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Abstract: In response to the issues of missed detection, false positives, and low recognition rates for
specific weed species during weed detection, a YOLOv8-based improved weed detection algorithm
named EDS-YOLOv8 is proposed. Improvements were made in three main aspects. First, the YOLOv8
backbone network was enhanced with EfficientViT and RepViT architectures to improve the detection
capability of dense-type weeds. Second, different attention mechanisms were added, such as SimAM
and EMA, to learn 3D weights and achieve full fusion of features. BiFormer was introduced for
dynamic sparse attention and resource allocation. Third, significant module improvement involved
introducing dynamic snake convolution into the C2f module to further enhance detection capabilities
for deformable objects, especially needle-shaped weeds. The improved model is validated on the
established weed dataset. The results show that combining the original backbone network with
dynamic snake convolutions yields the highest performance improvement. Precision, recall, mAP
(0.5), and mAP (0.5:0.95) are improved by 5.6%, 5.8%, 6.4%, and 1%, respectively, and ablation
experiments on the effects of the three improvement methods on model performance show that
using EfficientViT as the backbone network while simultaneously improving the crucial module and
adding the SimAM attention mechanism effectively enhances the model’s performance. Precision,
recall, mAP (0.5), and mAP (0.5:0.95) are improved by 6%, 5.9%, 6.4%, and 0.7%, respectively.

Keywords: attention mechanism; weed detection; YOLOv8

1. Introduction

In 2015, the R-CNN [1] algorithm was proposed. Target detection algorithms ush-
ered in a revolutionary development, from traditional target detection into the stage of
deep learning. A series of algorithms such as AlexNet [2], VGG [3], GoogLeNet [4], and
ResNet [5] have been proposed. In 2015, R. Girshick et al. proposed the Fast R-CNN [1]
algorithm, which uses a method such as SS (selective search) to generate candidate boxes
and then maps candidate regions of different sizes into a fixed-size feature map via RoI
(Region of Interest). Ren et al. proposed Faster R-CNN [6], which introduces a RPN
(Region Proposal Network) to realize target localization and detection. In 2016, Redmon
et al. proposed the YOLOv1 [7] algorithm, and the target detection algorithm moved from
a two-stage to a single-stage development direction. In 2017, Redmon et al. proposed
YOLOv2 [8], and in 2018, Redmon et al. proposed YOLOv3 [9]. Since then, the YOLO series
of algorithms has gone through the iterations of YOLOv4 [10],YOLOv5 [11],YOLOv6 [12],
YOLOv7 [13], YOLOv8 [14], and the latest version, YOLOv9 [15].

Weeds represent one of the most significant threats to crop growth, acting as a major
factor limiting crop yield. They interfere with the growth process in several ways: 1. Weeds
compete with crops for essential resources such as nutrients and light, diminishing the
available supply for crop plants [16]. 2. Moreover, weeds can serve as carriers for parasites
and pathogens, facilitating the spread of pests and diseases within farmland. The extensive
growth of weeds can occupy valuable space meant for crop growth, impeding the water
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absorption of crops during irrigation. This, in turn, leads to reduced crop production
due to water scarcity. 3. Certain weed species produce toxic seeds that pose a risk to
human and livestock health if ingested accidentally, thereby threatening human safety.
Given these challenges, weed control is an indispensable step in agricultural production.
Currently, mainstream weed control methods include artificial weeding, which is labor-
intensive and suitable primarily for small-scale fields; chemical weeding, which involves
the indiscriminate spraying of herbicides, enabling its use in large areas but causing
environmental, soil, and water pollution [17]; mechanized weeding, which offers high
efficiency and is well suited for large-scale operations; and biological weeding, which
utilizes fungi and bacteria to suppress weed growth, presenting an environmentally friendly
option [18]. However, it can lead to the development of resistance, and its efficacy may vary.
Each method has its advantages and limitations, and the choice of weed control approach
depends on various factors such as crop type, field size, and environmental considerations.

Many scholars have achieved a lot of results in the research of deep-learning-based
weed detection methods. Yuan Tao et al. [19] proposed a YOLOv4-based weed detection
algorithm for paddy fields, which uses an inverse residual network to reduce the number
of parameters, k-mean [20] to aggregate the a priori frames, and GAN to add noise to match
the complex and changing backgrounds of the real situation. Yingli Cao et al. [21] proposed
a weed recognition method based on DeepLabv3+ for rice field, which improves the ASPP
module to realize the segmentation of weeds and rice in complex backgrounds. Wenqing
Shang et al. [22] added double-threshold non-great suppression to Faster-RCNN to achieve
94.82% recall.

Although the above methods have improved weed detection performance to some
extent, weed leaves exhibit diverse and intricate shapes, including scales, strips, thorns,
and needles; moreover, natural lighting conditions vary significantly between day and
night, and backgrounds are often complex and dynamic. Many weeds closely resemble
crop plants during their growth stages, making it difficult for weed recognition models to
accurately distinguish between them. This challenge impedes feature extraction for the
weed recognition model, resulting in low detection accuracy and poor real-time perfor-
mance in such scenarios. Therefore, there is still considerable room for improvement in
weed detection methods based on deep-learning techniques.

This paper focuses on three common weed species as the research subject. To address
issues such as missed detections, false positives in natural environments, as well as low
accuracy in specific species such as needle-typed weeds, we propose the EDS-YOLOv8
model as an enhancement to the YOLOv8 target detection model. The main research
contents and innovations are as follows:

(1) The backbone network is enhanced by replacing the original backbone network with
two alternatives: RepViT, a lightweight network, and EfficientViT, a dense object
detection network.

(2) In the improvement to the neck part, various attention mechanisms such as EMA,
SimAM, and BiFormer are integrated to evaluate their impact on weed recognition
accuracy. The optimal attention mechanism for the weed detection task is then selected
based on comparative analysis.

(3) Partial enhancements are made to the C2f module and BottleNeck by substituting ordi-
nary convolution with dynamic snake convolution. This dynamic snake convolution
improves the capability to extract features of needle-shaped elongated weeds.

(4) The detection models established through different improvement methods under-
went multiple experimental validations. Initially, various attention mechanisms and
enhanced key modules were integrated into three different backbone networks. Sub-
sequently, the performance of the improved models was tested on a weed dataset.
Following this, ablation experiments were conducted to compare the effects of the
three improvement methods on weed detection performance and select the optimal
model suitable for the task. Finally, heatmap analysis was performed, visualizing
feature maps using GradCam to analyze feature extraction.
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2. Materials and Methods
2.1. Datasets

The paper selected three common types of weeds found in cornfields, with some
of the images sourced from publicly available datasets [23]. Due to partial occlusion in
some weed images within the original dataset and the presence of multiple images of
the same weed, the training process may inadvertently learn repetitive features, leading
to model overfitting. To address these issues, 200 high-quality images were selected for
each weed type from the original dataset, with selection criteria including non-occluded
weeds, varying shooting angles, and images captured at different times. Considering the
limited number of samples, the paper further collected an augmented dataset of three weed
types—Setaria viridis, Chenopodium, and Sonchus oleraceus—in cornfields. The weed
images in the dataset are illustrated in Figure 1.
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Figure 1. Pictures of three types of weeds in the dataset. (a) Setaria viridis; (b) Chenopodium;
(c) Sonchus oleraceus.

The acquisition equipment used in this study is Redmi K40, 4800 pixels. The pictures
of the three types of weeds were collected under the condition of a main view, side view,
and top view, and pictures were taken at long range and close range. A 0.5× focal length
in the camera was selected to simulate the long-range picture, and a 2× focal length was
selected to simulate the close-range picture. In order to further simulate the influence of
light conditions on the quality of picture shooting, a time-division shooting scheme was
adopted. The time periods were selected from 8:00 to 10:00, 13:00 to 15:00, and 16:00 to
18:00, respectively. The three weeds were photographed, and the typical weed images
collected are shown in Figure 2.

Agriculture 2024, 14, x FOR PEER REVIEW 4 of 19 
 

 

   
(a) (b) (c) 

Figure 2. Collected pictures of three types of weeds. (a) Setaria viridis; (b) Chenopodium; (c) Sonchus 
oleraceus. 

Since YOLOV8 requires supervised learning, the obtained dataset is labeled in 
Labelme [24] software, Version 5.1.1, which was developed by MIT’s Computer Science 
and Artificial Intelligence Laboratory, and the results of the labeled JSON file are con-
verted into a TXT file in YOLOv8 format to obtain the positional information of the weeds 
in the image. Figure 3 shows the distribution of position information of weed targets in 
the image in the dataset. From the figure, it can be seen that the weeds are widely distrib-
uted, and most of them are located in the center of the image. The horizontal and vertical 
coordinates in Figure 3 are the ratio of the height and width of the weed-labeling box to 
the height and width of the whole image, respectively, and the larger the value is, the 
larger the proportion of weeds in the image is. The image contains weed data of various 
sizes. 

 
Figure 3. Distribution of weeds in the dataset. 

2.2. YOLOv8 Object Detection Algorithm 
There are five different versions of YOLOv8, distinguished by the number of modules 

and network layers, but their basic structure remains similar. The overall structure of 
YOLOv8 can be divided into the backbone network, neck, and head. The backbone is re-
sponsible for extracting features from the input image, which are then transmitted 
through the backbone network. The neck is for multi-scale feature fusion, and the head is 
for object detection, which includes predicting object location and category. The CBS mod-
ule performs convolution, BN, and SiLU operations on the input image. The C2f structure 
draws inspiration from CSP and ELAN design principles, ensuring that the network is 
lightweight while obtaining rich gradient flow information. The SPPF module is respon-
sible for converting feature maps of arbitrary sizes into feature maps of fixed sizes. 

Figure 2. Collected pictures of three types of weeds. (a) Setaria viridis; (b) Chenopodium;
(c) Sonchus oleraceus.



Agriculture 2024, 14, 674 4 of 18

Since YOLOV8 requires supervised learning, the obtained dataset is labeled in La-
belme [24] software, Version 5.1.1, which was developed by MIT’s Computer Science and
Artificial Intelligence Laboratory, and the results of the labeled JSON file are converted into
a TXT file in YOLOv8 format to obtain the positional information of the weeds in the image.
Figure 3 shows the distribution of position information of weed targets in the image in the
dataset. From the figure, it can be seen that the weeds are widely distributed, and most
of them are located in the center of the image. The horizontal and vertical coordinates in
Figure 3 are the ratio of the height and width of the weed-labeling box to the height and
width of the whole image, respectively, and the larger the value is, the larger the proportion
of weeds in the image is. The image contains weed data of various sizes.
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2.2. YOLOv8 Object Detection Algorithm

There are five different versions of YOLOv8, distinguished by the number of modules
and network layers, but their basic structure remains similar. The overall structure of
YOLOv8 can be divided into the backbone network, neck, and head. The backbone is
responsible for extracting features from the input image, which are then transmitted
through the backbone network. The neck is for multi-scale feature fusion, and the head
is for object detection, which includes predicting object location and category. The CBS
module performs convolution, BN, and SiLU operations on the input image. The C2f
structure draws inspiration from CSP and ELAN design principles, ensuring that the
network is lightweight while obtaining rich gradient flow information. The SPPF module is
responsible for converting feature maps of arbitrary sizes into feature maps of fixed sizes.

The model network architecture of the YOLOv8 target detection algorithm is depicted
in Figure 4.
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2.3. Backbone Network Improvements

To make the model more lightweight and improve its performance in dense weed
detection, the original backbone network in YOLOv8 was replaced with RepViT and
EfficientViT, respectively. The modified model backbone network architecture is depicted
in Figure 5, with each red color representing a different backbone.

Agriculture 2024, 14, x FOR PEER REVIEW 5 of 19 
 

 

The model network architecture of the YOLOv8 target detection algorithm is de-
picted in Figure 4. 

 
Figure 4. Overall structure of YOLOv8. 

2.3. Backbone Network Improvements 
To make the model more lightweight and improve its performance in dense weed 

detection, the original backbone network in YOLOv8 was replaced with RepViT and Effi-
cientViT, respectively. The modified model backbone network architecture is depicted in 
Figure 5, with each red color representing a different backbone. 

 
Figure 5. The overall structure of the YOLOv8 backbone network after improvement. 

2.3.1. EfficientViT Dense Prediction Network 
The Vision Transformer (ViT) [25] has found widespread application in computer 

vision tasks such as semantic segmentation, image classification, and object detection, ow-
ing to its multi-head self-attention mechanism, which facilitates the learning of global fea-
tures. In order to further enhance the phenotypic performance of the model, the number 
of parameters in ViT has been progressively increased. However, this increase in param-
eters has led to a corresponding increase in model latency, rendering deployment on edge 
devices more challenging and unsuitable for real-time applications. 

EfficientViT aims to improve the computational efficiency of ViT from three aspects: 
memory access, computation redundancy, and parameter efficiency. This is achieved by 
reducing the number of inefficient layers to enhance memory efficiency, slicing only half 
of the head input to reduce computational redundancy, and enhancing parameter 

Figure 5. The overall structure of the YOLOv8 backbone network after improvement.

2.3.1. EfficientViT Dense Prediction Network

The Vision Transformer (ViT) [25] has found widespread application in computer
vision tasks such as semantic segmentation, image classification, and object detection,
owing to its multi-head self-attention mechanism, which facilitates the learning of global
features. In order to further enhance the phenotypic performance of the model, the number
of parameters in ViT has been progressively increased. However, this increase in parameters
has led to a corresponding increase in model latency, rendering deployment on edge devices
more challenging and unsuitable for real-time applications.

EfficientViT aims to improve the computational efficiency of ViT from three aspects:
memory access, computation redundancy, and parameter efficiency. This is achieved
by reducing the number of inefficient layers to enhance memory efficiency, slicing only
half of the head input to reduce computational redundancy, and enhancing parameter
efficiency through channel pruning to eliminate unimportant channels. To realize these
objectives, EfficientViT is designed with cascaded group attention modules, memory-
efficient sandwich layouts, and parameter redistribution strategies to enhance efficiency
in terms of computation, memory, and parameters. The network structure of EfficientViT
is illustrated in Figure 6, consisting of sandwich layouts and cascaded group attention
modules. The EfficientViT series comprises six models with varying depths and width
ratios, with a certain number of heads allocated for each stage. For further improvement
in detection efficiency, EfficientViT-M0 is selected as the backbone network for weed
detection tasks.

In weed detection tasks, individual weed growth is uncommon, whereas clustered
or widespread growth is more typical. Mixed growth of different weed species in a given
space, coupled with dense weed populations, poses a challenge to correctly identifying
various weed types. To achieve accurate recognition and real-time detection of densely
growing weeds while enhancing detection efficiency, the backbone network of YOLOv8 is
improved to EfficientViT. Different attention mechanisms are then incorporated under the
new backbone network to select the optimal improvement solution.
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2.3.2. RepViT Lightweight Network

Various efficient convolutional neural network attention mechanisms and different
methods, such as designing convolutional kernels of different sizes, short-circuiting be-
tween modules, and stacking convolutions, are applied in networks to enhance performance
in visual tasks. With the increase in network depth and stacking of various modules, the net-
work’s capability to represent features significantly improves. However, this improvement
comes with negative impacts, such as a dramatic increase in computational complexity,
leading to longer training times and higher inference latency, making it challenging to meet
the real-time requirements of certain applications.

To reduce computational complexity, input features are often divided into multiple
groups based on different computing devices, such as the Spatial Group-wise Enhance
(SGE) [26] attention mechanism, which focuses on the feature factors of each subgroup.
This method highlights the importance of each sub-feature, thereby enhancing the net-
work’s learning capability of different features. In convolutional neural networks, during
feature extraction, emphasis is typically placed on fusing local features across all channels,
neglecting potential interactions between features in different channels. The role of the
channel mixer is to fuse features across different channels to make the extracted features
richer and more diverse.

RepViT places depth-wise separable convolution modules at the beginning, followed
by SE modules to separate the channel mixer and token mixer. During the training phase, an
additional multi-branch depth-wise separable convolution structure is added to further en-
hance performance. In the inference phase, this branch is removed to reduce model latency.
Connecting the aforementioned structure with the FFN network yields the RepViT block.

RepViT consists of three stages. The backbone network is composed of a stack of 3 × 3
convolutions with a stride of 2. Compared to the MobileNetV3 [27], although the number
of convolution kernels has increased, the latency has decreased. The downsampling layer
increases the network’s depth and alleviates the loss of image information caused by
the decrease in resolution during feature extraction. In RepViT, the deep downsampling
layer comprises RepViT blocks, depth-wise separable convolutions, and FFNs. RepViT
has five variants, namely, RepViT-M0.9/M1.0/M1.1/M1.5/M2.3, with different latencies
determined by the number of channels used in each stage of the backbone network and the
number of blocks in each block. In this improvement, RepViT-M0.9 is adopted.

In summary, RepViT is a novel lightweight network structure suitable for edge devices,
achieving high accuracy while ensuring that the network remains lightweight. To further
reduce the parameter count of YOLOv8, the original backbone network is replaced with
RepViT, and the improved network structure is illustrated in Figure 7.



Agriculture 2024, 14, 674 7 of 18

Agriculture 2024, 14, x FOR PEER REVIEW 7 of 19 
 

 

RepViT places depth-wise separable convolution modules at the beginning, followed 
by SE modules to separate the channel mixer and token mixer. During the training phase, 
an additional multi-branch depth-wise separable convolution structure is added to fur-
ther enhance performance. In the inference phase, this branch is removed to reduce model 
latency. Connecting the aforementioned structure with the FFN network yields the 
RepViT block. 

RepViT consists of three stages. The backbone network is composed of a stack of 3 × 
3 convolutions with a stride of 2. Compared to the MobileNetV3 [27], although the num-
ber of convolution kernels has increased, the latency has decreased. The downsampling 
layer increases the network’s depth and alleviates the loss of image information caused 
by the decrease in resolution during feature extraction. In RepViT, the deep downsam-
pling layer comprises RepViT blocks, depth-wise separable convolutions, and FFNs. 
RepViT has five variants, namely, RepViT-M0.9/M1.0/M1.1/M1.5/M2.3, with different la-
tencies determined by the number of channels used in each stage of the backbone network 
and the number of blocks in each block. In this improvement, RepViT-M0.9 is adopted. 

In summary, RepViT is a novel lightweight network structure suitable for edge de-
vices, achieving high accuracy while ensuring that the network remains lightweight. To 
further reduce the parameter count of YOLOv8, the original backbone network is replaced 
with RepViT, and the improved network structure is illustrated in Figure 7. 

 
Figure 7. RepViT network architecture. 

2.4. Key Module Improvements 
The C2f module is one of the crucial components of the YOLOv8 network. To en-

hance the detection capability, particularly for flexible objects like needle-shaped weed 
leaves, improvements were made to both the C2f and Bottleneck modules in YOLOv8. 
Specifically, the original convolution computations in the C2f module were replaced with 
dynamic snake convolution. 

Dynamic Snake Convolution 
The shape and size of weed leaves vary, including scale-shaped, linear, thorn-shaped, 

and needle-shaped. When conducting specific weed detection, especially for features like 
needle-shaped leaves, feature maps are prone to cracks or discontinuities. This issue leads 
to lower accuracy during the inference phase. The original YOLOv8 model achieved only 
a 91.1% accuracy in detecting such weeds, with high rates of missed and false detections. 
To improve the accuracy of detecting these types of weeds, dynamic snake convolution 
was introduced on top of the original network. 

The purpose of dynamic snake convolution is to enhance the recognition of curved 
and slender tubular structures. These structures, particularly the terminal branches of 

Figure 7. RepViT network architecture.

2.4. Key Module Improvements

The C2f module is one of the crucial components of the YOLOv8 network. To enhance
the detection capability, particularly for flexible objects like needle-shaped weed leaves,
improvements were made to both the C2f and Bottleneck modules in YOLOv8. Specifically,
the original convolution computations in the C2f module were replaced with dynamic
snake convolution.

Dynamic Snake Convolution

The shape and size of weed leaves vary, including scale-shaped, linear, thorn-shaped,
and needle-shaped. When conducting specific weed detection, especially for features like
needle-shaped leaves, feature maps are prone to cracks or discontinuities. This issue leads
to lower accuracy during the inference phase. The original YOLOv8 model achieved only a
91.1% accuracy in detecting such weeds, with high rates of missed and false detections. To
improve the accuracy of detecting these types of weeds, dynamic snake convolution was
introduced on top of the original network.

The purpose of dynamic snake convolution is to enhance the recognition of curved and
slender tubular structures. These structures, particularly the terminal branches of vessels,
have numerous branches, thin vessel walls, and a complex, curved shape. They occupy
fewer pixels in images, making it challenging for traditional convolution operations to
extract their features completely. If the target for detection is within a complex background
environment, with long structures and multiple branches, the model may overfit during
training and cause false positives during inference, leading to decreased generalization of
the model. Needle-shaped weed structures are similar to slender tubular structures, making
it difficult to extract their features. Dynamic snake convolution adjusts the convolutional
movement direction based on the previous convolution position, allowing it to capture
richer feature information compared to traditional convolutions.

Though deformable convolutions [28] can learn offsets and adaptively adjust the
kernel size to accommodate changes in object shape, it is challenging to focus on curved
and slender structures. Dynamic snake convolution imposes purposive constraints on the
process of changing the kernel size based on the shape of the object to be detected within
deformable convolutions. It designs multiple convolutional kernel structures to supplement
critical features from multiple perspectives, achieving efficient multi-perspective feature
fusion to summarize typical feature learning.
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Dynamic snake convolution combines traditional convolution with deformable convo-
lution. For 2D convolution, with a given 3 × 3 convolutional kernel, the center coordinates
can be represented as (xi, yi), and the standard convolutional kernel can be represented as

K = {(x − 1, y − 1), (x − 1, y), . . . , (x + 1, y + 1)} (1)

Introducing an offset from the standard convolution kernel ∆, in order to prevent
the receptive field from drifting off the target, constraints are imposed on the standard
convolution kernel in both the x-axis direction and the y-axis direction:

Ki±c =

 (xi+c, yi+c) =
(

xi + c, yi + ∑i+c
i ∆y

)
,

(xi−c, yi−c) =
(

xi − c, yi + ∑i
i−c ∆y

)
,

(2)

Kj±c =


(
xj+c, yj+c

)
=

(
xj + ∑

j+c
j ∆x, yj + c

)
,

(xi−c, yi−c) =
(

xj + ∑
j
j−c ∆x, yj − c

)
,

(3)

Since the offsets are fractional, their integer coordinates are computed by bilinear
interpolation, the K = ∑ K′B(K′, K), which is a bilinear interpolating kernel function, and
K′ denotes the spatial position coordinate value.

The C2f structure is a crucial component of YOLOv8, playing a pivotal role in the
network. Moreover, the design of the C2f module draws inspiration from the principles of
the Bottleneck module. Therefore, improving the convolution computations in both the
C2f and Bottleneck modules to dynamic snake convolution is significant. The modified
model neck network architecture is depicted in Figure 8, with the red color representing
the improvement of key modules.
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2.5. Attention Mechanisms

In order to achieve the goal of efficient feature fusion for fast weed detection, various
attention mechanisms were added to three different backbone networks to study their im-
pact on recognition accuracy. The improved model with these added attention mechanisms
is shown in Figure 9, with the red color representing the various attention mechanisms.
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2.5.1. SimAM Attention Mechanism

For improving the performance ability of the convolutional neural network, on the
one hand, various different modules can be designed from the network structure, such
as Residual Unit [5], Inception [4], Dense [29] block, and so on. Humans can extract the
important information contained in a picture at a glance when observing the picture, which
is due to the fact that humans can focus their attention on the important positions in
the picture. Different attention mechanisms have been designed based on the attention
mechanism in human visual information processing. Methods are based on the attention
mechanism, due to its flexibility and plug-and-play features that can be used in different
positions in a convolutional neural network. Channel attention and spatial attention focus
on different things: the former focuses more on the extraction of features in small regions
of the image and assigns a weight coefficient to that feature for each channel during
computation, whereas the latter will assign a larger weight coefficient to the focal region.
To summarize, channel attention determines the specific location of the target object in the
image, and spatial attention achieves the purpose of determining the type of the object.
Both of these attentional mechanisms are similar to the feature-based and spatial-based
attentional mechanisms in the human brain, but the two attentional mechanisms in the
human brain have a certain interaction, and when observing an object, human beings can
independently select the features related to the observed object and ignore the irrelevant
information. Under the joint action of the two, humans can quickly extract the information
in the object that is useful to them. Current attention mechanisms do not take into account
the effect of the joint action of the two on the features, such as CBAM [30], which is mixed
after calculating one- and two-dimensional weights, respectively. In order to combine the
weights calculated by channel attention and spatial attention, SimAM starts from human
neurology theory [31], calculates the weights occupied by different neurons, i.e., calculates
an energy function based on the importance of neurons, and calculates 3D weights based
on the closed-form solution of the energy function.

et(wt, bt, y, xi) =
(
yt − t̂

)2
+

1
M − 1

M−1

∑
i=1

(y0 − x̂i)
2 (4)

et(wt, bt, y, xi) =
1

M − 1

M−1

∑
i=1

(−1 − (wtxi + bt))
2 + (1 − (wtt + bt))

2 + λwt
2 (5)

where wt and bt are the weights and biases, t denotes the target neuron, and xi denotes the
other neurons.
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There should be M energy functions on each channel, and the analytical solution of
the above equation is

wt = − 2(t − µt)

(t − µt)
2 + 2σt2 + 2λ

(6)

bt = −1
2
(t + µt)wt (7)

where µt =
1

M−1

M−1
∑

i=1
xi, σt

2 = 1
M−1

M−1
∑

i=1
(xi − µ̂t)

2

For this mean and variance on the channel, it can be seen from Equations (6) and (7)
that the analytic solution is obtained on a single channel, and therefore, it is inferred that
other neurons on the same channel also satisfy the same distribution. Therefore, all neurons
on the same channel can reuse this mean and variance.

Minimum energy is obtained in the end:

et
∗ =

4
(
σ̂2 + λ

)
(t − µ̂)2 + 2σ̂2 + 2λ

(8)

where µ̂ =
M
∑

i=1
xi, σ̂2 =

M
∑

i=1
(xi − µ̂)

2

In the energy function (1), the linear separability between the target neuron and
the surrounding neurons is first calculated, and an active neuron will exhibit inhibitory
properties to other surrounding neurons, i.e., the neuron should be assigned a higher
weight value, where Equations t̂ = wtt + bt and, xi = wtxi + bt, M = H × W denote the
number of neurons on a given channel.

The smaller the energy et
∗, the more inhibition it exhibits to peripheral neurons,

i.e., the higher the importance of the neuron in the visual processing task—the degree of
importance can be expressed as 1/et

∗, so with a larger 1/et
∗—the higher the importance,

and when the opposite occurs, the lower the importance. Attentional modulation in the
mammalian brain manifests itself as a gain (i.e., scaling) effect on neuronal responses, using
scaling operators for feature refinement:

X̃ = sigmoid
(

1
E

)
⊙ X (9)

where E is the energy function of each neuron, sigmoid restricts E to larger values, and X is
the input feature.

2.5.2. EMA Attention Mechanism

In the CA (Coordinate Attention) [32] mechanism, position information is embedded
to establish a link between the channel and the space, and the horizontal and vertical
position information is aggregated by pooling the input features in parallel global averaging,
although the different directional position information retained by this method can capture
spatially remote interactions, as well as the whole spatial positional interactions of the
features. The main improvements of the EMA attention module are as follows:

(1) Feature grouping: The input feature map is divided into G sub-features in order to
learn different semantics;

(2) Parallel sub-network: The parallel sub-network is divided into three branches, namely
two 1 × 1 branches and one 3 × 3 branch. The former aggregates horizontal and
vertical position coding through global average pooling, and the latter captures multi-
scale features;

(3) Cross-space learning: The outputs of 1 × 1 and 3 × 3 in the parallel sub-network
are aggregated across spatial information in different spatial dimensional direc-
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tions to realize different scales of feature fusion and capture more comprehensive
contextual information.

ZW
c (W) =

1
H ∑

0≤j≤H
xc(j, W) (10)

where ZW
c (H) and ZW

c (W) is the set of position information along the vertical and horizon-
tal directions, respectively, C is the number of input channels, and H and W are the height
and width of the input feature maps, respectively. The structure of the EMA module is
shown in Figure 10.
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2.5.3. BiFormer

The self-attention mechanism in Transformer can capture long-range dependency,
but this approach leads to increased computation and high memory usage; BiFormer
implements dynamic sparse attention to remove irrelevant information through Bi-Layer
Routing Attention (BRA) for dynamic computational allocation and content awareness.

BiFormer’s features are summarized below.

(1) Divide the input feature map into S × S lattices, and then obtain Q, K, and V by
linear mapping.

Q = XrWq, K = XrWk, V = XrWv (11)

(2) Average the Q and K of each region to obtain the regional average values of Qr and Kr;
construct a directed graph to obtain the region in which each key–value pair in each
region should be involved by means of the adjacency matrix, where the adjacency
matrix can be expressed as below.

Ar = Qr(Kr)T (12)

(3) Calculate the routing index matrix Ir by the adjacency matrix to obtain the most
relevant top k regions for each region to participate in the fine-grained operation as
relevant regions.

Ir = topkIndex(Ar) (13)

(4) Since the routing regions are scattered throughout the feature map and are difficult to
compute, they are first aggregated.

Kg = gather(K, Ir) (14)
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Vg = gather(V, Ir) (15)

(5) The aggregated Kg, Vg pairs use the attention operation to obtain the final attention.

O = Attention(Q, Kg, Vg) + LCE(V) (16)

where LCE(V) parameterizes the depth convolution.
The BiFormer block is constructed by BRA, and the final BiFormer is obtained by

stacking this module. The specific structure of the BiFormer block and BiFormer is shown
in Figure 11.
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2.6. Experiments
2.6.1. Experiment Protocol

(1) To further validate the improved network’s ability to enhance performance in weed
detection tasks, the improved network is first subjected to comparative experiments
with the original network.

(2) Under the condition of equal training parameters, the improved backbone network
is combined with various attention mechanisms and enhancements to important
modules. The network structure of the improved model is illustrated in Figure 12,
with the red color representing the three methods of improvement.
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(3) Following the comparison of individually enhanced models, Section 3 of this chapter
will conduct ablation experiments to assess the extent to which different combina-
tions of improvement methods affect weed detection performance. The optimal
improvement method will be selected for application in weed detection tasks. This
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experiment is conducted on a Windows 10 Professional system, with PyTorch version
2.1.0 and CUDA version 12.1.0. Specific configurations are detailed in Table 1, and the
hyperparameters for training the improved model are outlined in Table 2.

Table 1. System configuration.

Configure Version/Model

CPU Intel Xeon W-2223
GPUs GTX3090
CUDA 12.1
Pytorch 2.1.0

Table 2. Experimental parameter configuration.

Epoch 300

Batch 16
Learning Rate 0.01

IOU 0.7
Classes 3

2.6.2. Evaluation Metrics

In order to accurately evaluate the performance of the model before and after the
improvement, Precision, Recall, Average Precision (AP) and mean Average Precision (mAP) are
used as evaluation metrics.

Precision =
TP

TP + FP
× 100% (17)

Recall =
TP

TP + FN
× 100% (18)

AP =
∫ 1

0
P(R)dR (19)

mAP =
∑ AP
KClass

(20)

where TP represents the number of positive samples predicted as positive, FP represents
the number of negative samples predicted as positive, FN represents the number of positive
samples predicted as negative, and TN represents the number of negative samples predicted
as negative. Precision represents the proportion of samples predicted as positive and
correctly predicted among all samples predicted as positive. Recall represents the proportion
of samples predicted as positive among all positive samples in the dataset. The mAP is the
mean of the Average Precision (AP) and the Average Precision (AP) is the area of the P-R curve.

2.6.3. Results

To validate the performance of the models with the addition of the SimAM and
EMA attention mechanisms, dynamic snake convolution, as well as the improvement
of converting the backbone network into EfficientViT and RepViT, experiments were
conducted on the weed dataset. The results are presented in Tables 3–5. It can be observed
that under the original YOLOv8 backbone network, dynamic snake convolution exhibited
the most significant improvement in model performance. Precision, recall, mAP (0.5), and
mAP (0.5:0.95) increased by 5.6%, 5.8%, 6.4%, and 1%, respectively. By adding dynamic
snake convolution, the next convolution position could freely choose the direction based on
the previous convolution kernel. This allows for the extraction of more feature information,
particularly for flexible and slender weeds, thereby reducing the false-negative rate.
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Table 3. Improvement and experimental data with the original backbone network.

Improved
Methodology Accuracy/% Recall Rate/% mAP(0.5)% mAP(0.50:95)/%

YOLOv8 91.1 88.4 90.5 83.3
DCNv3 91.9 89.3 96.2 83.7
DySkD 96.7 94.2 96.9 84.3
SimAM 95.6 90.7 96.4 82.5

EMA 96.2 91.1 96.2 82.3
BiFormer 95.0 93.9 95.7 83.1

YOLOv8_DSEB 95.9 94.3 96.5 83.8

Table 4. Improvements and experimental data with EfficientViT backbone network.

Improved
Methodology Accuracy/% Recall Rate/% mAP(0.5)/% mAP(0.5:0.95)/%

EfficientViT 96.0 93.7 96.5 84.0
DCNv3 96.5 91.8 95.6 83.4
DySkD 96.3 92.5 96.5 83.4
SimAM 97.0 92.6 96.4 83.3

EMA 96.7 92.1 96.6 83.8
BiFormer 97.4 93.1 96.5 84.1

YOLOv8_EDSEB 96.7 93.1 96.4 83.3

Table 5. Improvement and experimental data with RepViT backbone network.

Improved
Methodology Accuracy/% Recall Rate/% mAP(0.5)/% mAP(0.5:0.95)/%

RepViT 96.1 92.3 96.0 83.1
DCNv3 96.5 91.8 95.6 83.4
DySkD 96.9 92.5 96.6 83.4
SimAM 96.0 93.9 96.4 83.3

EMA 96.3 92.2 96.5 83.3
BiFormer 96.5 93.7 96.3 83.2

YOLOv8_RDSEB 95.9 93.3 96.5 83.4

EfficientViT integrates multi-scale attention, allowing for a global receptive field and
enabling the prediction of dense weeds. As shown in the Table 4, when the backbone
network is upgraded to EfficientViT, the missed detection rate of dense weeds can be
effectively reduced. Particularly, when BiFormer is added to the EfficientViT backbone
network, the model’s performance improves significantly, with precision, recall, mAP
(0.5), and mAP (0.5:0.95) increasing by 6.3%, 4.7%, 6%, and 0.8% respectively. Adding
BiFormer not only enhances the detection capability of dense weeds but also improves
their localization accuracy.

Under the RepViT backbone network, the impact of dynamic snake convolution and
deformable convolution on model performance improvement is comparable. Though the
overall performance of the model is not as strong as the other two enhancement methods,
there is still an improvement compared to before the enhancements. Particularly, with
the addition of the SimAM attention mechanism, the Recall rate increases significantly.
The SimAM attention mechanism, similar to human observation of objects, facilitates
interaction between channel attention and spatial attention, thus enhancing localization
and classification accuracy. Consequently, it can reduce the missed detection rate, with
precision, recall, and mAP (0.5) improving by 5.9%, 5.5%, and 5.9% respectively.
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3. Ablation Experiments
3.1. Analysis of Ablation Experiments Results

To compare the effects of improving the backbone network, enhancing key modules,
and adding different attention mechanisms on weed detection performance, and to select
the optimal improvement method suitable for weed detection tasks, a total of fifteen
experiments were designed to assess the impact of different improvement methods on
weed detection performance. These experiments were conducted on the same weed dataset,
and the results of the ablation experiments are presented in Tables 6–8.

Table 6. Ablation experiments under the original backbone network.

Improvement Methods Precision/% Recall/% mAP(0.5)/% mAP(0.5:0.95)%

YOLOv8 91.1 88.4 90.5 83.3
YOLOv8 + Dynamic snake 96.7 94.2 96.9 84.3

YOLOv8 + Dynamic snake + SimAM 97.0 93.3 96.8 84.2
YOLOv8 + Dynamic snake + EMA 95.6 94.2 96.7 83.9

YOLOv8 + Dynamic snake +BiFormer 95.1 93.3 96.2 83.6

Table 7. Ablation experiments under the EfficientViT backbone network.

Improvement Methods Precision/% Recall/% mAP(0.5)/% mAP(0.5:0.95)%

EfficientViT 96.0 93.7 96.5 84.0
EfficientViT + Dynamic snake 96.3 92.5 96.5 83.4

EfficientViT + Dynamic snake + SimAM 97.1 94.3 96.9 84.1
EfficientViT + Dynamic snake + EMA 97.3 92.7 96.6 83.6

EfficientViT + Dynamic snake + BiFormer 95.6 92.8 96.6 83.6

Table 8. Ablation experiments under the RepViT backbone network.

Improvement Methods Precision/% Recall/% mAP(0.5)/% mAP(0.5:0.95)%

RepViT 96.1 92.3 96.0 83.1
RepViT + Dynamic snake 96.9 92.5 96.6 83.4

RepViT + Dynamic snake + SimAM 97.0 92.4 96.3 83.4
RepViT + Dynamic snake + EMA 95.4 93.5 96.2 83.2

RepViT + Dynamic snake + BiFormer 95.1 93.3 96.2 83.6

From the results of the ablation experiments, it can be observed that all improvement
methods led to performance enhancements compared to the original network. Under the
original backbone network and the improved EfficientViT and RepViT backbone networks,
adding dynamic snake convolution and the SimAM attention mechanism effectively en-
hanced the model’s detection capability. Compared to individually adding dynamic snake
convolution and the SimAM attention mechanism under the three backbone networks,
the combination of the two further improved performance. Dynamic snake convolution
autonomously selects the direction of convolution, and the SimAM attention mechanism
integrates channel and spatial attention, further strengthening the detection capability
of small targets, thus reducing both missed detections and false positives. Therefore,
the combination of dynamic snake convolution and SimAM is considered the optimal
improvement method.

Under the original backbone network, adding dynamic snake convolution and the
SimAM attention mechanism resulted in improvements of 5.9% in precision, 4.9% in
recall, 6.3% in mAP (0.5), and 0.9% in mAP (0.5:0.95). Under the EfficientViT backbone
network, adding dynamic snake convolution and the SimAM attention mechanism led
to improvements of 6% in precision, 5.9% in recall, 6.4% in mAP (0.5), and 0.7% in mAP
(0.5:0.95). Under the RepViT backbone network, adding dynamic snake convolution and
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the SimAM attention mechanism resulted in improvements of 5.9% in precision, 4% in
recall, 5.8% in mAP (0.5), and 1% in mAP (0.5:0.95).

Based on the comprehensive analysis, selecting EfficientViT as the backbone network,
enhancing the key module with dynamic snake convolution, and adding the SimAM
attention mechanism is deemed the optimal model for weed detection tasks. This model is
named EDS-YOLOv8, denoting the optimal improvement model.

3.2. Heatmap Analysis

To provide a more intuitive visualization of the improved YOLOv8’s detection perfor-
mance, GradCam [33] heatmaps were utilized to visualize the detection results, as shown
in Figure 13. The original YOLOv8 object detection model and the enhanced EDS-YOLOv8
weed detection model were selected for visualization using GradCam. From Figure 13, it
can be observed that though the YOLOv8 backbone network primarily focuses attention on
the objects to be detected, it pays less attention to the leaves. After improving the backbone
network to EfficientViT, the model can detect small targets and dense weeds as well. With
the addition of dynamic snake convolution, the model can capture the fine structures of
weed leaves and extract their features, effectively reducing missed detections of small
targets. Furthermore, the incorporation of the SimAM attention mechanism strengthens
the fusion between channel and spatial attention features, enabling precise localization
and classification.
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4. Conclusions

By introducing dynamic snake convolution, the model can adaptively learn the size
of convolutional kernels, thus enhancing the detection capability of flexible objects. Addi-
tionally, the incorporation of the SimAM, EMA, and BiFormer attention mechanisms in the
backbone network further strengthens the feature fusion capability. To further ensure that
the model is lightweight for deployment on edge devices, this paper introduces the RepViT
lightweight backbone model, onto which various modules are added. In order to achieve
dense weed detection, the EfficientViT dense prediction network is introduced, along
with different attention mechanisms. Notably, adding dynamic snake convolution to the
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original backbone network shows the most significant improvement in model performance,
with precision, recall, mAP (0.5), and mAP (0.5:0.95) increasing by 5.6%, 5.8%, 6.4%, and
1%, respectively.

From the results of the ablation experiments, it is evident that stacking modules does
not significantly improve model performance. It is crucial to choose attention mechanisms
tailored to specific tasks. Given the unique shape of weed leaves, characterized as flexible
objects, dynamic convolution autonomously learns the size of convolutional kernels. It
supplements important features from multiple perspectives, facilitating comprehensive
feature summarization learning. This significantly enhances model performance, mak-
ing dynamic snake convolution particularly suitable for weed detection tasks. Through
heatmap analysis, the improved network directs more attention to the objects to be de-
tected, thereby increasing the accuracy of weed detection, especially for needle-shaped
weeds. Compared to the original algorithm, the improved YOLOv8 algorithm achieves a
6% increase in precision, a 5.9% increase in recall, and improvements of 6.4% and 0.7% in
mAP (0.5) and mAP (0.5:0.95), respectively. This enhancement enhances YOLOv8’s ability
to detect flexible objects, meeting the requirements of weed detection tasks and making the
model well suited for field detection tasks.

Through ablation experiments and heatmap analysis, the effectiveness of each im-
provement in enhancing model performance was verified. Additionally, the optimal
model suitable for weed detection tasks was selected, which involves improving the back-
bone network to EfficientViT and adding dynamic snake convolution and the SimAM
attention mechanism.

Author Contributions: C.H.: Conceptualization, Methodology, Validation, Program modification,
Formal analysis, Data curation, Writing—original draft preparation, Writing—review and editing,
Visualization. F.W.: Methodology, Investigation, Writing—review and editing. G.M.: Methodology,
Investigation, Writing—review and editing. X.M.: Validation, Resources, Project administration,
Funding acquisition. K.Z.: Methodology, Investigation, Writing—review and editing. X.W.: Inves-
tigation, Project administration. X.H.: Validation, Resources, Supervision, Project administration,
Formal analysis, Funding acquisition. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No.
32160426) and Key Research and Development Projects in Gansu Province (No. 23YFNA0014).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The datasets generated for this study are available upon request from
the corresponding author.

Acknowledgments: We thank the scientific research team at Gansu Agricultural University for
agricultural mechanization and automation and for help and encouragement.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,

7–13 December 2015; pp. 1440–1448.
2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
3. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.

[CrossRef]
4. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. arXiv 2014, arXiv:1409.4842. [CrossRef]
5. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [CrossRef]
6. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]
7. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

https://doi.org/10.1145/3065386
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.4842
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1109/TPAMI.2016.2577031


Agriculture 2024, 14, 674 18 of 18

8. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE Computer Society: Los Alamitos, CA, USA, 2017;
pp. 6517–6525.

9. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
10. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
11. Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Michael, K.; Fang, J.; Yifu, Z.; Wong, C.; Montes, D.J.Z.; et al.

Ultralytics/Yolov5: V7.0—YOLOv5 SOTA Realtime Instance Segmentation 2022. Available online: https://ui.adsabs.harvard.
edu/abs/2022zndo...3908559J/abstract (accessed on 19 April 2024).

12. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection
Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976.

13. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object
Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver,
BC, Canada, 17–24 June 2023; pp. 7464–7475.

14. Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLO 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on
19 April 2024).

15. Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information.
arXiv 2024, arXiv:2402.13616.

16. Xu, K.; Li, H.; Cao, W.; Zhu, Y.; Chen, R.; Ni, J. Recognition of Weeds in Wheat Fields Based on the Fusion of RGB Images and
Depth Images. IEEE Access 2020, 8, 110362–110370. [CrossRef]

17. Xu, X.H.; Quan, H.R.; He, K.Y.; Wang, L.; Wang, X.Q.; Wang, Q. Proportional Fluorescence Sensing Analysis of Pesticide Residues
in Agricultural Environment. Trans. Chin. Soc. Agric. Mach. 2020, 51, 229–234.

18. Wang, B.J.; Lan, Y.B.; Chen, M.M.; Liu, B.H.; Wang, G.B.; Liu, H.T. Application Status and Prospect of Machine Learning in
Unmanned Farm. J. Chin. Agric. Mech. 2021, 42, 186–192+217. [CrossRef]

19. Yuan, T.; Hu, T.; Ma, C.; Li, L.Y.; Zheng, X.G.; Qian, D.L. Weed Target Detection Algorithm in Paddy Field Based on YOLOv4.
Acta Agric. Shanghai 2023, 39, 109–117. [CrossRef]

20. Coates, A.; Ng, A.Y. Learning Feature Representations with K-Means. In Neural Networks: Tricks of the Trade; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7700, pp. 561–580.

21. Cao, Y.L.; Zhao, Y.W.; Yang, L.L.; Li, J.; Qin, L.L. Weed Ldentification Method in Rice Field Based on Improved DeepLabv3+.
Trans. Chin. Soc. Agric. Mach. 2023, 54, 242–252.

22. Shang, W.Q.; Qi, H.B. Identification Algorithm of Field Weeds Based on Improved Faster R-CNN and Transfer Learning. J. Chin.
Agric. Mech. 2022, 43, 176–182. [CrossRef]

23. Jiang, H.; Zhang, C.; Qiao, Y.; Zhang, Z.; Zhang, W.; Song, C. CNN Feature Based Graph Convolutional Network for Weed and
Crop Recognition in Smart Farming. Comput. Electron. Agric. 2020, 174, 105450. [CrossRef]

24. Wada, K. Labelme: Image Polygonal Annotation with Python. Available online: https://github.com/wkentaro/labelme (accessed
on 19 April 2024).

25. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.
[CrossRef]

26. Li, X.; Hu, X.; Yang, J. Spatial Group-Wise Enhance: Improving Semantic Feature Learning in Convolutional Networks. arXiv
2019, arXiv:1905.09646. [CrossRef]

27. Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
MobileNetV3. arXiv 2019, arXiv:1905.02244. [CrossRef]

28. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773.

29. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2016,
arXiv:1608.06993. [CrossRef]

30. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. arXiv 2018, arXiv:1807.06521. [CrossRef]
31. Webb, B.S.; Dhruv, N.T.; Solomon, S.G.; Tailby, C.; Lennie, P. Early and Late Mechanisms of Surround Suppression in Striate

Cortex of Macaque. J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 11666–11675. [CrossRef] [PubMed]
32. Qiao, S.; Shen, W.; Zhang, Z.; Wang, B.; Yuille, A. Deep Co-Training for Semi-Supervised Image Recognition. arXiv 2018,

arXiv:1803.05984. [CrossRef]
33. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-Cam: Visual Explanations from Deep Networks

via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://ui.adsabs.harvard.edu/abs/2022zndo...3908559J/abstract
https://ui.adsabs.harvard.edu/abs/2022zndo...3908559J/abstract
https://github.com/ultralytics/ultralytics
https://doi.org/10.1109/ACCESS.2020.3001999
https://doi.org/10.13733/j.jcam.issn.2095-5553.2021.10.26
https://doi.org/10.15955/j.issn1000-3924.2023.06.20
https://doi.org/10.13733/j.jcam.issn.2095-5553.2022.10.025
https://doi.org/10.1016/j.compag.2020.105450
https://github.com/wkentaro/labelme
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.1905.09646
https://doi.org/10.48550/arXiv.1905.02244
https://doi.org/10.48550/arXiv.1608.06993
https://doi.org/10.48550/arXiv.1807.06521
https://doi.org/10.1523/JNEUROSCI.3414-05.2005
https://www.ncbi.nlm.nih.gov/pubmed/16354925
https://doi.org/10.48550/arXiv.1803.05984

	Introduction 
	Materials and Methods 
	Datasets 
	YOLOv8 Object Detection Algorithm 
	Backbone Network Improvements 
	EfficientViT Dense Prediction Network 
	RepViT Lightweight Network 

	Key Module Improvements 
	Attention Mechanisms 
	SimAM Attention Mechanism 
	EMA Attention Mechanism 
	BiFormer 

	Experiments 
	Experiment Protocol 
	Evaluation Metrics 
	Results 


	Ablation Experiments 
	Analysis of Ablation Experiments Results 
	Heatmap Analysis 

	Conclusions 
	References

