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Abstract: Agriculture is important for ecology. The early detection and treatment of agricultural
crop diseases are meaningful and challenging tasks in agriculture. Currently, the identification of
plant diseases relies on manual detection, which has the disadvantages of long operation time and
low efficiency, ultimately impacting the crop yield and quality. To overcome these disadvantages, we
propose a new object detection method named “Plant Leaf Detection transformer with Improved
deNoising anchOr boxes (PL-DINO)”. This method incorporates a Convolutional Block Attention
Module (CBAM) into the ResNet50 backbone network. With the assistance of the CBAM block, the
representative features can be effectively extracted from leaf images. Next, an EQualization Loss (EQL)
is employed to address the problem of class imbalance in the relevant datasets. The proposed PL-
DINO is evaluated using the publicly available PlantDoc dataset. Experimental results demonstrate
the superiority of PL-DINO over the related advanced approaches. Specifically, PL-DINO achieves a
mean average precision of 70.3%, surpassing conventional object detection algorithms such as Faster
R-CNN and YOLOv7 for leaf disease detection in natural environments. In brief, PL-DINO offers a
practical technology for smart agriculture and ecological monitoring.

Keywords: leaf disease detection; PL-DINO; convolutional block attention module; equalization loss;
crop

1. Introduction

In natural environments, crops such as tomatoes, potatoes, and rice are vulnerable
to various diseases. Disease detection and prevention play a crucial role in minimizing
economic loss and continuously enhancing crop yield and quality [1–3]. Traditionally, the
identification of crop diseases is heavily reliant on manual detection and expert experiences.
However, this paradigm has drawbacks such as subjectivity, low accuracy, inefficiency, and
high cost [4].

With the technological revolution in artificial intelligence, the use of intelligent technol-
ogy in agriculture has garnered increasing attention [5]. Many image classification methods
have been proposed and implemented in agricultural practice, such as crop monitoring,
pest and disease detection, and robotic operation. As plant leaves straightforwardly reflect
plant species, growth status, and health conditions, detecting and identifying plant leaves
hold significant value for plant science research, crop management, and the control of pests
and diseases [6–8].

In agriculture, the procedures for plant leaf disease detection include extracting fea-
tures from images and learning the classifier for disease detection. The related methods
can further be categorized into the following: (1) two-stage algorithms, such as Faster
Region-based Convolutional Neural Network (Faster R-CNN) [9] and Cascade R-CNN [10];
(2) one-stage algorithms, such as You Only Look Once version 5 (YOLOv5) [11] and Single
Shot multibox Detector (SSD) [12]. Generally, two-stage detection algorithms employ a
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Region Proposal Network to generate candidate regions. One-stage detection algorithms
transform the detection tasks into end-to-end regression tasks. One-stage algorithms have
simple structures and, thus, take relatively small inference time. By contrast, two-stage
algorithms have large parameter amounts and computational overheads, but they can
usually obtain higher accuracy than one-stage algorithms [13].

In recent years, deep learning models have been widely used to detect plant leaf
diseases. Jiang et al. [14] constructed an apple leaf disease dataset and developed a real-
time SSD that contains a module of rainbow concatenation to enhance the performance
of small object recognition. Liu et al. [15] presented an image pyramid to enhance the
performance of a tomato disease detection scheme based on YOLOv3. Li et al. [16] im-
proved the YOLOv5 algorithm, incorporating the modules Cross Stage Partial Network,
Feature Pyramid Network, and Non-Maximum Suppression for vegetable disease detection.
These methods are efficient and lightweight for plant disease detection at the sacrifice of
efficacy. Qi et al. [17] constructed a SE-YOLOv5 network to learn the features for tomato
virus disease detection in natural backgrounds. Zhu et al. [18] designed YOLOv5-based
Apple-Net, which adds the coordinate attention module after creating a cross stage partial
structure to strengthen feature competence and uses the feature enhancement module
in the network neck to further improve the capability of learned features. These works
rely on the attention mechanism to enhance the learned feature discriminability, but they
are incompetent for very complex leaf disease images. Zhang et al. [19] devised a Faster
R-CNN algorithm with multi-feature fusion that can identify leaf occlusions for soybean
leaf disease detection. Wang et al. [20] conceived a Faster R-CNN technique to reduce
the missing and incorrect detection results of densely distributed sweet potato leaves.
Zhou et al. [21] integrated Faster R-CNN with K-Means clustering to overcome the im-
pact of image noise interference on rice disease detection. Zhang et al. [22] developed a
rice spike detection Faster R-CNN with four optimization strategies to identify multiple
developmental stages of rice spikes. Pan et al. [23] applied Faster R-CNN to accurately
locate strawberry leaf scorch disease whilst depressing the noisy interference of a com-
plex background. These efforts focus on addressing problems such as leaf occlusion and
noise interference but neglect the impact of data distribution on classification. Nowadays,
transformer-based detectors have gained increasing attention due to their remarkable detec-
tion performances in various tasks. Among them, DEtection TRansformer (DETR) and its
variant algorithms have achieved inspiring performances for different object detection tasks.
Zhang et al. [24] improved DETR by fusing multi-scale features to cope with the problems of
leaf overlap, multiple disease types, and complex backgrounds for paddy disease detection.
Dananjayan et al. [25] utilized Deformable DETR with ResNet50 to deal with similar
problems in citrus leaf disease detection.

It is challenging to classify visual data with a long-tailed distribution. Generally, long-
tailed class imbalance easily causes the classification model to overemphasize the head classes
with a large amount of data in training, whilst overlooking the tail classes with a limited sample
size. Existing methods to address this problem can mainly be categorized into three types:
class re-balancing, information augmentation, and module enhancement [26]. Among these
methods, class re-balancing is the most capable and practical [26]. Class re-balancing methods
can further be divided into re-sampling and re-weighting.

Re-sampling models aim to balance the probabilities of selected classes by means
of random over-sampling or under-sampling. Kang et al. [27] put forward a decoupled
learning network by applying four sampling strategies and four types of classifiers. This
network decouples representation and classification for handling the imbalanced classifica-
tion problem of long-tailed data. Zhou et al. [28] brought forward a unified Bilateral Branch
Network, which jointly performs feature learning and classifier learning, to learn universal
patterns from original data distributions and simultaneously attribute importance to the
tail data in an adaptive manner. However, the performance of re-sampling models on head
classes may degrade due to under-sampling. On the other hand, these model may overfit
the tail classes due to over-sampling as well.



Agriculture 2024, 14, 691 3 of 14

Re-weighting balances the classes by assigning suitable weights to different classes.
Lin et al. [29] utilized focal loss, which increases the weights of hard-to-classify samples, to
handle the problem of foreground–background class imbalance. Nevertheless, focal loss
seems incompetent in addressing the imbalance among foreground classes in long-tailed
scenarios [30]. Cui et al. [31] presented a framework with class-balanced loss, which intro-
duces a weighting factor that is inversely proportional to the effective number of samples per
class. However, this method fails to effectively use the distribution information of sample
data. Cao et al. [32] introduced a Label-Distribution-Aware Margin (LDAM) loss, which rec-
ommends a larger margin for the minority classes than the majority ones, to improve method
generalization performance. However, this method requires the combination of LADM loss
and a deferred re-balancing training procedure, which largely increases the inference cost.

While past research has made some progress, detecting plant leaf diseases in complex
agricultural environments still remains challenging. First, images captured in real-world
scenarios usually contain complicated foreground variations and noisy background clutter,
which bring great difficulties for feature extraction. Second, different categories of plant
leaf diseases are highly similar. Third, plant leaves with different disease classes frequently
suffer from the severe problem of class imbalance. These problems are entangled with each
other, forming a bottleneck for the issue of plant leaf disease detection. Nevertheless, nearly
no studies have handled this bottleneck adequately in the literature.

To fill this research gap, we propose a novel transformer-based model named “Plant
Leaf Detection transformer with Improved deNoising anchOr boxes (PL-DINO)”. PL-DINO
introduces a Convolutional Block Attention Module (CBAM) into the backbone network of
DINO to learn the channel-wise and global image features. In addition, PL-DINO adopts a
re-weighting loss function to balance the weights of different classes in classification. The
main contributions of this work are summarized as follows.

(1) We design a new leaf disease detection method, PL-DINO, based on the attention
mechanism. By using the CBAM, PL-DINO can efficiently exploit both channel-wise and
spatial features that discriminate leaf diseases.

(2) In PL-DINO, we take advantage of the loss function EQualization Loss (EQL) based
on re-weighting to address the problem of imbalanced classification. EQL can mitigate the
severe suppression of head category samples on the tail category ones in training, thereby
effectively resolving the long-tailed distribution problem.

(3) The proposed PL-DINO is evaluated using the public benchmark dataset PlantDoc.
The experimental results demonstrate the superiority of our method over the related state-of-
the-art approaches for leaf disease detection in the complex scenarios of natural environments.

2. Materials and Methods
2.1. Datasets

The PlantDoc dataset [33] is broadly used for visual plant leaf disease detection. This
dataset contains 2598 images of 13 plant species belonging to 27 classes: 10 healthy classes
and 17 disease classes. The images are taken in the natural environments, suffering from
complex foreground variations, noisy background clutters, and severe class imbalance.
In PlantDoc, the training set contains 2120 images, and each testing and validation set
contains 239 images. The dataset statistics are supplied in Figure 1. Additionally, Figure 2
shows some leaf image examples from the PlantDoc dataset.

The Microsoft Common Objects in Context (MS COCO) dataset [34] is a widely used
benchmark dataset for object detection. MS COCO contains 328,000 images from 82 com-
mon object classes in the scenes of daily life, such as people, animals, vehicles, plants, and
electronic devices.
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Figure 1. Statistics of PlantDoc dataset.

(a) Apple Scab Leaf (b) Tomato Septoria Leaf Spot

(c) Corn Leaf Blight (d) Potato Leaf Late Blight

Figure 2. Leaf image examples from PlantDoc dataset.

2.2. DETR with Improved De-Noising Anchor Boxes

DETR is an end-to-end object detection model based on a transformer [35]. More
specifically, DETR converts the object detection problem into a prediction task [36].

For object detection models like DETR, the backbone typically refers to the basic CNN
structure used for image feature extraction. DETR transforms the feature map output from
the backbone into one-dimensional sequential data. Before the sequential data pass into
the encoder of DETR, the sequential data are added with positional encoding. Then, DETR
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utilizes the attention mechanism to process the sequential data and positional information.
For training, DETR resorts to a specialized loss function named “Hungarian loss” [35].

DINO contains a CNN backbone, a multi-layer transformer encoder, a multi-layer
transformer decoder, and multiple prediction heads [37]. The main differences between
DINO and DETR lie in the contrastive de-noising training, the mixed query selection
technique and the “look forward twice” scheme. The scheme of plant leaf disease detection
based on DINO is illustrated in Figure 3.
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Figure 3. Scheme of DINO.

2.3. Framework of PL-DINO

Our proposed method, PL-DINO, integrates the CBAM [38] into the backbone network
of DINO to improve the discriminability of leaf disease features. Specifically, the backbone
network consists of a Residual Network (ResNet50) with four convolutional layers, denoted
as Layer 1, Layer 2, Layer 3, and Layer 4. In PL-DINO, we place the CBAM module after
Layer 4 to extract more discriminative leaf disease features. At the same time, we adopt
EQL, a category-balanced loss, to mitigate the suppression of head categories on tail
ones [39]. The overall framework of PL-DINO is exhibited in Figure 4.
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Figure 4. Overall framework of PL-DINO.
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2.3.1. Convolutional Block Attention Module

CBAM [38] comprises two key components: the Channel Attention Module (CAM)
and the Spatial Attention Module (SAM). CAM adaptively refines the channel-wise features
by exploiting the interdependencies among different channels of a feature map. SAM refines
the spatial features in the informative spatial regions of the target object.

By combining both channel-wise and spatial attention mechanisms, CBAM enables
CNNs to better capture the discriminative features. The structure of CBAM is exhibited in
Figure 5.

Channel Attention Module

Spatial Attention Module

Input Features

MaxPooling

AvgPooling

Shared MLP

Channel 

Attention

Channel-Refined Features Spatial Attention

Element-wise add

Sigmoid

Figure 5. Channel attention and spatial attention components of CBAM.

The Squeeze-and-Excitation (SE) module takes the two critical steps to refine the
feature map within CNNs [40]. First, the “squeeze” step compresses the channel-wise
information through global average pooling. The shape of the input feature map is squeezed
from W × H × C into 1 × 1 × C, where W denotes the width, H denotes the height,
and C denotes the channel number of the feature map. Second, in the “Excitation” step,
Multi-Layer Perceptron (MLP) explores the interdependencies among these channels and
generates the channel-specific weights. Subsequently, the feature map is improved by these
weights. The structure of the SE module is displayed in Figure 6.

Input
W × H × C

Output
W × H × C

1 × 1 × C 1 × 1 × C

Squeeze

Excitation

Figure 6. Squeeze-and-Excitation module.

For the SE module, the global average pooling in the channel direction inevitably fails
to explore the spatial information. To account for this gap, we integrate CBAM into the
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PL-DINO architecture. In comparison to the SE module, CBAM is beneficial for PL-DINO
to learn both channel-wise and spatial features.

2.3.2. Loss Function for Imbalanced Classification

Data samples collected in natural environments often exhibit a long-tailed distribution.
The long-tailed distribution problem presents a big challenge for plant leaf disease detection
models, because the information of minority classes can easily be overwhelmed by the
majority ones, resulting in the decline of overall classification performance. In the literature,
two fundamental methods are commonly used to address this problem: re-sampling and re-
weighting. In essence, re-sampling balances the class distribution by adaptively adjusting
the sampling frequency according to the class size. However, re-sampling has weakness in
repeated learning on tail classes and insufficient learning on the majority ones. In contrast,
re-weighting can counteract the adverse effect of a long-tailed distribution by assigning
lower weights to the head classes and higher weights to the tail ones. Hence, in PL-DINO,
we suggest adopting Binary Cross-Entropy (BCE) as the loss function:

LBCE = −
C

∑
j=1

yj log p̂j (1)

where
p̂j =

{
pj if yj = 1
1 − pj otherwise

(2)

yj =

{
1 if j = c
0 otherwise

(3)

where pj denotes the sigmoid of network output, yj denotes the ground-truth label, and
C denotes the number of classes. Only when j is the ground-truth class c is yj equal to 1;
otherwise, it is equal to 0.

Based on BCE, EQL is formulated as follows:

LEQL = −
C

∑
j=1

wj log p̂j (4)

wj = 1 − E(r)Tλ( f j)(1 − yj) (5)

where
E(r) =

{
1 foreground
0 background

(6)

Tλ( f j) =

{
1 − f j/λ if f j < λ

0 if f j > λ
(7)

where f j denotes the proportion of the size of class j to the sample size of the whole dataset,
λ denotes the threshold to distinguish the tail classes from the head ones, wj denotes the
weight of each term, and E(r) is used to distinguish whether r is the background or not.

To address the class imbalance problem, PL-DINO resorts to the EQL loss function.
This loss function can mitigate the influence of negative samples on the minority classes,
thereby enabling the model to treat all classes in a relatively fair manner.

3. Results
3.1. Experimental Settings

We conduct experiments on a PC with an Intel Core i7 CPU, NVIDIA RTX 2080Ti,
12 GB GPU, and 16 GB RAM. We implement PL-DINO using the MMDetection Toolbox
based on the PyTorch deep learning framework in the Python 3.8 environment. The
proposed model is pre-trained using all data samples from MS COCO and fine-tuned and
tested using PlantDoc. Note that the training and testing data are totally independent.
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We carry out five-fold cross-validation for method evaluation. The methods are
evaluated using the following metrics: mAP@0.5, Precision, Recall, and F1-score. Here,
mAP@0.5 stands for the mean average precision calculated at the intersection over the
union threshold of 0.5.

The hyperparameters for training PL-DINO are provided as follows. Learning rate:
0.0001; weight decay: 0.0001; batch size: 2; epoch number: 24; optimizer: AdamW; λ: 0.03;
learning rate decay: 0.1. Specifically, we suggest performing learning rate decay at epochs
11 and 23.

The loss-epoch curve and mAP-epoch curve of PL-DINO are illustrated in Figure 7
and Figure 8, respectively. From these two figures, we can observe that both the training
loss and mAP of PL-DINO gradually converge to a stable value in the end, which confirms
the efficacy of the training process of our method.
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Figure 7. Training loss of PL-DINO.
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Figure 8. Training mAP of PL-DINO.

3.2. Method Comparison

We compare PL-DINO with the related state-of-the-art approaches, including Faster
R-CNN [9], YOLOv5s [16], YOLOv5m [17], YOLOv7 [41], and DETR [35]. The experimental
results are reported in Table 1. The results show that our proposed method achieves the
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best performance overall. In comparison to the compared approaches, the globally oriented
attention mechanism is one primary contributing factor for the high detection rate achieved
by our method. The attention mechanism can help our method explore both the global
semantic and positional information in an image and capture the correlation information
between these informational aspects, thus forming the discriminative representation of
the entire plant leaf image. For intuitiveness, the Precision–Recall curve of PL-DINO is
visualized in Figure 9.

Table 1. Comparison of PL-DINO with related state-of-the-art approaches.

Methods Precision (%) Recall (%) F1-Score (%) mAP@0.5 (%)

Faster R-CNN 38.0 61.4 42.3 45.6
YOLOv5s 50.2 57.6 53.5 52.6
YOLOv5m 56.6 60.8 56.1 55.4
YOLOv7 57.9 69.7 62.0 67.0

DETR 40.7 67.1 46.3 48.9
PL-DINO 62.9 75.0 63.2 70.3

Note: the highest performance under each evaluation metric is highlighted in bold.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PL-DINO

Figure 9. Precision–Recall curve of PL-DINO.

3.3. Model Ablation

We further carry out an ablation study on the modules of CBAM and EQL in PL-DINO.
The ablation results have been reported in Table 2. From the table, we can find that, with
the CBAM module, the mAP@0.5 of DINO has climbed by 1.0%, and with the EQL loss, the
mAP@0.5 of DINO has risen by 1.4%. Hence, these two components indeed play important
roles in our method.

Table 2. Ablation of CBAM and EQL modules in PL-DINO.

Models mAP@0.5 (%) Precision (%) Recall (%)

Baseline 67.2 63.4 64.0
Baseline + CBAM 68.2 63.1 69.0

Baseline + EQL 68.6 65.6 64.0
Baseline + CBAM + EQL 70.3 62.9 75.0

Note: the highest performance under each evaluation metric is highlighted in bold.

Moreover, we evaluate different combinations of attention modules and backbones
in PL-DINO. The evaluated attention modules include SE [40], Efficient Channel Attention
(ECA) [42], and CBAM [38]; the evaluated backbones include ResNet50 [43] and ResNeSt50 [44].
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As exhibited in Table 3, when the backbone network is ResNet50, the performances of DINO
with each attention module are slightly superior or equivalent to ResNet50, and among all
the attention modules, the CBAM module brings the greatest performance improvement
to DINO.

Table 3. Ablation of backbone networks and attention modules in DINO.

Backbone
Network

Attention
Module

mAP@0.5
(%)

Precision
(%)

Recall
(%)

ResNet50 - 67.2 63.4 64.0
ResNet50 SE 66.7 62.4 63.0
ResNet50 ECA 66.1 59.1 69.0
ResNet50 CBAM 68.2 63.1 69.0

ResNeSt50 - 64.3 60.3 66.0
ResNeSt50 SE 65.1 64.2 63.0
ResNeSt50 ECA 63.8 61.5 62.0
ResNeSt50 CBAM 64.9 59.1 68.0

Note: the highest performance under each evaluation metric is highlighted in bold.

3.4. Computational Expense

The training durations of PL-DINO, Faster R-CNN, YOLOv5, YOLOv7, and DETR are
recorded in Table 4. From the table, we can see that PL-DINO takes the second shortest
training time. However, its detection performance is significantly higher than Faster R-
CNN, according to Table 1. Therefore, we can agree that PL-DINO performs the best among
all the evaluated methods if considering aspects of both effectiveness and efficiency, both
of which are important and indispensable for practice.

Table 4. Method training durations.

Models Time (h:min:s)

Faster R-CNN 4:40:14
YOLOv5 9:03:25
YOLOv7 8:46:33

DETR 12:10:47
PL-DINO 5:43:05

3.5. Result Visualization

Some results of PL-DINO are visualized in Figure 10. From the figure, we can see that
the leaves with diseases can be accurately detected with high confidence scores. These
results intuitively demonstrate that PL-DINO is not only robust to foreground variations
and background noises but also capable of handling the imbalanced class distribution in
plant leaf disease detection.

(a) Squash Powdery Mildew Leaf (b) Corn Rust Leaf (c) Soy Bean Leaf (d) Apple Rust Leaf

Figure 10. Examples of detection results by PL-DINO.
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Additionally, Figure 11 presents a normalized confusion matrix of PL-DINO’s clas-
sification rates for all leaf disease classes. From the confusion matrix, we can find that,
as expected, PL-DINO obtains the highest classification rates for the majority classes of
blueberry leaf, peach leaf, raspberry leaf, strawberry leaf, and tomato leaf yellow virus.
Even so, PL-DINO also acquires not-so-bad classification rates for the minority classes
of apple rust leaf, corn gray leaf spot, corn rust leaf, grape leaf black rot, and grape leaf.
These results straightforwardly show the strong ability of the method to handle the class
imbalance problem.
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Figure 11. Normalized confusion matrix of classification rates of PL-DINO for all leaf disease classes.

4. Discussion

Detecting plant leaf diseases in natural environments is fundamental and important
for smart agriculture and automated ecological monitoring systems. Plant leaf images in
real-world scenarios undergo complicated foreground variations, noisy background clutters,
and imbalanced class distribution. These obstacles pose significant challenges to plant leaf
disease detection. To cope with these challenges, we have proposed a new method, PL-
DINO. Compared to the traditional networks, Faster R-CNN, YOLOv5, and YOLOv7, even
if our method PL-DINO does not contain any manually designed anchor and non-maximal
suppression, it still can obtain higher precision and recall performances, benefiting from the
long-range dependence information captured by the transformer structure. Furthermore,
compared with DETR and DINO with a transformer structure, PL-DINO still performs
better, which is attributed to its advantages from the CBAM and EQL loss modules. As ex-
perimentally demonstrated, PL-DINO behaves effectively in plant leaf disease detection and
outperforms the related state-of-the-art approaches on widely-used benchmark datasets.

Although PL-DINO shows encouraging performance in this study, there are still some
limitations left to be addressed. The attention mechanism adopted in this study places
great emphasis on global image information, potentially resulting in a loss of local detailed
information. So, our method may not be suitable for situations where the disease patterns
are overly small and densely distributed in one single leaf image. In the future, we plan to
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design a new multi-scale feature fusion network on the basis of PL-DINO for the purpose of
jointly exploiting both global and local useful information from images for plant leaf disease
detection. Additionally, as our method employs a transformer structure, the number of
model parameters is substantial, potentially affecting its real-time applicability in agricul-
ture. So, in the future, it will so be a valuable direction to develop a lightweight version of
PL-DINO to reduce the model’s complexity without compromising its performance.

5. Conclusions

In conclusion, PL-DINO offers an effective technology for smart agriculture and
ecological monitoring. Its promising performance in leaf disease detection presents as a new
opportunity for enhancing agricultural production and improving ecosystem health monitoring.
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