-pollination, and the establishment of MS lines is a practical and effective method.
Although many MS lines have been recorded, the transfer of MS traits to elite varieties
via traditional methods is time-consuming and laborious [1]. The CRISPR-Cas system
offers a quick method for establishing MS. Editing Male Sterility 1 (MS1, encoding a
glycosylphosphatidylinositol-anchored lipid transfer protein) and MS45 (encoding a stric-
tosidine synthase-like enzyme) in wheat, SISTR1 in tomato and other genes associated
with MS [272-274] can rapidly produce MS germplasms; and these strategies can be ex-
tended to other species [275]. In addition, by targeting the thermosensitive genic male
sterility (TGMS) gene TMS5 or the photoperiod-sensitive genic male sterility (PGMS) gene
CARBON-STARVED ANTHERS (CSA) in rice, more flexible MS lines have been estab-
lished [275].
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Self-incompatibility is also widespread in flowering plants, including diploid potato,
rapeseed, and cabbage. This characteristic promotes cross-pollination to maintain a high
level of heterozygosity within the population and reduces the presence of harmful ho-
mozygous recessive genes [9]. However, stable homozygous inbred lines are difficult
to obtain in these species, hindering basic research and crop breeding. S-RNase controls
self-incompatibility in Solanaceae, and a self-compatible potato was generated by editing S-
RNase [276]. While the farnesyl pyrophosphate synthase (FPS2) gene functions in S-RNase-
independent unilateral incompatibility, editing FPS2 could restore self-incompatibility [277].
In rapeseed and cabbage, self-incompatibility is inhibited by editing the M-locus protein
kinase (MLPK) and S-receptor kinase (SRK) genes, respectively [278,279]. Moreover, eluci-
dation of the mechanism of plant self-incompatibility is expected to overcome the barrier
of interspecific reproduction [1].

5.4. De Novo Domestication

Selective breeding for high yield and high quality has resulted in the loss of genetic
diversity in many domesticated crops, leaving them vulnerable to biological and abiotic
stresses, whereas wild species retain a diverse gene pool and may have innate resistance
to adverse conditions [280]. With adequate genome analysis, rapid domestication can be
achieved. De novo domestication based on genome editing has achieved a good balance
between productivity and environmental adaptation. Orphan crops, which are grown and
consumed in limited regions and have undesirable characteristics similar to their wild
relatives, are also important materials for de novo domestication [281-284]. This strategy
was used to achieve rapid improvement of multiple traits in ground cherry (Physalis
pruinosa), wild tomato and allopolyploid rice through simultaneous editing of multiple
genes [285-288]. Wild species or orphan crops of other plants, such as quinoa (Chenopodium
quinoa), wild potato (Solanum spp.) and alfalfa (Medicago sativa), also have prominent
strengths and weaknesses, and targeting genes that regulate undesirable traits can promote
the improvement of plant species [1]. The transformation systems for wild species and
accurate identification of regulatory genes for target traits were the basis for the efficient
use of de novo domestication.

6. Conclusions and Future Prospects

The continuously recognized Cas proteins, increased targeting efficiency, expanded
targeting width and breadth, and optimized auxiliary measures, it can be seen that the
continuous improvement of the CRISPR—Cas system provides strong support for its efficient
application in plants, and the combination of different classifications in this review could
further promote its application. In the future, the development of CRISPR systems can be
divided into two aspects: further improvement and the integration of existing systems in
more species.

To realize the efficient application of the CRISPR system in plants, in addition to
comprehensive knowledge of the CRISPR system, clever design and modification according
to experimental purposes are also essential. The use of CRISPR plus regulatory elements,
multi-omics, or protein analysis tools could lead to new applications. And, a growing
number of tools are available to identify and redesign the components of CRISPR systems.
On the other hand, although CRISPR systems stand out in many transgenic technologies,
and many excellent lines have been obtained, substantial research is still needed before mass
production of these excellent lines. Relevant supervisory policies and public recognition
are important factors for these entering the public eye. The full identification of the stability
of editing lines and the establishment of CRISPR systems with more accurate and smaller
off-target effects are goals that researchers need to make continuous efforts.
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Large-scale CRISPR practice remains an important approach for quickly understand-
ing gene function, especially for species with lagging basic research. However, there is
no platform where all or most Cas proteins or variants can be obtained. Therefore, for
those who want to explore this area for the first time, it is relatively difficult to obtain the
appropriate reagents. In the future, a collection platform for published information may
be needed, which would promote the efficient application of the CRISPR—Cas system in
plants. On the other hand, it is expected that the combination of CRISPR and CRISPRa
screening could improve the understanding of gene function. CRISPR screens that target
specific gene families or specific traits have unique advantages. Owing to the significance
of genome-wide CRISPR screening to a plant species, it may require the concerted efforts
of many laboratories to obtain as many regenerated plants as possible and present them to
the public in the form of a database. In the future, this database would be ready to serve as
the basis for a new study.
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