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Abstract: Cold chain logistics are crucial for reducing agricultural product loss, yet the environmental
impact of energy and packaging consumption, among others, demands attention, making the search
for eco-friendly development modes essential. Based on data from 30 provinces in China from 2015
to 2021, this study analyzes the basic correlation between the development of cold chain logistics
of fresh agricultural products (CCLFAP) and the ecological environment (EE) by using a random
forest regression model in comparison with the XGBoost model. Correlation heatmaps were used to
analyze the relationships between the cold chain logistics of fresh agricultural products and various
factors of the ecological environment. The generalized additive model was then used to establish
the connection between cold chain logistics and the ecological environment, identifying significant
factors impacting EE. The results demonstrate that a higher development level of cold chain logistics
corresponds to a better development trend of EE. The economic efficiency and technical aspects of
cold chain logistics for fresh agricultural products are closely related to ecological pressures and
responses. The number of employees in the logistics industry, the trading volume of fresh agricultural
products, the number of refrigerated vehicles, and the capacity of the cold room have significant
positive correlations with the ecological environment, while the per capita consumption of fresh
agricultural products, the number of cold chain logistics patent applications, and the road density
had significant negative correlations with the ecological environment. The effects of the number of
cold chain logistics enterprises and the freight turnover of agricultural products transported by the
cold chain on the ecological environment fluctuated. These findings contribute to reducing climate
and environmental emergencies throughout the life cycle, offering sustainable development solutions
for the fresh agricultural product cold chain logistics industry.

Keywords: cold chain logistics of fresh agricultural products; ecological environment; relationship
analysis; generalized additive model

1. Introduction

As China’s economy continues to grow, the demand for fresh agricultural products
and prepared dishes has increased. The cold chain logistics market in China is expanding,
with an expected annual revenue surpassing CNY 550 billion by 2024 [1]. Cold chain
logistics help to reduce food loss and waste while ensuring product freshness [2]. This
benefits consumers and farmers, supporting China’s economic transformation. However,
it also poses challenges to the ecological environment (EE) [3]. Transport vehicles with
refrigeration systems emit five times more pollutants than regular vehicles, and suboptimal
cold chain technology can contribute to environmental pollution [4]. Disposable packaging
materials that preserve the freshness of fresh produce also contribute to the generation of
pollutants [5]. This statement is inconsistent with China’s sustainability objectives [6]. Man-
aging cold chain logistics for fresh agricultural products (CCLFAP) involves considering
economic, environmental, and social sustainability [7,8].
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The impact of the development of CCLFAP on EE has two sides. CCLFAP can neg-
atively affect the EE through energy consumption, material use, storage equipment, and
waste discharge [9–12]. The scale and high-tech standards of cold chain logistics operations
lead to extensive energy consumption [13,14]. Logistics equipment can produce harmful
gases and noise pollution, harming the ecological environment [15]. However, CCLFAP’s
role in preserving product quality and reducing waste offers economic benefits [16,17].
CCLFAP aligns with ecological protection and resource conservation by slowing product
deterioration and waste generation [18,19].

The requirements for EE development are similar to those for the development of the
CCLFAP [20]. Many countries have enacted regulations to reduce waste, carbon emissions,
and wastewater. As a result, CCLFAP must adhere to higher standards in their operations,
limiting their development. Small- and medium-sized fleets can reduce carbon emissions,
but increase costs and space requirements for companies [21]. Scholars have recommended
the use of renewable energy sources and environmental measures to reduce the burden
on the environment [22–24], such as the use of new types of energy and the adoption of
electric vehicles to replace traditional fuel vehicles. These measures require significant
investments in equipment and technology upgrades, prompting necessary reforms [25,26].

The coordinated development of CCLFAP and EE manifests in various aspects. Different
cold chain logistics modes have varying carbon emissions, offering opportunities to reduce
environmental impacts without compromising efficiency or profitability [27]. Integrating
internal and external resources in cold chain logistics enables efficient scheduling, benefiting
urban governance needs such as product traceability and emission reduction [28–32]. Eco-
friendly CCLFAP emphasizes sustainability, energy conservation, and low carbon footprint,
aligning with ecological protection and contributing to a low-carbon economic system [33].
The synergy between ecological protection and economic development supports the sustain-
able growth of CCLFAP [34]. Focusing on ecological protection, technological innovation,
and talent development enhances economic benefits when addressing high emission treat-
ment costs and stringent requirements [35–37]. Advanced technologies such as the Internet
of Things (IoT) or blockchain can further promote coordinated development between cold
chain logistics for fresh agricultural products and the ecological environment [35,38].

At present, most studies have confirmed the complexity of cold chain logistics and the
ecological environment of fresh agricultural products, but most of the research on CCLFAP
and EE has focused on individual elements, often within the EE. Research data are often
limited to specific roads or neighborhoods. The research method is mostly based on game
theory. Few scholars have studied the broader “many-to-many” effects of CCLFAP on
EE systems at the regional macro level. There is a lack of evidence with actual regional
data. It is crucial to systematically investigate the complex relationship between cold chain
logistics for fresh agricultural products and the ecological environment in specific regions,
constituting an important direction for research.

Therefore, we explored the relationship between CCLFAP and EE in the system
and determined which factors of CCLFAP play significant roles in EE, as well as the
trend of these factors’ impact on the EE. This paper explores the relationship between
CCLFAP and EE using data from 30 provinces in China (2015–2021). It employs the
random forest regression model and the XGBoost model to analyze their fundamental
correlation, utilizes a correlation heatmap to examine the interplay of various factors,
and employs the generalized additive model to identify significant elements affecting EE
due to CCLFAP. The paper then presents corresponding recommendations. By adopting
the idea of a system, from the perspective of the whole life cycle, this paper validates
the relationship between CCLFAP and EE development. This approach enhances result
accuracy through multimodel comparisons, offering valuable insights for data integration
and modeling applications. With full consideration of environmental protection factors,
this paper proposes a more efficient direction for the development of CCLFAP. Furthermore,
this paper provides theoretical foundations and critical guidance for government support
for sustainable development in the cold chain logistics sector for fresh agricultural products.
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It also serves as a reference for promoting coordinated development across industries and
alleviating ecological environmental emergencies.

2. Research Design
2.1. Selection of Evaluation Indicators for the Development of Cold Chain Logistics for
Agricultural Products

To assess the coupling and interaction between fresh produce cold chain logistics
and the ecological environment, this study draws on existing research to develop two
indicator systems. The selection of these indicators is based on principles of systematicity,
representativeness, practicability, comparability, and measurability. The CCLFAP indi-
cator system was developed considering the STIRPAT model’s categorization of factors
affecting environmental pressure into structure, scale, and technology [39]. This paper
selects primary indicators to evaluate the development of regional fresh produce cold
chain logistics, including participating subjects, economic benefits, technology level, and
infrastructure. The secondary indicators are based on the LCA evaluation method and
include all indicators of fresh agricultural products from production to consumption [40].
This study also utilizes the state–pressure–response model proposed by the United Nations
Environment Program [41] to evaluate the ecosystem environment. This model considers
the ecological state, ecological pressure, and ecological response as primary indicators for
evaluating the ecological environment [42]. These three aspects are selected as secondary
indicators. The complete indicator system is presented in Table 1 below:

Table 1. Indicator system for cold chain logistics development and ecosystems for agricultural products.

Evaluation
Objective

Primary
Indexes Secondary Indicators Unit

Cold chain logistics
development of fresh
agricultural products

(CCLFAP)

Participants

Number of employees in the logistics
industry (NELI) 10,000 people

Number of cold chain logistics
enterprises (NCCLE) --

Number of cold-chain-related
policies issued by the government

(NCCPIG)
--

Output of fresh agricultural
products (OFAP) 10,000 tons

Economic
Benefits

Per capita consumption of fresh
agricultural products (PCCFAP) KG

Trading volume of fresh agricultural
products (TVFAP) RMB 10,000

Total cold chain logistics of
agricultural products (TCCLAP) RMB 100 million

The freight turnover of agricultural
products transported by the cold

chain (FTAPTCC)
Billion ton-km

Technical Level

Research and experimental
development (R&D) personnel

full-time
equivalent (RTDSFTE)

Persons/year

Number of cold chain logistics patent
applications (NCCLPA) --

Infrastructure

Number of refrigerated vehicles
(NRV) --

Capacity of cold room (CCR) Ton
Road density (RD) Km per square km

Ecological
environment (EE)

Ecological state
Per capita water resources (PCWR) Cubic

Meters/person
Sown area (SA) Thousand hectares

Annual mean temperature (AMT) Degrees centigrade
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Table 1. Cont.

Evaluation
Objective

Primary
Indexes Secondary Indicators Unit

Ecological
environment (EE)

Ecological
pressure

Discharge of major pollutants in
wastewater (DMPW) Ton

Carbon emissions (CE) Million tons of
carbon dioxide

Ecological
response

Nonhazardous disposal of domestic
waste (HDCHG) Million tons

Sewage treatment capacity (STC) Cubic meter
(unit of volume)

2.2. Indicator Data Sources and Processing

To ensure horizontal data comparisons, data from 30 Chinese provinces between 2015
and 2021 were selected, while data from Tibet and some Chinese regions were missing.
The data sources for these indicators include various statistical yearbooks published in
China, the China Patent Information Network, and government websites of various regions.
Additionally, some data come from survey data collected by the Zhongguancun Green
Cold Chain Logistics Industry Alliance, while a few indicators were obtained through
further processing.

The data for output of fresh agricultural products (OFAP), trading volume of fresh
agricultural products (TVFAP), per capita consumption of fresh agricultural products
(PCCFAP), total cold chain logistics of agricultural products (TCCLAP), number of em-
ployees in the logistics industry (NELI), research and experimental development (R&D)
personnel full-time equivalent (RTDSFTE), and road density (RD) were extracted from
the Statistical Yearbook. For some of these indicators, correlation coefficients were used
to fill in missing data [43,44]. For example, the freight turnover of agricultural products
transported by the cold chain (FTAPTCC) was calculated using road turnover, the road
cold chain coefficient, and the shares of the road cold chain in the cold chain market and
fresh products in cold chain products, ensuring a high degree of accuracy [45]. The number
of cold-chain-related policies issued by the government (NCCPIG) was determined by
inquiry and involved researching and recording government policies that support the cold
chain in each province. Number of cold chain logistics enterprises (NCCLE), capacity of
cold room (CCR), and number of refrigerated vehicles (NRV) were based on sample survey
data collected by the Zhong Guan Cun Green Cold Chain Logistics Industry Alliance from
1000 enterprises across the nation, ensuring authenticity and credibility and reflecting the
infrastructure and operations of cold chain logistics in each Chinese province. Number of
cold chain logistics patent applications (NCCLPA) was queried using Python [3].

Data for per capita water resources (PCWR), sown area (SA), annual average mean
temperature (AMT), and nonhazardous disposal of domestic waste (HDCHG) were found
in the China Statistical Yearbook for each respective year [46]. Sewage treatment capac-
ity (STC) data were calculated from the China Urban and Rural Construction Statistical
Yearbook, while discharge of major pollutants in wastewater (DMPW) was calculated by
summing the emissions of ammonia nitrogen, total nitrogen, total phosphorus, and volatile
phenols from provincial statistical yearbooks, considering the characteristics of cold chain
logistics for fresh agricultural products [47,48]. The carbon emissions (CE) was calculated
using the IPCC formula, with any missing data supplemented by the IPCC emission factor
database.

3. Methodology

Considering the multifaceted and intricate interactions between CCLFAP and the
EE [3,49], this study utilizes the random forest (RF) and extreme gradient boosting (XG-
Boost) models to leverage their strengths in handling high-dimensional data and capturing
complex relationships among variables. These models are employed to investigate the
foundational relationship between the development of CCLFAP and EE. Building on this,
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we conducted a visual analysis of the influencing relationships among variables using a
correlation heatmap based on Pearson’s correlation coefficient. Additionally, the gener-
alized additive model (GAM) was applied to pinpoint significant factors impacting the
interaction between CCLFAP and EE, thereby offering a comprehensive insight into the
dynamics at play. This approach not only validates the basic relationship, but also uncovers
the significant elements influencing the ecological effects of cold chain logistics for fresh
agricultural products.

3.1. Random Forest Regression Model

Random forest is a machine learning algorithm that utilizes decision trees. It generates
multiple decision trees and computes the average predicted values for regression tasks,
effectively addressing the issue of overfitting [50].

The process of constructing a random forest regression model can be summarized
as follows: (1) Iteratively sample the dataset N times to generate new sample sets.
(2) Randomly select features to form feature subsets. (3) Determine the optimal splitting
attributes for each new sample set and feature subset to construct individual decision trees.
(4) Reiterate these steps m times to create m decision trees. (5) Combine the results from
all decision trees by averaging their predicted values to obtain the final prediction. In this
model, the weak classifier employs the CART tree, also referred to as a CART regression
tree, which essentially performs a continuous partitioning of the original feature space to
obtain multiple subspaces.

f (x) =
N

∑
n=1

Cn I(x ∈ ON)

The input unit is divided into N units, namely, O1, O2, . . . ON, and each unit has a
fixed output Cn. Cn is the average value of yi corresponding to xi in region ON .

The evaluation metrics used for testing the model accuracy in this paper are the mean
absolute error (MAE), root mean square error (RMSE), and determination coefficient (R2).

MAE =

n
∑

i=1
|yi − ŷi|

n

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2

where yi is the true value, ŷi is the predicted value, and n is the number of samples.

3.2. XGBoost Model

XGBoost is an ensemble learning algorithm based on gradient boosting decision
trees [51]. Compared with the random forest model, which constructs multiple decision
trees by randomly selecting samples and features, the XGBoost model obtains a base
regression tree from the initial training set, trains a new base regression tree based on the
current prediction error, and iterates many times to obtain the final regression function f (x)
by weighting multiple base learners. The objective function for constructing the t-tree is
as follows:

ŷj =
L

∑
l

fl
(
xj
)
, fl ∈ F

where ŷj is the final predicted value of the model, L represents the number of combined
decision trees as the number of trees to be adjusted, fl represents the l tree, xj represents the
j input sample, and F is the set of all tree models.

The objective function formula is:

Obj(t) =
n

∑
j=1

loss
(

yj, ŷ(t−1)
j + fl

(
xj
))

+ Ω( ft) + c
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where Obj(t) denotes the objective function when constructing the t tree; loss stands for
residual error; ŷ(t−1)

j represents the predicted value calculated by the preceding t − 1 tree;
c stands for a constant term; and Ω(ft) represents the regular term of the t tree, which
determines the depth of the tree. The regular term formula can be given as:

Ω( ft) = γT +
1
2

λ
T

∑
o=1

w2
0

where γ and λ represent regular term coefficients; T is the number of leaf nodes in a tree;
and w0 indicates the weight of the 0th leaf node in a tree.

Both the random forest regression model and the XGBoost model are considered
exemplary ensemble learning algorithms. In terms of their algorithmic principles, the
random forest regression model performs regression tasks by building multiple decision
trees and subsequently averaging their predicted values. In contrast, XGBoost addresses
regression tasks by iteratively training multiple decision trees with weighted combinations.
Regarding feature selection, the random forest model employs a random feature selection
approach to mitigate the risk of model overfitting. This is achieved by randomly selecting
different feature subsets when constructing each decision tree. On the other hand, XGBoost
employs incremental training and fine-tuning of feature splitting points to optimize variable
selection and weight parameter adjustments in continuous iterations. This approach
enhances the model’s performance. Comparing these two methods in this study serves to
enhance research accuracy and improve the interpretability of the study results.

3.3. Pearson’s Correlation Coefficient

Pearson’s correlation coefficient is a linear correlation coefficient used to reflect the
degree of linear correlation between two variables [52]. It is defined as the ratio of the
covariance to the product of the standard deviations of two variables, and can be expressed
as follows:

ρX,Y =
cov(X, Y)√
D(X)

√
D(Y)

=
E[X − E(X)][[Y − E(Y)]]√

D(X)
√

D(Y)

where E represents the mathematical expectation, D represents the variance, and
√

D is the
standard deviation. E[X − E(X)][[Y − E(Y)]] is called the covariance of random variables
X and Y, denoted as cov(X, Y)Cov(X, Y) = E[X − E(X)][[Y − E(Y)]], while the quotient
of covariance and standard deviation between the two variables is called the correlation
coefficient between the random variables CCLFAP and EE, denoted as ρX,Y . The correlation
coefficient’s value falls within the range of −1 to 1. A positive value indicates a positive
correlation between two variables, while a negative value suggests a negative correlation.
The closer the absolute value of the correlation coefficient is to 1, the stronger the linear
correlation between the two variables. In general, when the correlation coefficient is greater
than or equal to 0.6, it indicates a significant correlation, and when it exceeds 0.8, it signifies
a strong and highly significant correlation.

3.4. Generalized Additive Model

Due to the complex nature of the relationship between CCLFAP and EE, traditional
linear models may not be sufficient to capture the intricacies of these interactions. To address
this limitation, we sought a model that would allow for a more nuanced exploration of the
data, enabling the identification of nonlinear patterns and relationships. The generalized
additive model (GAM) is a compelling choice in this context. The GAM combines the
generalized linear model (GLM) and an additive model, providing a non-parametric
extension of the GLM, allowing for more flexible modeling of nonlinear relationships [53].
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The generalized linear model examines the influence of each explanatory variable on the
dependent variable and can be expressed as follows:

g(Y) = β0 +
p

∑
j=1

βjXj

where Y is the dependent variable, X is the explanatory variable, and β0 is the intercept
term. Xj represents the parameter for the explanatory variable.

In the GAM constructed in this paper, the influence of explanatory variables on
the dependent variable is not entirely linear. Nonlinear functions replace n explanatory
variables in the GLM, based on the framework of the generalized linear model, as follows:

g(Y) = s0 +
n

∑
i=1

si(Xi) +
m

∑
j=n+1

β jXj

where Y represents the EE system and X1, X2, . . . Xn and X1, X2, . . ., Xm represent the
indicators impacting the EE system. s0 represents the intercept term, and s(.) denotes the
smoothing function, which represents the nonlinear relationship between a dependent
variable and explanatory variables. n is the number of smoothing terms, corresponding to
the number of explanatory variables that have nonlinear effects on the dependent variable
in the model.

4. Results
4.1. Relationship between the Level of Development of Cold Chain Logistics of Fresh Agricultural
Products and the Level of Development of the Ecological Environment
4.1.1. Random Forest Regression Algorithm

Based on the index system for fresh agricultural products’ cold chain logistics and
the ecological environment, we adopted the entropy value method for panel data and
utilized Stata 16 software to calculate the development levels of fresh agricultural products’
cold chain logistics and the ecological environment from 2015 to 2021 in 30 provinces in
China (with some provinces having missing data). Initially, the data were standardized
and normalized based on the positive and negative impacts of the indicators. Then, the
proportion of the sample values under different indicators relative to the sum of all sample
values of the indicators was calculated. Subsequently, we computed the information
entropy and information entropy redundancy. Finally, we calculated the weights of the
indicators for the purpose of evaluating the development of the cold chain logistics of fresh
agricultural products and the development of the ecosystem, along with the composite
scores, to determine the development levels of both.

Given the resource interdependence between the ecosystem and the cold chain logistics
system (where plants and animals in the ecosystem are participants in the cold chain
logistics of fresh agricultural products) and the fact that cold chain logistics generate energy
consumption and waste, it is crucial to explore the correlation between the two. Therefore,
after obtaining the development levels of the cold chain logistics of fresh agricultural
products and the ecological environment, we constructed a random forest regression model
using MATLAB 2018 software, following the principles of the random forest regression
algorithm.

First, as depicted in Figure 1, the error decreases with the increasing number of
decision trees and stabilizes after reaching a value of 60. To ensure robust results, we set
the number of decision trees to 100 and the number of input features to 1. Simultaneously,
we have a total of 210 samples, with the first 100 samples selected for the training set and
the remaining 110 samples allocated to the test set.
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Figure 1. Error curve.

Table 2 displays the model’s fitting prediction accuracy. When considering the range
of observations and using the MAE and RMSE, smaller values for both metrics indicate
better predictive ability of the regression model. It is evident that the MAE and RMSE
for this model are relatively small, implying that the random forest model provides better
predictive accuracy. Moreover, as revealed by the R2 values, the correlation coefficients are
consistently above 0.8 for both the training and test sets, indicating that the random forest
regression model exhibits a strong fit and a robust correlation.

Table 2. Model fitting prediction accuracy.

Metric Training Set Test Set

R2 0.8779 0.81055
MAE 0.034091 0.045277
RMSE 0.050128 0.068023

Figures 2 and 3 provide a detailed comparison of the results between the training set
and test set. The error between the predicted value and the actual value is less than 0.1, with
only a few individual predictions displaying relatively larger errors. This outcome suggests
that the overall fitting effect is excellent. Consequently, the random forest regression
model effectively discerns the relationship between the comprehensive development level
of cold chain logistics for fresh agricultural products and the development level of the
ecological environment.

Figure 2. Comparison of training set prediction results.
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Figure 3. Comparison of test set prediction results.

Next, this paper generates scatter plots that compare the actual values of the develop-
ment level of fresh agricultural products’ cold chain logistics and the development level of
the ecological environment with the predicted values of the random forest regression, as
shown in Figure 4. These plots reveal a positive correlation, signifying that higher levels of
comprehensive development in the cold chain logistics of fresh agricultural products are
associated with more extensive development in the ecological environment.

Figure 4. Scatter plot of regression predictions.

4.1.2. XGBoost Algorithm

By applying the XGBoost model settings and utilizing R Studio 3.6.3 software, we
input variables x1, x2 . . ., x13 into the XGBoost model. We also divided the sample set into
a test set and a training set. The fitting and prediction effects are illustrated in Figure 5.

The R2 value of the XGBoost model was 0.83872, indicating a strong fit. Upon examin-
ing the scatter plots, it was evident that the results of both the random forest regression
model and the XGBoost model were positively correlated. This observation aligns with the
principles of green supply chain management and green logistics, further confirming the
significance of the eco-layout of cold chain logistics. Additionally, the consistency of the
conclusions obtained through two different algorithmic models validated the correlation
between the two variables.
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Figure 5. Model fitting diagram.

However, it is worth noting that as the development level of the cold chain logistics
system for fresh agricultural products improved, there were a greater number of outliers
in the comprehensive development level of the ecological environment. This observation
suggests that the advancement of cold chain logistics may have unpredictable impacts
on the ecosystem. Thus, further analysis is required in order to explore the relationships
among these influencing factors. To uncover the inherent correlation between the two
systems, this paper conducts a relationship analysis between the factors of cold chain
logistics for fresh agricultural products and the ecological environment.

4.2. Relationships between the Cold Chain Logistics of Fresh Agricultural Products and Ecological
Environmental Factors

In this paper, Pearson’s correlation coefficient is utilized to examine the relationship
between cold chain logistics for fresh agricultural products and ecological environmental
factors. Additionally, a visual representation of this correlation is presented in the form of a
heatmap, as depicted in Figure 6a–g. The upper triangle displays the resulting correlation
coefficients, while the lower triangle shows the -lg (p value). Generally, when p is less than or
equal to 0.05, there is a significant relationship between the two indicators. Furthermore, if p
is less than or equal to 0.01, it indicates a strong and significant relationship. Mathematical
operations reveal that when -lg (p value) is greater than or equal to 1.3, a significant
relationship exists between the two factors, and when -lg (p value) is greater than or equal
to 2, the relationship is even stronger.

Figure 6a–g shows the correlation heatmaps between the fresh produce cold chain
logistics factors and ecosystem factors from 2015 to 2021. By comprehensively assessing
Pearson’s correlation coefficients and the p values at a significant level, it becomes evident
that the factors within the fresh produce cold chain logistics system exert a more pronounced
influence on four ecosystem factors, specifically DMPW, CE, HDCHG, and STC. These four
factors significantly impact a broader array of elements. The correlation coefficients between
each specific fresh produce cold chain logistics factor and the aforementioned four factors are
presented in Tables 3–6, with nonsignificant factors denoted as “--”.

Combining the data from Figure 6a–g and Table 3, it becomes apparent that the num-
ber of factors significantly affecting DMPW in fresh agricultural product cold chain logistics
between 2015 and 2021 exhibits an increasing trend. OFAP, TCCLAP, and RTDSFTE, among
other indicators, exhibited a strong, significant, positive correlation with DMPW. Notably,
NELI, NCCLE, TCCLAP, RTDSFTE, TVFAP, NCCLPA, and CCR showed correlation coeffi-
cients that initially increased and then decreased, reaching their maximum values in 2018,
while the correlation coefficients of FTAPTCC displayed a significant decreasing trend. In
summary, primary pollutant emissions from wastewater are primarily associated with the
economic efficiency and technical level of regional fresh produce cold chain logistics.
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Table 3. Correlation coefficients between fresh produce cold chain logistics factors and DMPW,
2015–2021.

2015 2016 2017 2018 2019 2020 2021

NELI 0.48 0.77 0.79 0.79 0.66 0.57 0.57
NCCLE 0.43 0.65 0.66 0.72 0.57 0.53 0.49
NCCPIG -- -- -- -- -- -- --

OFAP 0.91 0.64 0.66 0.68 0.71 0.75 0.77
PCCFAP -- -- -- -- -- -- --
TVFAP 0.65 0.68 0.61 0.69 0.51 0.45 0.46

TCCLAP 0.71 0.85 0.87 0.87 0.74 0.67 0.71
FTAPTCC 0.83 0.54 0.57 0.57 0.46 0.4 0.49
RTDSFTE 0.4 0.78 0.79 0.81 0.65 0.56 0.6
NCCLPA -- 0.72 0.75 0.78 0.58 0.48 0.41

NRV -- 0.41 -- 0.4 -- 0.53 0.49
CCR 0.41 0.64 0.65 0.61 0.46 0.43 0.46
RD -- -- -- -- -- -- --

By analyzing the data from Figure 6a–g and Table 3, which span the years 2015 to
2021, it becomes evident that the factors within the fresh agricultural product cold chain
logistics system significantly impacting CE exhibit an increasing trend. Compared to the
factors within the same year, the NELI and NCCLE had the most substantial impacts
on both the CE and NRV. The correlation coefficient between NRV and CEs significantly
increased starting in 2019. The correlation coefficients of the other factors with CEs exhibited
slight fluctuations. In summary, CE is strongly correlated with the key elements within
the fresh agricultural product cold chain logistics system and with indicators related to
economic efficiency.

Table 4. List of correlation coefficients between fresh produce cold chain logistics factors and CE,
2015–2021.

2015 2016 2017 2018 2019 2020 2021

NELI 0.57 0.6 0.57 0.53 0.57 0.57 0.54
NCCLE 0.59 0.58 0.6 0.51 0.49 0.51 0.5
NCCPIG -- -- -- -- -- -- --

OFAP -- -- -- -- -- -- --
PCCFAP -- -- -- 0.44 0.38 0.45 0.41
TVFAP -- 0.39 0.43 0.4 0.39 0.43 0.41

TCCLAP 0.48 0.5 0.48 0.45 -- -- --
FTAPTCC -- -- -- -- -- -- --
RTDSFTE 0.49 0.52 0.51 0.49 0.48 0.51 0.48
NCCLPA 0.41 0.52 0.44 0.49 0.47 0.47 0.41

NRV 0.43 0.45 0.41 -- 0.5 0.51 0.5
CCR -- 0.58 0.56 0.47 0.44 0.47 0.47
RD -- -- 0.38 -- -- 0.37 0.42

Examining the data from Figure 6a–g and Table 5, spanning the years 2015 to 2021, it
becomes apparent that the number of factors for which CCLFAP has a significant impact
on HDCHG is basically the same. NELI, NCCLE, TCCLAP, RTDSFTE, NCCLPA, CCR,
and HDCHG exhibited significantly strong positive correlations. Notably, the correlation
coefficient between the NRV and HDCHG experienced a substantial surge starting in
2020, with the 2020–2021 correlation coefficient values consistently reaching or exceeding
0.88. Overall, HDCHG displays a high correlation with indicators related to the economic
efficiency and technical level of the cold chain logistics of fresh agricultural products.
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Table 5. List of correlation coefficients between fresh produce cold chain logistics factors and HDCHG,
2015–2021.

2015 2016 2017 2018 2019 2020 2021

NELI 0.91 0.92 0.93 0.92 0.91 0.94 0.93
NCCLE 0.8 0.82 0.83 0.88 0.87 0.89 0.88
NCCPIG -- -- -- -- -- -- --

OFAP 0.55 0.53 0.53 0.53 0.52 0.58 0.57
PCCFAP 0.37 -- 0.39 -- 0.41 0.42 --
TVFAP 0.77 0.78 0.76 0.73 0.76 0.75 0.71

TCCLAP 0.88 0.9 0.91 0.89 0.82 0.83 0.83
FTAPTCC 0.41 0.41 0.41 0.4 0.41 0.42 0.41
RTDSFTE 0.93 0.93 0.94 0.95 0.92 0.93 0.94
NCCLPA 0.8 0.91 0.9 0.92 0.86 0.89 0.82

NRV 0.43 0.45 0.43 0.54 0.55 0.89 0.88
CCR 0.65 0.78 0.78 0.74 0.73 0.78 0.77
RD -- -- -- -- -- -- --

Combined with Figure 6a–g and Table 6, upon comparing data from different factors
within the same years, from 2015 to 2021, it is evident that the NCCLE, TCCLAP, RTDSFTE,
and NCCLPA exerted the most significant influence on the STC. The correlation coefficient
between the NRV and STC exhibited a significant increase in 2020, and both had correlation
coefficients exceeding 0.85 from 2020 to 2021. Overall, there is a high correlation between
STC and indices related to the economic efficiency and technical level of fresh agricultural
product cold chain logistics.

Table 6. List of correlation coefficients between fresh produce cold chain logistics factors and STC,
2015–2021.

2015 2016 2017 2018 2019 2020 2021

NELI 0.92 0.93 0.94 0.93 0.92 0.93 0.92
NCCLE 0.81 0.86 0.86 0.87 0.84 0.88 0.86
NCCPIG -- -- -- -- -- -- --

OFAP 0.49 0.47 0.46 0.47 0.45 0.5 0.49
PCCFAP 0.4 -- 0.41 0.38 0.44 0.42 --
TVFAP 0.68 0.69 0.68 0.68 0.71 0.67 0.63

TCCLAP 0.86 0.86 0.86 0.85 0.77 0.76 0.76
FTAPTCC 0.4 0.39 0.39 0.38 -- -- --
RTDSFTE 0.9 0.91 0.91 0.94 0.91 0.92 0.92
NCCLPA 0.79 0.89 0.89 0.91 0.86 0.86 0.76

NRV 0.45 0.47 0.42 0.51 0.5 0.88 0.86
CCR 0.64 0.79 0.75 0.7 0.68 0.71 0.69
RD -- -- -- -- -- -- --

In summary, this study reveals that the ecological environment system and the factors
of the cold chain logistics system interact with each other by examining the correlation be-
tween 13 development indicators of cold chain logistics for fresh agricultural products and
7 ecological indicators in 30 provinces from 2015 to 2021. The recent increase in consumer
output and production scale has led to the discharge of a substantial amount of wastewater
pollutants due to immature refrigeration technology and improper wastewater treatment.
The development of cold chain logistics has primarily contributed to the degradation of
water resource ecology. The expansion of the cold chain logistics scale inevitably results in
increased pollutant emissions, technological advancements, a growing workforce, and the
development of patents, which can enhance domestic waste and pollutant management,
mitigating ecological deterioration to some extent. The development of cold chain logistics
is closely tied to ecological degradation, but external interventions such as technological
progress and workforce development can help to slow the degradation trend.
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The correlation heatmap reveals the relationship between each factor of fresh agricul-
tural cold chain logistics and each factor of the ecological environment. Each year exhibits
different trends. The correlation coefficients of FTAPTCC, NRV, and other factors show
significant variation, highlighting the intricate and ever-changing influence of cold chain
logistics on the ecological environment of fresh agricultural products. This paper utilizes
the GAM model to investigate how CCLFAP factors affect the overall EE.

4.3. Study on the Influencing Factors of the Cold Chain Logistics of Fresh Agricultural Products on
the Ecological Environment
4.3.1. Model Preprocessing and Testing

Before proceeding with GAM modeling, it is crucial to assess whether there is multi-
collinearity among the selected variables. This paper employs R Studio 3.6.3 to determine
this using the variance inflation factor (VIF). A variance inflation factor exceeding 10 indi-
cates severe multicollinearity in the regression model. According to diagnostic criterion
for covariance, a variance inflation factor less than 10 is acceptable when the tolerance of
independent variables exceeds 0.1. Thus, from Figure 7, where VIF values greater than 10
are displayed in red and those less than or equal to 10 are shown in green, the variables
TCCLAP (X7) and RTDSFTE (X9) have VIF greater than 10. Consequently, these variables
are eliminated to avoid the influence of multicollinearity on the GAM results.

Figure 7. Value of variable VIF.

Subsequently, this paper constructs a GAM model using R Studio 3.6.3 and tests the
residuals of each factor of the ecological environment system and the cold chain logistics
of fresh agricultural products. The results are shown in Figure 8. The residual quantile-
quantile plots and histograms indicate that the data satisfy a normal distribution. The
fitted values in the graph demonstrate that the fitted values in the model align well with
the corresponding variables. The scatter distribution of the residual values is relatively
random. In summary, the model for the influencing factors of the ecological environment
and cold chain logistics of fresh agricultural products exhibits a good fit.
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Figure 8. Plot of the model residual test.

4.3.2. Analysis of the Results Based on GAM

To delve deeper into the linear and nonlinear relationships between the factors of the
ecological environment system and agricultural product cold chain logistics, a multivariate
GAM model is further analyzed. The R2 value of 0.899 for the model indicates a strong
fitting effect, meaning that the model is highly capable of capturing the trends in the
data [54]. The relevant simulation results are presented in Table 7:

Table 7. Results of the GAM model for the effects of factors on the cold chain logistics of fresh
agricultural products.

S (.) Edf Ref.df F p Value

S (NELI) 1.000 1.000 32.084 0.000 ***
S (NCCLE) 7.920 7.920 8.222 0.000 ***
S (NCCPIG) 1.597 1.597 0.950 0.229

S (OFAP) 1.000 1.000 0.765 0.383
S (PCCFAP) 1.000 1.000 2.856 0.092 *
S (TVFAP) 1.000 1.000 109.983 0.000 ***

S (FTAPTCC) 5.772 5.772 15.102 0.000 ***
S (NCCLPA) 1.000 1.000 2.831 0.094 *

S (NRV) 1.000 1.000 40.842 0.000 ***
S (CCR) 1.000 1.000 13.748 0.001 ***
S (RD) 1.000 1.000 3.893 0.049 **

Notes: * p < 0.1; ** p < 0.05; *** p < 0.001.

According to the results, the NELI, NCCLE, PCCFAP, TVFAP, FTAPTCC, NCCLPA,
NRV, CCR, and RD all passed the significance test (p < 0.1). p < 0.1 indicates at least 90%
certainty, i.e., a certain factor of CCLFAP has a significant impact on EE. This means that, in
addition to NCCPIG and OFAP, other factors greatly impact the ecological environment
system, and the results of GAM are statistically significant. Overall, it is more consistent
with the results of previous studies [3]. However, for NCCPIG, it is inconsistent with the
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findings of some studies. A possible reason is that some policies are proposed to focus only
on the operational aspects of CCLFAP and do not consider the EE. For OFAP, this means
that the current production model is environmentally sound again, and it is more the case
that the other aspects of CCLFAP cause the EE or that the EE impacts are counteracted in
the production aspects.

Based on the best-fit model obtained, the smoothed regression function for each factor
of the cold chain logistics of fresh agricultural products was used to create a graphical
representation of the impact of these factors on the ecological environment system using
RStudio, as shown in Figure 9. In this figure, the solid line represents the smoothed fitting
curve for the impact of cold chain logistics on agricultural products on the ecological
environment system, and the dashed line represents the point-by-point standard deviation
of the fitted additive function (the upper and lower bounds of the confidence interval). A
wider gap between the dashed lines indicates greater random perturbation. The horizontal
axis represents the actual value of the independent variable, and the vertical axis shows
the smoothed fitted value of the impact of cold chain logistics factors on the ecological
environment system. The values in parentheses on the vertical axis indicate the estimated
degrees of freedom of the function.

Figure 9. Effects of cold chain logistics of agricultural products on ecosystems.

Combining the results from Table 7 and Figure 9, it becomes clear that the impacts
of NCCPIG (X3) and OFAP (X4) on the ecological environment system failed to reach
statistical significance. This indicates that NCCPIG and OFAP, indicators of governmental
concern and industry size, respectively, might play a greater role in influencing industry
development rather than having a direct connection with the EE. Alternatively, a negative
relationship between the two may exist, but the influence is less strong, or other influences
also interfere.

Conversely, the influence of NELI (X1) on the ecological environment was significantly
more marked, displaying a positive correlation. This may be attributed to the possibility
that higher employment levels could signify enhance management efficiency or potential
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for technological advancement, which in turn might positively affect EE through tech-
nological improvements, efficient logistics management, and effective talent acquisition.
This is consistent with the conclusions of He et al. and supports the idea of ecological
modernization theory [36,55].

The impact of NCCLE (X2) on the ecological environment system was found to be
more complex. The analysis indicated that an increase in NCCLE initially contributes
positively to the ecological environment by improving logistics efficiency and reducing
ecological footprint. However, as the market becomes saturated, the competition forces
enterprises to adopt environmentally detrimental technologies, leading to increased energy
consumption and emissions. This underscores a nuanced, non-linear relationship between
NCCLE growth and its ecological consequences. This is consistent with the environmental
Kuznets curve and expands on the study of Babagolzadeh et al. more explicitly [21].

PCCFAP (X5) displays a slight negative correlation with the ecological environment
system, suggesting that as the per capita consumption of fresh agricultural products rises,
there is greater pressure on the ecological environment, albeit with a low impact coefficient.
This indicates that heightened consumption may result in an overuse of resources and
increased environmental pressures, although this effect is not evident.

TVFAP (X6) shows a significant positive correlation with the ecological environment
and experiences minimal disturbance. In essence, a higher trading volume of fresh agricul-
tural commodities correlates with improved ecological development. Increased turnover
means optimized market efficiency along with standardization of product packaging and
distribution, which can reduce resource waste and environmental pressure [56].

FTAPTCC (X8) has a relatively intricate impact on the ecological environment system.
For values below 70, the impact is weak, but between 70 and 170, there is a noteworthy
positive correlation. Beyond 170, a significant negative correlation emerges, indicating
that heightened freight turnover may lead to a decline in ecological environment quality.
This implies that, at low to moderate turnover levels, an increase in turnover can enhance
transport efficiency and reduce waste. However, when turnover reaches a certain scale, the
adverse effects of increased energy losses and emissions may outweigh the benefits [57].

NCCLPA (X10) demonstrated a negative correlation with the ecological environment
system, suggesting that patent applications in cold chain logistics might not adequately
consider ecological impacts and could potentially introduce environmentally harmful
substances. Additionally, the deployment of innovative technologies might be delayed, or
may not achieve the desired results, thereby postponing their environmental benefits [58].

NRV (X11) and CCR (X12) showed significant positive correlations with the ecological
environment system, indicating that an increase in refrigerated trucks and cold storage
capacity not only helps to preserve fresh agricultural products, but also diminishes environ-
mental impact. This highlights the crucial role of infrastructure development in reducing
food wastage and enhancing resource efficiency. Nonetheless, the effect of CCR on the
ecological environment diminishes with increase, and the ecosystem experiences a greater
random effect from NRV (X11). Beyond a certain point of infrastructure development, the
beneficial impact on environmental protection becomes insufficient.

Lastly, RD (X13) was negatively correlated with ecosystem development, indicating
that increased road density leads to more traffic and higher carbon emissions, thus inflicting
considerable environmental harm. Cold chain logistics requires not only the transportation
of commodities, but also the continuous supply of electricity to maintain a low-temperature
environment during transportation, leading to increased energy consumption and carbon
emissions. In addition, the construction of roads requires a significant amount of natural
resources. This further confirms the validity of previous studies [25,26].

5. Conclusions

This study collected data on each index through authoritative information such as the
China Statistical Yearbook, and the results show that the greater the level of comprehensive
development of fresh agricultural product cold chain logistics, the greater the level of
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comprehensive development of the ecological environment. The economic benefits and
technical level of the fresh agricultural product cold chain logistics system are closely related
to the ecological pressure and ecological response of the ecological environment system.
Among these factors, the NELI, NRV, TVFAP, and CCR are significantly positively correlated
with the EE; the PCCFAP, NCCLPA, and RD are significantly negatively correlated with
the EE; and the effects of the NCCLE and FTAPTCC on the EE fluctuate. To promote more
harmonious development of cold chain logistics for fresh agricultural products and the
ecological environment, we propose the following suggestions:

1. Supporting the construction of cold chain logistics facilities and equipment. The
construction of cold chain logistics facilities and equipment should be improved by
focusing on refrigerated vehicles and cold rooms, and these facilities should comply
with the requirements of construction and operation standards to provide a stable
storage environment for fresh agricultural products. At the same time, it is necessary
to pay attention to equipment supervision and to comprehensively consider the
economic benefits and consumption outputs of facilities and equipment, such as
carbon emissions and waste emissions, as well as the timely replacement of obsolete
equipment.

2. Scientific and technological innovation should be strengthened in low-pollution cold
chain logistics. Innovations in low-pollution cold storage, transportation, temper-
ature monitoring, and packaging technologies should be encouraged. Specifically,
enterprises can adopt biodegradable and environmentally friendly packaging, new
energy-saving temperature-controlled transportation vehicles, new energy sources to
provide energy technology, and the re-creation of recycled materials. In addition, the
training of such innovative cold chain logistics personnel should be strengthened.

3. The marketization of cold-chain logistics for fresh agricultural products should be
promoted by moderately increasing the number of participating entities, promoting
market competition, and sharing the social responsibility of corporate environmental
protection. The construction of a green certification system can be carried out to certify
and reward enterprises that comply with environmental protection standards, through
which the images of enterprises can be upgraded and their market competitiveness
enhanced. In addition, associations and enterprises are encouraged to expand the
scope of service business, explore and promote the integrated service model, and
realize the efficient management of fresh agricultural products and cold chain logistics.
Thus, service quality will be improved and the market scale will be expanded.

4. The formulation of policies on green fresh produce cold chain logistics should be
strengthened, and through policy guidance and standard-setting, the main parties
involved in fresh produce cold chain logistics can be encouraged to maintain the most
favorable practices for the ecological environment in the face of market competition or
consumption growth. At the same time, the transportation network of fresh produce
cold chain logistics should be optimized so as not to blindly expand the roads, and
the empty rate of transportation vehicles should be reduced by decreasing the rate
of transportation vehicles, etc., under the condition of maintaining an appropriate
freight turnover. This will reduce pollution of the environment.

The above suggestions can provide enterprises with guidelines for the future direc-
tion of cold chain logistics innovation and the optimization of operation strategies, and
can provide the government with references for cold chain logistics policy making and
infrastructure construction planning. Although this study can improve the environmental
friendliness of the cold chain logistics of fresh agricultural products, it also has limitations
and does not take into account the different characteristics of each region. Future research
can further combine regional characteristics to show the relationship between fresh produce
cold chain logistics and the ecological environment in a more explicit way, as well as to
propose differentiated policy suggestions for each region.
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