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Abstract: The five-year mean yield of five Hungarian wheat production counties was 5.59 t ha~! with
a 7.02% average coefficient of variation. There was a regional effect on yield when progressing from
south to north with a 1-2 °C higher mean winter air temperature, meaning that the T, in southern
counties increased the five-season mean yield by 15.9% (p = 0.002) compared to the yield of northern
counties. Logistic regression models developed to assess the FHB risk driven by a few meteorological
variables (T;; RH) provided proper predictive performance. The results in the regression model were
validated against the measured infection rates (P%) provided by the NEBIH 30 days before and after
heading. The FHB pressure was comparatively higher in Zala County, probably due to its special
topological and growing conditions, irrespective of the season. Across all areas studied, two of the
five identified counties (Pest and Somogy) provided the best classification for FHB infection. In the
remaining three counties, the seasonal mean prediction accuracy (differences) exceeded 10% in only
6 out of 30 model outputs. The modeled five-season P% values averaged 70.4% and 93.2% of the
measured infection rates for models 1 and 2, respectively. The coincidence of wet and warm weather
around the time of wheat flowering enhanced the risk of FHB.

Keywords: meteorological variables; weather classes; FHB-sensitive periods; topology and yield

1. Introduction

Winter wheat (Triticum aestivum), an important staple crop with essential amino acids
and minerals [1] and a source of income for farmers and investors, is widely grown
in temperate regions of the world [2]. FAOSTAT (2018) reported that over 210 million
hectares of bread wheat was cultivated, resulting in over 800 million tons of grain yield
that was consumed by approximately one-third of the world’s population. In Hungary,
winter wheat is the most significant arable crop, accounting for close to 1 million ha out
of 5 million ha of cultivated land. According to the FAOSTAT (2018) [3] report, the mean
wheat productivity per unit area has reached 3.77 t ha~! worldwide. In Hungary, the
mean wheat productivity per unit area surpassed 36.4% of the world average during the
investigation period (2017-2021 [4]).

Although stable wheat cultivation is essential for food security [5], it is often threatened
by fungal diseases; among them is Fusarium head blight (FHB), caused by Fusarium
graminearum (Schwabe), which is a devastating wheat disease in temperate regions [6]. F.
graminearum is the only species associated with FHB in the wheat-producing regions of
Hungary [7]. The toxins produced by fungi contaminate human food and animal feed [8].
Wheat grain yield loss due to FHB was estimated to be 50-70% of the total production
in different wheat-producing areas of the world [9], with the highest (100%) yield losses
noted among the susceptible wheat cultivars. Crop rotation and tillage can control the
appearance of FHB infections by eliminating crop residues and inoculum sources [10].

Previous investigations have demonstrated that FHB infection is significantly affected
by weather conditions. Because it is a monocyclic disease (infecting stubble), the weather
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of the preceding season is also important [11]. Xu et al. (2007) [12] found wheat to be
susceptible to FHB infection over a critical period just around anthesis (depending on
the total precipitation PR and average air temperature T, for a four-week period before
anthesis). Due to its close relation to PR during anthesis and T, in the preceding six
weeks [13], the FHB disease risk can be estimated with a >70% accuracy rate [14].

Infection occurs mainly in mid-to-high altitudes with high humidity in the wheat-
growing areas of the world. In field conditions (Peoria, Illionis, USA), the relative humidity
(RH) was 95-100% with a T, of 13-22 °C [15] during dispersal in wheat. These data
were in agreement with those measured by Tschanz et al. (1976) [16] in a controlled
environment (optimum T,: approximately 16 °C, atmospheric moisture below saturation).
Sutton (1982) [17] noted that periods of warm weather with persistent wetness were the
best conditions for an FHB epidemic in Canada. Based on his observation, infection
progressed with a T, of 15-35 °C (the optimum range was 25 °C-32 °C) in the different
stages of wheat development. In the US, Shah et al. (2019) [18] found that the best T,
was the daily difference between maximum and minimum temperatures detected hourly.
Bondalapati et al. (2012) [19] developed nine FHB prediction models for barley using a
wide range of meteorological variables (average, minimum, and maximum T, together
with weighted time (in hours) when the RH was above 90%) around anthesis (+5 days)
in Canada. Three critical periods, approximately 7 days before and 10 days after heading
with three different regression equations incorporating PR, high RH, and warm T, (10 °C <
T, > 32 °C) including maximum temperatures, were distinguished in [20] in Ontario. In
their multiple regression model, Birr et al. (2019) [21] successfully applied meteorological
variables (average T, covariates, cumulative PR, and their interaction) and crop features
(mycotoxin concentrations) during wheat flowering in farmers’ fields in Germany between
2008 and 2017. There were many more complex models like the above-cited ones, such
as those established by Rossi et al. (2003) [22] in Italy. The authors adjusted the spore
dispersal to rainy (PR > 0.2 mm) and non-rainy (PR < 0.2 mm) days as the main influencing
factors. In addition, daily mean T,, PR intensity, and duration of hours with RH > 80%
were included in their regression model.

Regarding future climate scenarios, T, increases will probably be accompanied by
modifications in both the amounts and distribution of PR. The basin-type geographical
position of Hungary makes this country extremely vulnerable to changes in weather condi-
tions [23]. Using Zala County (Keszthely) as an example of changes, annual precipitation
declines of 0.2-0.7 mm were determined in the last century (1901-2000) using an autocorre-
lated Mann—Kendall trend test [24,25]. At the same time, an overall significant monotonic
increasing tendency of 0.4 °C/100 year in T, was detected [24]. The Hungarian Obser-
vational Network published similar trends for other places in the state on its webpage
(www.met.hu; accessed on 1 January 2023).

Because the abiotic factors of climate change are important drivers affecting host-pathogen
interactions [15], several studies were published on the topic outside Hungary [26,27]. Less
information is available for the five wheat cultivation regions of the Hungarian Univer-
sity of Agriculture and Life Sciences (MATE). Our objectives were to (i) identify weather
conditions associated with wheat yield and the likelihood of FHB appearance, (ii) adopt a
model of easily accessible meteorological elements for FHB forecasting that provides useful
information to mitigate yield loss risk, and (iii) analyze spatial and temporal variances in
wheat yield and FHB infection rates in five counties with varied growing seasons/regional
datasets. Due to its high weather dependency, FHB is an ideal disease for damage forecast-
ing. As FHB disease risk prediction has tended to be regional in nature [28], the included
five representative wheat production counties met the expectations for MATE’s wheat
research activity, although model performance may differ among the counties because
weather data and agronomic procedures are unique to each county. Nonetheless, the
model-estimated FHB risk based on easily detectable meteorological variables from the
official Hungarian station network in the counties was adopted in the assessing prediction
system in [6]. Demonstrated results in FHB projection models across the wheat production
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counties of MATE may strengthen the collaboration among the university researchers and
farmers of the studied regions to improve FHB protection strategies.

Among the interactions arising from global warming, the rising T, and atmospheric
CO; content and the modified PR patterns [29] will probably cause the wheat yield (and
quality) to be highly variable in the future and require further action.

2. Materials and Methods
2.1. Measured Variables: Weather and Crop Data

Associates from the MATE, NEBIH (National Food Chain Safety Office), and Hun-
garian Central Statistical Office contributed information about winter wheat production
and FHB epidemics in five counties belonging to the extension network of the University.
According to the observations of De Wolf et al. (2003) [30] from four US states (Ohio, North
Dakota, Missouri, and Kansas), variations in wheat varieties, agronomic procedures, and
estimated infection rates among the five counties resulted in no consistent quantitative scale
for the magnitude of FHB epidemics, although the growing seasons were classified with a
high epidemic (infection rate > 10%), moderate, or no disease rate. Fungicide treatments
were not considered in the study.

The daily meteorological variables of T, and PR for selected meteorological stations
(Heves: Eger, Pest: Stilysap, Somogy: Kaposvdr, Tolna: Iregszemcse, and Zala: Keszthely),
representative of five Hungarian counties (Heves, Pest, Somogy, Tolna, and Zala) covering
the winter wheat production area of the MATE (Hungarian University of Agriculture
and Life Sciences, Godolls), were supplied by the Hungarian Observational Network,
HungaroMet (Figure 1) from 2017 to 2021. Daily weather data from these 5 weather stations
for the entire wheat-growing period from October to June were summarized separately.
These data were the basis of weather and yield analysis. Separate periods were considered,
such as those in which the meteorological conditions were most likely to affect the FHB
infection (May—June). In May and June, hourly meteorological data of T, and RH were
used in the FHB prediction for the same synoptic weather stations closest to the wheat
cultivation areas from which the observed (daily) data for grain yield were also collected.
The stations were equipped with instantaneous T, and RH sensors detecting data 2 m
above ground level daily throughout the year. Daily PR amounts were collected 1 m above
the ground surface. Every climate station’s elevation was below 300 m and located less
than 2 km from the university’s wheat field. Each station was georeferenced and provided
a homogenized T,. Due to the county-based study regarding wheat yield and infection
rates, the measuring network was designed to capture county mesoscale rather than local
or microscale weather conditions.
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Figure 1. Five studied counties (Heves, Pest, Somogy, Tolna, and Zala in red) in the wheat production
regions of the MATE (Hungarian University of Agriculture and Life Sciences, G6d61l6) with five-
season mean yield classes ranging from 4.92 to 6.1 t ha~!. Meteorological stations are highlighted in
black. Schemes follow the same formatting.
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In classifying the weather during May and June, a £10% monthly PR sum deviation
and a £1 °C alteration in monthly mean T, were assumed from the five-season monthly
means (2017-2021) above and below (the five-season average PRs; and T,5;) for both in-
cluded meteorological variables, allowing the following weather classes to be distinguished:

Dry month (D): PR > P5; x 0.9;

Wet month (W): PR > P5s x 1.1;

Normal (N): P5; x 0.9 < PR < P35, x >1.1;
Warm month (H): T, > Ty5s + 1 °C;

Cool month (C): T, < Ty5 — 1 °C;

Normal (N): Ty5s —1°C < T, <Tpss +1°C.

The annual mean wheat yields and the cultivated winter wheat field sizes (Table 1)
for the period 2017-2021 were collected from the database of the Hungarian Central
Statistical Office [4]. The average yields mostly belonged to Hungarian-bred mega varieties.
Irrespective of the county, among others, the most frequently sown varieties were Mv Nador
(https:/ /martongenetics.com/en/termek/mv-nador-wheat/; accessed on 1 May 2024), Mv
Kolo (https://martongenetics.com/en/termek/mv-kolo-wheat; accessed on 1 May 2024),
Mv Nemere (https:/ /martongenetics.com/en/termek/mv-nemere-wheat/; accessed on
1 May 2024), and Mv Suba (https://martongenetics.com/en/termek/mv-suba-wheat/;
accessed on 1 May 2024). Bayer (Germany) variety Mulan was also popular during the
investigation time.

Table 1. Winter wheat grain yield and growing areas for five studied counties (Heves, Pest, Somogy,
Tolna, and Zala) in the MATE production area from 2017 to 2021.

County/Year Zala Heves Tolna Somogy Pest
Grain yield (kg ha™1)
2017 5500 5140 6510 5540 4960
2018 5130 4760 5880 5390 4770
2019 5790 5440 5920 5970 4740
2020 6410 4980 6190 6320 4580
2021 6320 5670 5980 6160 5570
Mean yield (kg/ha) 5830 5198 6096 5876 4924
SD +£542.44 +361.97 +260.44 +398.66 +385.53
CV (%) 9.30 6.96 4.24 6.78 7.83
Wheat-growing area (ha)
2017 28,030 43,380 50,693 58,672 53,993
2018 30,682 42,987 51,506 57,864 57,723
2019 29,556 44,172 49,163 55,078 57,286
2020 26,403 44,341 47,266 49,003 44,610
2021 24,862 35,580 47,072 53,267 41,013

Annual mean FHB severity values (infection rates in %) collected by the N EBIH [31]
were gathered from 30 sites in each county (5 counties x 30 sites = 150 samples seasonally)
between 2017 and 2021. The NEBIH worked under strict governmental regulation. The
disease data for all fields within a county near each of the 5 weather stations were averaged
annually to decrease the overall variability of the data. These data were recorded as the
percentage of grain affected by FHB after harvesting. The method of assessing the FHB
grain infection rates was published (in Hungarian) in Regulation 401 /2006 /EK based on
the EU directives (https:/ /eurlex.europa.eu/legalcontent/HU/TXT/PDFE/?uri=CELEX:
32006R0401&from=NL; accessed on 1 January 2023) and in the WHO Technical report
(2011) [32]. FHB severity data were collated from a minimum of 30 sample locations
throughout each county using the above NEBIH directives [31]. In this study, data collected
over harvest years 2017-2021 for five Hungarian counties (150 samples annually) were
used for model validation. Differences in wheat cultivars and crop cultivation among the
fields may have been present. Based on the five-season observations, no extremely high
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quantitative scales for the magnitude of FHB epidemics were detected. However, within
each county, a separation between growing seasons was observed. The preselected field
disease severity in both measured and modeled observations was 10% [30], with binary
codes of 1 (infection rate > 10%) and 0 (infection rate < 10%).

2.2. Modeling Probability of Wheat FHB Infection by De Wolf et al. (2003)

Two logistic weather-based regression models of De Wolf et al. (2003) [30] were
adopted for the probability estimation of FHB. The timeframe of the disease prediction
model was 30 days before and 30 days after anthesis (different from that of the orig-
inal publication). Most regression models use meteorological elements to detect FHB
epidemics/non-epidemics [33] for shorter periods within 5-14 days preceding and follow-
ing anthesis [18,34]. From several weather-based regression models reviewed by Matengu
et al. (2023) [28], highly variable timeframes, ranging from 120 days before to 14 days after
anthesis, were reported. However, Shah et al. (2019) [18] concluded that 5-day pre-anthesis
and 15-day post-anthesis durations for capturing weather associations with FHB disease
appeared to have too many predictors. Giroux et al. (2016) [35] highlighted the advantage
of the extended timeframe and established that models limited to pre-anthesis weather
variables might have a weak performance. The longer timeframe was, thus, used in the
study to distinguish epidemics/non-epidemics, since the five production counties likely
had slightly different anthesis dates and a broader range of cultivated varieties than was
used in this study. However, Bondalapati et al. (2012) [19] found that wheat variety was
not a significant factor when it was incorporated into their regression model.

Previous investigations indicated that the anthesis of winter wheat was at the begin-
ning of June in Hungary. Accordingly, hourly measured meteorological variables of T, and
RH were included in the estimation from 1 May to 30 June between 2017 and 2021.

In model 1, the inputs that correlated best with the infection were an hourly RH greater
than 90% and a T, interval between 15 and 30 °C. The best model fit was as follows:

P% = —3.3756 4 6.8128 x T,RH (1)

where P is the probability (from 0 to 1) of FHB infection above 10% and T,RH is the duration
of 15 °C < T, < 30 °C corresponding to the conditions RH > 90% in May and June (in the
original publication, this model was only used during pre-anthesis).

Model 2 was developed with an interaction INT3 term (between predictor variables to
detect which were most aligned with infection severity above 10%) for the study period:

P% = —3.3756 4+-10.5097 x INT3 (2)

where P is the probability of infection as a percentage and INT3 is the continuous number
of hours with 15 °C < T;; < 30 °C corresponding to the conditions RH > 90% during May
and June.

Before using the equations, the variables were scaled to the data used to develop
the original model of De Wolf et al. (2003) [30]. The conditions were counted using a
continuous hour counting algorithm corresponding to the wheat bloom in the past (1 June).
The probabilities P% were calculated in an Excel spreadsheet using the models. A P above
10% was used to determine the frequency of wheat epidemics for the given locations.

2.3. Statistics

The annual grain yield and infection rate data were analyzed using two-way mixed
ANOVA without replication. County was included in the model as a fixed factor, and year
was included in the model as a random factor. Since there was no replication, the interaction
term was excluded from the model. Pairwise comparisons were performed using the Tukey
test. All computations were conducted using SPSS 29.0 software. Wheat yield plots were
created using the ggplot2 3.5.1 package [36] in R 4.4 statistical software [37].
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Model performance was assessed by comparing the predicted FHB infection rates with
observed infection.

The root-mean-square error (RMSE) and mean absolute percentage error (MAPE) were
used to quantify the performance and transferability of the model to Hungarian data:

RMSE = \/izn(Me - M,)? (3)

where M, and M, are the estimated and observed infection rates.

_ 1 Mg*Mo
MAPE = 3 |

100% 4
el @

n

Residuals were visualized to assess their distributions and relationship with the
measured data. Pearson correlation coefficients between the residuals and estimated
infection rates were also calculated. If the models were valid for the data analyzed in this
paper, these correlations should be close to zero.

3. Results and Discussion
3.1. Seasonal Weather Conditions between 2017 and 2021

The five-season mean T, of the studied regions (Table 2) showed moderate variation,
ranging from 8.3 £ 0.8 °C (Heves) t0 9.2 £ 0.6 °C (Somogy). The seasonal average T, values
for the southern sites were approximately a half degree higher than the T, values for the
northern counties.

Table 2. Monthly mean air temperatures, T, °C, and monthly precipitation sums, PR mm, with their
five-season means + SD in five Hungarian counties during the winter wheat-growing periods (from
October to June) between 2017 and 2021.

Mean Air Temperatures, Tz (°C)

Zala County October November December January February March April  May June
2016/2017 9.8 5.1 —-0.4 —4.6 2.9 9.3 10.8 16.6 21.2
2017/2018 10.8 5.6 2.7 34 -0.3 3.7 15.3 18.9 20.5
2018/2019 12.8 7.3 1.8 0.3 3.7 8.4 12 13 22.8
2019/2020 12.6 9 4.3 0.6 6.6 7.2 11.8 14.4 19.2
2020/2021 115 5.8 3.3 2.1 2.8 5.9 9.1 14 22.1

Five-season mean T, &+ SD 8.8+ 0.6

Tolna County
2016/2017 94 5 —-0.5 —-52 3.1 9.5 10.8 16.6 21.5
2017/2018 115 5.9 3.3 3.7 —-0.1 35 15.8 19.3 20.6
2018/2019 13 6.7 14 -0.2 3.9 8.7 12 13 22.5
2019/2020 12.3 8.2 3.6 -0.5 59 6.7 12 14.5 19.5
2020/2021 11.7 54 3.1 2 3.2 5.7 8.8 139 22.1

Five-season mean T, + SD 8.7 £ 0.6
Heves County
2016/2017 9 4.7 -19 —6.1 1.9 9 10.4 16.3 21
2017/2018 109 5.3 1.5 22 —04 3.1 16 19.3 20.4
2018/2019 13.3 7.3 0.2 —-14 3.6 8.6 13 13.9 229
2019/2020 13 9.2 24 —-14 4.8 7 12.1 14 19.6
2020/2021 114 4.2 34 04 1.7 5.2 8.3 14 22.1
Five-season mean T, + SD 8.3+0.8

Pest County
2016/2017 9.3 4.6 -0.7 -6 1.9 9.1 10.5 16.6 21.7
2017/2018 11.6 5.5 2.1 2 —-05 2.9 16 194 20.6
2018/2019 13.7 6.7 0.5 -1 3.9 8.9 12.7 139 23.0
2019/2020 13.2 8.3 2.7 -1 5.2 7 12.3 145 19.8
2020/2021 11.6 49 3.1 1.2 2.3 59 8.7 13.9 22.6

Five-season mean T, = SD 8.6 0.7
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Somogy County
2016/2017 9.9 6.1 —-0.6 -5 4.3 9.4 109 16.7 22.1
2017/2018 11.2 6.5 3.8 4.6 0.2 44 15.7 19 20.7
2018/2019 12.8 6.9 2 0.6 4.2 9 12 134 22.8
2019/2020 12.9 8.8 4.5 0.1 7 7.3 119 14.8 20.0
2020/2021 12.7 6 4 2.8 4.1 6.1 9.3 144 221
Five-season mean T, + SD 9.24+0.6
Precipitation, PR (mm)

Zala County October November December January February March April  May June
2016/2017 97.8 50.9 4 25.8 44.6 15.3 20.9 38.8 61.1
2017/2018 66 61.8 72.1 129 53.4 95.2 134 68.1 101.2
2018/2019 234 42.8 11.3 28.2 17.2 12.8 28.7 128.8 50.4
2019/2020 25.2 118.6 90.5 13.2 30.8 18.6 27.2 32.7 93
2020/2021 102.3 11.5 63.7 22.6 19 8.5 27.5 92.5 3

Five-season PR mean =+ SD 409.5 £+ 86.7
Tolna County
2016/2017 63 40.1 0.7 17.6 45.2 16.7 39.7 48 86.8
2017/2018 77.5 47.1 58.3 13.6 58.3 101.2 104 21.3 118.6
2018/2019 11.1 349 15.2 229 18.6 129 45.6 127.9 49.1
2019/2020 28 91 73.7 20.6 36.3 38.3 15 34.1 108.6
2020/2021 84.7 7.1 41.5 16.7 29.7 12.6 32 91.1 14
Five-season PR mean =+ SD 3955 +77.2
Heves County
2016/2017 66.3 48.7 0.4 32.8 31.8 9.6 76.2 79.9 117.5
2017/2018 46.2 43.8 44.8 18.2 53.9 51.8 32.8 43.8 86.6
2018/2019 30 45.5 36.8 18.4 7.1 53 40.8 112.3 131.5
2019/2020 15.8 103.2 48.5 15.7 28.1 34.3 7.6 19.1 151.0
2020/2021 146.2 29.2 425 40.1 52.5 6.8 56.3 78 214
Five-season PR mean + SD 4418 +£24.3

Pest County
2016/2017 58.7 45.3 2.2 30.1 339 33.3 66.9 70.5 39.5
2017/2018 72.6 47.6 37.3 21.6 66.9 68.9 16.1 27.9 121.9
2018/2019 14 53.4 26.7 21 7.2 7.4 309 192.3 334
2019/2020 8.1 78.6 54.6 14.7 28.2 36.5 5.7 16.4 144.2
2020/2021 102.2 21.1 37.1 15.1 35.3 6.7 32.3 74.8 22.2

Five-season PR mean =+ SD 396.3 + 50.1
Somogy County
2016/2017 63.2 63.6 0.6 18.7 54.6 18.4 34.6 78.5 68.6
2017/2018 81.7 56.5 81.2 29.8 68.9 121.6 15.5 69.1 125.6
2018/2019 15.6 36.3 12.4 27.1 14.3 18.2 62.7 130.5 74.1
2019/2020 24.2 106.7 62.7 17.1 31.5 22.2 19.9 39.2 52.8
2020/2021 106.2 6.4 49.3 29.9 31.5 124 32.8 74.4 14.2
Five-season PR mean + SD 435.1 +121.2

Highly variable and irregular five-season mean PR events from 395.5 &= 77.2 mm (Tolna)
to 441.8 £ 24.3 mm (Heves) were characteristic of the investigated area (Table 2). High
5D data in five-season means, sometimes exceeding 100 mm (Somogy: 435.1 £ 121.2 mm),
confirmed the strong interannual PR variability. Monthly mean PR sums, ranging from
0.4 mm (Heves: December 2016) to 144.2 mm (Pest: June 2020), had even greater variability
compared to seasonal PR totals. It is important to note that, in several seasons and locations,
extremely high monthly PR totals in late June (from 18% to 37% of the seasonal P sums)
might not be totally utilized in wheat yield (Zala: 2018; Tolna: 2018 and 2020; Heves: 2017,
2019, and 2021; Pest: 2018 and 2020; Somogy: 2018). Moreover, abundant water in June
may favor FHB outbreaks in the wheat crop.

3.2. Wheat Yield in the Studied Seasons

Across all sites, the five-year wheat yields averaged 5.59 t ha~! and ranged from
4.92 tha=! in Pest to 6.1 t ha~! in Tolna County.



Agriculture 2024, 14, 1093

8 of 18

The main effect of the county was significant in the case of yield (p < 0.001). The
yields in the northern counties of Heves and Pest were significantly lower (p < 0.05) than
those in the three southern regions (Figure 2). According to the results, the most and least
productive provinces were Tolna and Pest, respectively. Across all provinces and seasons,
geographical position played a crucial role in yield determination. Proceeding from north
(Heves) to south (Tolna), the five-year average yield decline was 15.9% (p = 0.002). At the
same time, no significant differences were observed between the two northern (Heves
and Pest, p = 0.678) and three southern (Zala and Somogy, p = 0.999; Zala and Tolna,
p = 0.700; Somogy and Tolna, p = 0.82) provinces. Given that most climate variables are not
consistently significant in wheat yield globally [38], their incorporation in climate-wheat
production analysis needed to be regionally focused, as it was in the analysis.

7000

6000 — —.]

5000 E ; - =
A A

4000
3000
2000

1000

Heves Pest Somogy Tolna Zala

Figure 2. Comparison of winter wheat grain yield in five counties (Hungary) between 2017 and 2021.
Boxplot presents the range, the median, and the inter-quantile range.

The highest differences were observed during the 2020 season, probably due to the
extremely dry April and May weather (monthly PR totals in the north and south provinces
were between 5.7 and 19.1 mm and 15.0 and 39.2 mm, respectively). Asseng et al. (2019) [39]
reported that wheat yields are expected to be lower and more variable in most low-water-
income regions. As the five-season PR sums were approximately 400 mm for the entire
study region, the PR provided enough water for rainfed wheat during most years, although
the seasonal distribution of PR might negatively impact the wheat growth and development
in Hungary.

Across all growing seasons, the variation coefficient CV indicated that the yield
stability (CV of 9.3%) was the lowest in Zala County (with lower grain yield), while the
smallest yield variation of CV = 4.27% was observed in Tolna with respect to the highest
grain yield.

Except for in Pest, the lowest yields, ranging from 4.76 t ha~! (Heves) to 5.88 tha™!
(Tolna), were observed during the cool and wet 2018 season. Asseng et al. (2015) [39]
reported that higher annual T, accelerated crop development, shortened the grain filling
period, and limited the duration of the grain growth period and the amount of wheat
yield. In contrast, 1-2 °C warming in the North China Plain increased the leaf area and
chlorophyll content, resulting in higher biomass and grain yield [40].

Variations in the temporal distribution of maximum yields (2017: Tolna—6.51 t ha™!,
2020: Zala—6.41 t ha~!, Somogy—6.32 t ha!, 2021: Heves—5.67 t ha—!, Pest—5.57 t ha 1)
indicated differences among locations; in the two northern counties, the maximum yield
was measured in 2021, while in two out of the three southern counties, it appeared during



Agriculture 2024, 14, 1093

9of 18

2020. In agreement with the yield changes reported by Bai et al. (2022) [41], the annual
distribution in PR among the years could also partially mitigate the annual variations
in wheat.

Among the climate variables, the annual mean T, and P sum were found to determine
wheat growth, resulting in different performances with regard to crop yield [42]. Four
out of the five seasons had the maximum yield during cooler growing seasons; June was
characterized by a below-long-term average monthly T,. Lobell and Burke (2010) [43]
concluded that annual T, was the key factor regulating crop growth and development.
Under climate change, mainly in central Europe, the T, during wheat flowering is of
primary importance, as crops must exhibit tolerance to increased T, by extending the grain
filling period [44,45]. Similar to our findings, a significant negative correlation (—0.26,
p <0.001; [42]) was found between annual T, and yield of winter wheat [46], although,
contrary to most previous investigations, instead of annual mean T, seasonal and monthly
mean T, values were used in this yield analysis. According to the study, increased T,
might accelerate wheat root senescence, limiting soil water uptake and decreasing the
number of spikes and kernel number per spike, resulting in reduced wheat yield [47].
In addition, warmer winter T, was significant for wheat production (Figure 3), with
consistently greater yield. The box plots for county winter T, values in Figure 3 depict the
warmer winters in the southern counties (Somogy, Zala, and Tolna), with higher median
values and wider intervals between their first and third quartiles. Increases of 1 to 2 °C
in the average winter T, in the southern provinces increased the five-season mean yield
by 15.9% (p < 0.005) compared to those for Heves and Pest. However, in regions close to
our altitude (China—latitude: 38—40°, longitude: 114-120°), a 5-6 °C annual T, increment
caused heat stress in wheat, significantly reducing grain yield [48].

il
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Average air temperature (°C)
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Figure 3. Five-season average air temperatures from December to February between 2017 and 2021.

Notably, influences on wheat yield were observed to fluctuate with different manage-
ment practices, crop features, and growing (environmental) conditions in previous studies
(see a summary in Hasheminasab et al. (2023) [49]), although a comprehensive overview is
required to understand their contribution to wheat grain yield.

3.3. Measured Infection Rates (P%) in the Counties between 2017 and 2021

The yearly mean Fusarium head blight (FHB) infection rates in the counties exhibited
a strong variation, ranging from 2.5% (Heves in 2017) to 30.2% (Zala in 2018).

The main effect of county on the infection rate was significant (p < 0.001). Averaged
over five years, the infection rates of the counties ranged from 3.9% (Heves) to 21.7%
(Zala), with an overall average of 11.3%. In accordance with the smallest yields, the lowest
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five-season average FHB infections of 3.9% and 6.0% were obtained in the northern counties
of Heves and Pest, respectively (Figure 4).
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Figure 4. Comparison of measured Fusarium head blight infection rates (P%) in the winter wheat
of five Hungarian counties during vegetation seasons between 2017 and 2021. Boxplot presents the
range, the median, and the inter-quantile range.

During this study, Zala had the most serious five-season average FHB disease rate
(21.7%), with strong inter-annual variability within (SD: 38.6%) and across the samples
(highest standard error: 3.7). The reason for this might have been the special topological
features of Zala County (largest forest cover among all Hungarian counties, the total water
catchment area of the Zala River feeding Lake Balaton is found here, and most of the
Kis-Balaton wetland and other marsh areas are located here), which might create a special
microclimate in Zala compared to the other counties. Special microclimates with decreased
global radiation, cooler T,, and increased humidity are forest characteristics that might also
impact FHB initiation. In Zala, the number of smallholder farmers (with a capital shortage)
is also high, causing diversity in winter wheat cultivation. The correlations with winter
wheat yield affected by FHB were —0.5 (p < 0.001) and 0.31 (p < 0.05) for sunshine hours and
monthly PR sums, respectively (Sang et al., 2019). The higher forest cover suggested that
lower solar radiation, declined T,, and only the same amount of P could create more humid
weather conditions in Zala than the microclimates in other regions. Belizan et al. (2019) [50]
confirmed that high humidity could promote pathogen (FHB) growth. Increased humidity
strongly induced pathogen spore release, while T, and solar radiation acted as stability
factors [51]. Across all seasons, significant infection rate decreases ranged from 42.5%
(p = 0.02) in Tolna to 138.4% (p < 0.001) in Heves, related to Zala. Based on the five-season
mean T, of 8.3 °C in Heves, the coolest weather of this site was associated with the lowest
and least variable infection rate of 3.9 & 26.4%, with a standard error = 0.47. The preference
for the lowest T, of Heves in the release and ascospore survival [52] was not confirmed in
this study. No significant differences were observed in five-season mean infection rates
between Heves and Pest (p = 0.867), Pest and Somogy (p = 0.439), and Somogy and Tolna
(p=0.311).

The inter-seasonal variability of mean meteorological variables was not exceptionally
high across all locations (maximum differences in five-season mean T,: <1 °C; average
seasonal P sums: <50 mm), although an irregular intra-annual PR distribution was charac-
teristic of the study location (Carpathian basin). To analyze the effect of the causal agents
(T4 and PR) on infection rates, May and June were selected (Table 3) because FHB infection
usually occurs in these months [53]. Previous studies, however, have demonstrated that
the influence of different T, values in FHB epidemics is very complex, whether occurring
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during the pathogen’s development or the infection stage [54]. David et al. (2016) [51]
identified high PR with low solar radiation as effective predictors of Fusarium graminearum
ascospore release in wheat, although they found that PR (and soil temperature) was not
consistent in their two observation years in Kentland Farm (Blacksburg, VA, USA).

Table 3. Infection rates (%) in the growing seasons and weather classes in May and June for the
studied counties related to Fusarium outbreaks. Growing seasons with outbreaks above 10% and
infection rates are in bold. Abbreviations are as follows: H, A, N, and Ps; are wet (P > Ps5;), dry
(P < Pss), normal (P = Ps;,), and five-season monthly mean precipitation totals; while W, C, N, and
T,5 indicate warm (T, > T5,), cool (T, < Ts,), normal (T, = T;55), and five-season monthly average
air temperatures. See also the details in Material and Methods. Five counties were included in the
observation (Zala, Heves, Tolna, Somogy, and Pest).

Zala county

Season Infection rate% T, °C P mm Weather classes
May June May June May June
2017 12.8 w W= A* A* Warm-dry Warm—dry
2018 30.2 W W H H* Warm-wet Warm-wet
2019 25.7 Cc* W* H* A* Cool-wet Warm—dry
2020 27.2 c* C A H* Cool-dry Cool-wet
2021 12.6 Cc* W * H* A* Cool-wet Warm—dry
Heves county
Season Infection rate% T, °C P mm Weather classes
May June May June May June
2017 2.5 W N H* H* Warm-wet Normal-wet
2018 5.3 W C Ax A Warm-dry Cool-dry
2019 44 c* Ww* H* H* Cool-wet Warm-wet
2020 4.0 c* C A* H* Cool-dry Cool-wet
2021 35 c* W H* A* Cool-wet Warm—dry
Tolna county
Season Infection rate% T, °C P mm Weather classes
May June May June May June
2017 9.0 W w A* H* Warm-dry Warm-wet
2018 13.7 W C A* H* Warm-dry Cool-wet
2019 20.6 Cc* W * H* A* Cool-wet Warm—dry
2020 15.5 c* Cc* Ax H* Cool-dry Cool-wet
2021 11.7 C % H* A¥ Cool-wet Warm—dry
Somogy county
Season Infection rate% T, °C P mm Weather classes
May June May June May June
2017 5.1 W w N H Warm-norm Warm-wet
2018 13.1 W* W* A H* Warm-dry Warm-wet
2019 16.4 c* Ww* H* H Cool-wet Warm-wet
2020 9.4 Cc* c* A* A* Cool-dry Cool-dry
2021 4.8 c* C A A* Cool-dry Cool-dry
Pest county
Season Infection rate% T, °C P mm Weather classes
May June May June May June
2017 2.6 w N A* A* Warm-dry Norm-dry
2018 10.4 W C A* H* Warm-dry Cool-wet
2019 55 Cc* W* H* A* Cool-wet Warm-dry
2020 8.1 c* Cc* Ax H* Cool-dry Cool-wet
2021 3.6 Cc* W * A A* Cool-dry Warm—dry

* Change in monthly mean of meteorological variables exceeded £10% (PR) and £1 °C (T,).



Agriculture 2024, 14, 1093

12 of 18

The measured five-season average infection rates of the counties ranged from 3.9% in
Heves to 21.7% in Zala. The meteorological elements of PR and T, together may significantly
contribute to FHB outbreaks in wheat. Shah et al. (2019) [18] revealed that the single T,
variable cannot be used as an indicator to estimate FHB outbreaks. Moreover, the combined
interactive effect of the two meteorological variables T, and PR on wheat FHB epidemics
can vary significantly from the results obtained from examining T, alone [14]. This is why
the monthly mean T, and PR sums accounted for weather class formation around the
critical period of FHB infections (May and June) (Table 3). Out of the five counties included,
the highest measured FHB outbreaks were enhanced in three counties in 2018 (Zala, Pest,
and Heves) and two in 2019 (Tolna and Somogy). These high FHB outbreaks coincided with
warm and wet weather during critical periods in Zala (2018) and Somogy (2019). Except for
in Heves, cool/dry weather in at least one out of the two months of May and June reduced
FHB disease development during 2017. The magnitude and direction of the FHB risk varied
across the wheat-growing counties, in agreement with the review results of Vaughan et al.
(2016) [15] for multiple worldwide locations.

3.4. Assessment of FHB

The differences in epidemic pressure detected in the five studied sites might also be
impacted by disparities in their weather. Complex ecological adaptations within Fusarium
species have encouraged widespread epidemic distribution under different environmental
conditions worldwide [33]. In forecasting FHB incidence in wheat, it is necessary to have
an easily accessible and limited number of meteorological variables as model inputs. T,
and PR are the most frequently applied meteorological elements for this role. Summed
results in previous investigations on FHB infections and meteorological elements were
obtained by Shah et al. (2013) [55], who collected 380 weather-based predictors from the
variables of air humidity (vapor pressure deficit, dewpoint depression, RH), T, PR, and
pairwise interactions between T, and RH or between RH and P. The timeframes of the above
measurements ranged from hourly to daily meteorological data with different longevity
rates in the pre- or post-anthesis period from 5 to 15 days. However, the timeframe for
FHB probability projections based on meteorological data varied from 120 days before to
14 days after anthesis [28].

Across this study, eight of fifty months (May and June) were characterized by warm—
wet monthly weather, among which only six months experienced FHB infections (Table 3).
At the same time, the number of months with annual measured FHB outbreaks above
10% infection rates (bold numbers in Table 3) was doubled (12). Similarly, Turkington
et al. (2016) [560] reported the existence of a pathogen—environment relationship in winter
wheat FHB at nine sites across western Canada, totaling 26 environments over three
growing seasons. Paul et al. (2007) [57] concluded that the earlier effect of T, related to
pathogen inoculum production may limit epidemics in the wet UK but not in continental
Europe, where Hungary is located. According to previous observations [28, 30], to bridge
the gap in analyzing the weather impacts on wheat FHB disease, more detailed (hourly)
meteorological data are needed.

Each of the two models adopted from De Wolf et al. (2003) [30] was capable of
estimating FHB epidemics. The seasonal mean P rates in model 1 ranged from 0.3% in Pest
(2017) to 21.0% in Somogy (2019), while the model 2 projected P rates ranged from 0.4% in
Heves (2019) to 27.8% in Zala (2019).

The number of days with FHB infection varied across the wheat-growing regions and
seasons. Irrespective of the model, the most days with FHB infection (p > 10%; 34 out of 60),
probably induced by heavy rains, were observed in Zala during 2018. In the same season,
out of 60 days in May-June, the number of infected days ranged from 4 (Somogy, model
2) to 23 (Tolna, model 1). With the exception of Zala, over the warm and moderately dry
season of 2021, infected days were limited to a few (2—4) or 0 days (in Somogy) (Figure 5).
The five-season average number of infected days (model 1: 4 days; model 2: 1 day) was the
lowest in Somogy across the study.
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Figure 5. Daily infection probabilities p < 10% in the two models (De Wolf et al., 2003, [1]) for five

Hungarian counties in May and June (2017-2021).

Comparing seasonal mean model performances with measured infection rates, model
1 produced closer results in Heves, Somogy, and Pest, while model 2 better estimated
the infection rates in Zala and Tolna across the study period. The mean number of daily
probability values above 10% is a good indicator of the FHB infection level (Figure 5).
Regardless of the model, there was insufficient disease pressure, creating a high number
of epidemic days with FHB > 10% in most of the counties during 2021 (a cool May across
Hungary). This remained the case in the northern regions during 2017. Both models
displayed a high number of infected days in 2018 and 2019.

The seasonal P rates of the models were close to those of the seasonal measured ones,
ranging from 2.5% to 30.2% for the investigation period. The model 1 and 2 epidemic
performances were compared with the measured infection P rates using the difference in
predicted against measured P rates from the 1:1 line through the origin (Figure 6). Based on
the circle positions, the two model prediction accuracies differed. In model 1, more circles
positioned above the 1:1 line represented an underestimation of infection rates compared
to the measured data. More circles below the 1:1 line suggested an overestimation of FHB
infections in model 2. The prediction accuracy of model 2, which measured T, and RH with
variable interactions, was higher than that of model 1, which used the interaction term.
The values of projected infection rates were, on average, 70.4% and 93.2% of the measured
epidemic for models 1 and 2, respectively.

The highest differences between the measured and projected infection rates occurred
in Zala (model 1) and Heves (model 2). The comparison of the seasonal mean measured
with projected infection rates indicated that the errors were mostly false negatives in Tolna
and Heves. False positive errors dominated the remaining three counties, with only a
few exceptions in each county. Out of twenty-five model outputs, there were six (from
model 1) and two (from model 2) in which the deviation slightly exceeded 10%. During the
warm and dry season of 2021, with the exception of Zala, the projection errors were false
negatives. In the remaining four study seasons, the differences in measured and projected
data were variable (signs).
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Figure 6. Comparison of seasonal mean measured annual infection rates, Me%, and the simulated
counterparts, Mo%, for (a) model 1 and (b) model 2 by De Wolf et al. (2003) [1]. Solid line is the
1:1 line.

Model 2 outperformed model 1, as confirmed by the RMSE and MAE values
(RMSE1 = 6.45; RMSE2 = 5.58; MAE1 = 4.99; MAE2 = 4.61). Model 2 was particularly
outstanding in estimating a high infection rate (Figure 7).
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Figure 7. Correlation between residuals and measured data.
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The Pearson correlations between residuals and estimated data were small and non-
significant (model 1: R = —0.16; p = 0.44, model 2: R = —0.33; p = 0.10). This confirms
the applicability of the models in the region examined. It is striking that both models
overestimate low infection rates and underestimate high ones (Figure 7). This suggests that
reformulating the models in nonlinear forms may improve their accuracy.

Across all counties, the seasonal mean FHB infection rates (x) did not exhibit a
significant decrease in wheat yield (y) (y = —13.762x + 5730.1, R? = 0.0473, p = 0.296,
RMSE = 581.56; figure not shown), although the negative slope of regression suggested a
13.76 kg ha~! decline in the average yield for one % increase in the seasonal mean FHB
infection rate. Earlier studies also revealed that it was not so much the yield as the qual-
ity that may be impacted during FHB infection due to the disease’s polycyclic nature in
wheat [58,59].

4. Conclusions

In northern counties with a slightly cooler seasonal mean T, and intensely cold winters,
a five-season average loss of 0.87 t ha~! in wheat yield was observed compared to provinces
in southern counties. The warm winters in 2020 and 2021 were the most favorable for
wheat production in the south and north. The ranking of the counties” FHB infection rates
(Zala > Tolna > Somogy > Pest > Heves) was consistent across the investigation period. The
lowest infection rates occurred during the coolest seasons, regardless of province. Hourly
weather variables (combination of T, 15 < T, < 30 °C and RH > 90%) (model 1) and the
use of the special interaction term (model 2) for the entire pre- and post-anthesis period
accounted for 70.4% and 93.2% of the overall variance in models 1 and 2, respectively. The
weather-based projection of FHB probability benefited from both regression models with
varying accuracy. Of the model outputs, there were six false negative projections in model
1 and two in model 2. The best model performances were observed in Pest and Somogy
(the differences in the measured and projected seasonal mean infection P rates were below
+10%). In three out of the five counties, the differences in the measured and calculated
seasonal mean P rates exceeded 10% only a couple of times.

This work was limited to five wheat-growing seasons only, without representing all
possible weather conditions. Further extended investigations are necessary to build and
validate new models contributing long-term meteorological and crop datasets.
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