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Abstract: Soil nutrients are essential for plant growth, and it is crucial to accurately detect their
levels. However, current methods for detecting soil nutrients still have low accuracy and high
costs. In this study, we propose a multi-source fusion feature approach that combines multispectral
image technology with electronic nose gas response technology to achieve rapid, high-precision,
and cost-effective detection of soil nutrients, including soil organic matter (SOM), total nitrogen
(TN), available potassium (AK), and available phosphorus (AP). To begin, a multispectral camera
was used to collect spectral images and extract seven index features. Additionally, an electronic
nose was used to collect soil pyrolysis gases to obtain the response curve and extract seven response
features. These two sets of features were effectively fused to form a 106 × 98 fusion feature space.
Secondly, principal component analysis (PCA) and Pearson correlation coefficient (PCC) algorithms
were used to optimize and reduce the dimensionality of the fused feature space. Finally, a predictive
model of the relationship between the feature space and the nutrient content of the soil samples was
established using the random forest (RF) and partial least squares regression (PLSR) algorithms. The
predictive performance of the model was used to evaluate the accuracy of soil nutrient detection.
The results showed that the PLSR modeling of the optimized feature space of PCA achieved high
accuracy in predicting the levels of main soil nutrients, with R2 values for SOM, TN, AK, and AP of
0.96, 0.95, 0.84, and 0.73, and the RMSE values of 0.56, 0.07, 3.21, and 3.70, respectively. Compared
to using only electronic nose gas response technology, the soil nutrient detection with multi-source
data features method in this study not only improved the accuracy for SOM and TN but also for
metal elements AK and AP in soil. The spectral index features proposed in this study were able to
compensate for the limitations of the electronic nose response features, and modeling with the fusion
feature space resulted in an accurate prediction of SOM, TN, AK, and AP levels.

Keywords: electronic nose; multispectral images; multi-source features; prediction model; soil
nutrient detection

1. Introduction

The primary components of soil nutrients, including SOM, TN, AK, and AP, are signifi-
cant indicators of soil fertility and quality. Therefore, it is imperative to conduct quick and
accurate content detection for these essential indicators. The traditional methods for detecting
SOM, TN, AK, and AP content mainly involve chemical assays, such as the potassium dichro-
mate volumetric method [1,2], the Kjeldahl nitrogen determination method [3,4], sodium
bicarbonate extraction-molybdenum antimony spectrophotometry [5,6], and the ammonium
acetate flame photometer method [7]. However, these methods have drawbacks, including
long detection times, susceptibility to contamination, and complex operations.

In recent years, satellite remote sensing technology has become widely used for soil
nutrient detection. This method involves acquiring multispectral images through satellite
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remote sensing, calculating various spectral indices based on the spectral bands, and indi-
rectly characterizing soil nutrient information. Researchers such as He [8], Sorenson [9],
Gholizadeh [10], and others have utilized Sentinel-2 remote sensing images to predict soil
nutrient content by extracting remote sensing spectral indices, integrating phenological
parameters, and using bare soil composite images. Machine learning was used to construct
a prediction model to predict nutrient content in surface soil. While studies have shown the
feasibility of remote sensing methods for predicting soil nutrient content, there are some
disadvantages to this approach. These include the complicated pre-processing of remote
sensing images, low detection accuracy due to the low spatial resolution, and the inability
to detect soil nutrient content in a timely manner due to satellite revisiting. Additionally, it
is important to note that remote sensing methods can only gather information about the sur-
face of the soil. However, relying solely on surface information is not reliable for accurately
predicting soil nutrients. In most cases, it is necessary to collect soil samples at different
depths (10 cm, 20 cm, 30–60 cm, 80 cm, etc.) to accurately predict soil nutrient content. By
analyzing the spatial information of soil nutrients, it is possible to accurately predict the
content of soil nutrients, which cannot be achieved through remote sensing methods.

Spectrometers are commonly used for detecting soil nutrients due to their fast, non-
destructive, and reliable properties [11–14]. Many researchers have utilized spectrometers
to conduct spectral testing on deep mixed soils in dark-room environments. By analyzing
the peak variations in the spectral absorption curve to characterize soil nutrient content.
Studies have shown that different soil nutrients exhibit strong responses within specific
spectral bands [15,16]. However, the use of spectrometers is limited by their high cost and
the requirement for fixed darkroom environments, making it difficult to rapidly detect soil
nutrient content on a large scale. It has been mentioned that multispectral cameras, with
their compact size and cheaper cost, can be a cost-effective alternative to spectrometers [17].
When a multispectral camera captures images of soil, sunlight acts as the light source,
illuminating the soil sample. The camera then captures the reflected light [18], which
has been absorbed by soil nutrients selectively within specific spectral bands, resulting in
single-band spectral images [19]. When experimental conditions and environments are
consistent, a higher soil nutrient content will lead to a brighter spectral image, indicating a
stronger response in that particular band. Therefore, a more cost-effective multispectral
camera can be utilized as a replacement for a spectrometer, significantly reducing the
detection cost of soil nutrient content.

Electronic nose technology has been extensively utilized in gas detection [20], whereas its
application in soil nutrient content detection has only been proposed in recent years [21–24].
This technology predicts soil nutrient content by leveraging odor information, aiming to
address the limitations of spectrometry and remote sensing spectroscopy, which struggle to
simultaneously achieve cost-effectiveness and prediction accuracy. By designing a gas sensor
array to obtain information on soil cracking gas combined with machine learning to predict
soil nutrient content, this method demonstrates rapid detection performance. However, the
gas volatility of salt nutrients such as phosphorus and potassium is limited under high-
temperature cracking, resulting in a relatively homogeneous odor. As a result, the detection
accuracy for AP and AK content using an electronic nose is not optimal.

To compensate for the weaknesses of the electronic nose method for detecting main
soil nutrient contents, this study proposes a method that utilizes spectral features extracted
from soil spectral images to enhance the electronic nose method. This approach aims to
provide a rapid, low-cost, and high-precision prediction of SOM, TN, AK, and AP contents.
The process of soil nutrient detection in this study is illustrated in Figure 1. Air-dried soil
samples were crushed and sieved, then divided into three portions. The first portion was
utilized to measure the values of SOM, TN, AK, and AP using chemical detection methods.
The second portion was employed to capture spectral images with a spectral camera and
extract index features from them. The third portion was subjected to gas thermal cracking
in an electronic nose to obtain response features. These response features were then fused
and optimized with the index features. Subsequently, the fused and optimized features
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were used to establish a relationship model between the feature space and the measured
values, enabling accurate predictions of soil nutrient content.

Agriculture 2024, 14, x FOR PEER REVIEW 3 of 17 
 

 

detection methods. The second portion was employed to capture spectral images with a 
spectral camera and extract index features from them. The third portion was subjected to 
gas thermal cracking in an electronic nose to obtain response features. These response 
features were then fused and optimized with the index features. Subsequently, the fused 
and optimized features were used to establish a relationship model between the feature 
space and the measured values, enabling accurate predictions of soil nutrient content. 

 
Figure 1. Flow of soil nutrient content prediction study. 

2. Materials and Methods 
2.1. Soil Sample Collection 

Soil samples were collected in the spring of 2021 from an experimental field at the 
Institute of Agricultural Science in Gongzhuling City, Jilin Province. The collection area is 
shown in Figure 2. The soil samples in this batch were classified as black soil according to 
the FAO-United Nations soil classification system. Black soil is a common type of culti-
vated soil in Jilin Province, known for its strong uplifting and disturbance qualities. Spe-
cial areas such as roadsides, fields, ditches, and fertilizer piles were avoided during col-
lection in order to ensure the randomness and homogeneity of the sample. Instead, the 
plum-shaped sampling method was used, taking five portions of soil within the 4–20 cm 
tillage layer at each sampling point for homogeneous mixing. Approximately 1 kg of soil 
samples were collected, resulting in a total of 106 soil samples being collected. After nat-
ural drying in the laboratory, the soil was ground and passed through a 70-mesh sieve to 
produce 106 soil samples with particles smaller than 2 mm. Of these samples, 30 g each 
will be used for detection using the electronic nose and multispectral imaging methods 
employed in this study. The remaining soil samples will undergo chemical analysis to 
determine the content of the main nutrients in the soil and obtain accurate values. 

Figure 1. Flow of soil nutrient content prediction study.

2. Materials and Methods
2.1. Soil Sample Collection

Soil samples were collected in the spring of 2021 from an experimental field at the
Institute of Agricultural Science in Gongzhuling City, Jilin Province. The collection area is
shown in Figure 2. The soil samples in this batch were classified as black soil according to
the FAO-United Nations soil classification system. Black soil is a common type of cultivated
soil in Jilin Province, known for its strong uplifting and disturbance qualities. Special areas
such as roadsides, fields, ditches, and fertilizer piles were avoided during collection in
order to ensure the randomness and homogeneity of the sample. Instead, the plum-shaped
sampling method was used, taking five portions of soil within the 4–20 cm tillage layer
at each sampling point for homogeneous mixing. Approximately 1 kg of soil samples
were collected, resulting in a total of 106 soil samples being collected. After natural drying
in the laboratory, the soil was ground and passed through a 70-mesh sieve to produce
106 soil samples with particles smaller than 2 mm. Of these samples, 30 g each will be used
for detection using the electronic nose and multispectral imaging methods employed in
this study. The remaining soil samples will undergo chemical analysis to determine the
content of the main nutrients in the soil and obtain accurate values.
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2.2. Electronic Nose Response

Odor can directly reflect the characteristic information of a substance. Thermal crack-
ing technology can make the soil volatilized from macromolecular compounds by cracking
and volatilization into gaseous small molecular compounds [25–27]. These include water
vapor, carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), ammonia (NH3),
nitric oxide (NO), ethylene (C2H4), and propane (C3H8) [28,29]. In this study, an electronic
nose array was designed using 10 MEMS gas sensors (electrochemical gas sensors produced
by Zhengzhou Weisheng Electronic Technology Co., Ltd. Zhengzhou, China) to detect the
gases produced during pyrolysis and obtain features that can characterize the content of
main nutrients in soil. The electronic nose gas response device based on thermal pyrolysis
is shown in Figure 3 and consists of a closed reaction chamber containing the 10 MEMS
gas sensors. The experimental conditions for soil nutrient detection by electronic nose are
shown in Table 1. The detection process involves placing a soil sample in the quartz tube,
which is then cracked for 3 min in the tubular cracking furnace to produce the gas. The
vacuum gas pump then pushes the gas into the closed reaction chamber, where the sensor
array detects it and generates responsive electrical signals. These signals are then filtered,
amplified, and converted into digital signals by the signal processing circuit. Finally, the
data is uploaded to a computer via a data acquisition card. After each response, the entire
gas path is washed for 3 min before the next soil sample is detected. The gas response curve
is shown in Figure 4. Prior to the reaction of the sensor array, the voltage of the 10 sensors
remained stable for the first 90 s. Once the closed reaction chamber is filled with cracking
gas and the reaction begins, the voltage increases in response and gradually stabilizes.
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Table 1. The experimental conditions for soil nutrient detection by an electronic nose device.

Experimental Parameters Conditional Values

Collection location Jilin University
Collection time 2022

Cracking temperature 400 ◦C
Cracking time 3 min
Response time 3 min
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Figure 4. Sensor array gas response curves. S1–S10 represent the 10 sensor numbers.

After the detection of all soil samples, the gas response curves of the sensor array
will be analyzed to extract relevant features. In this study, seven features were extracted,
including the seventh-second transient value (TV7S), mean differential coefficient (MDCV),
maximum value (MAX), mean value (MEAN), response maximum area (RAV), relative
steady state mean value (RSMV), and relative change value (RCV). This resulted in a
feature space of 106 × 10 × 7, which includes information such as transient value, stable
value, dispersion, overall intensity, and rate of change of the sensor array response data.
These features effectively characterize the response curve of the gas sensor. The 7 response
features and their corresponding feature numbers are shown in Table 2, where S1–S10
represent the numbering of Sensor 1 to Sensor 10. The feature numbers correspond to the
10 features of the respective 10 sensors.

Table 2. Gas response features and their corresponding sensor feature numbers.

Response Features Sensors Feature Numbers

TV7S S1, S2, S3. . .. . .S9, S10 T1, T2, T3, T4, T5, T6, T7, T8, T9, and T10
MDCV S1, S2, S3. . .. . .S9, S10 D1, D2, D3, D4, D5, D6, D7, D8, D9, and D10
MAX S1, S2, S3. . .. . .S9, S10 A1, A2, A3, A4, A5, A6, A7, A8, A9, and A10

MEAN S1, S2, S3. . .. . .S9, S10 E1, E2, E3, E4, E5, E6, E7, E8, E9, and E10
RAV S1, S2, S3. . .. . .S9, S10 R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10

RSMV S1, S2, S3. . .. . .S9, S10 M1, M2, M3, M4, M5, M6, M7, M8, M9, and M10
RCV S1, S2, S3. . .. . .S9, S10 C1, C2, C3, C4, C5, C6, C7, C8, C9, and C10

2.3. Multi-Spectral Image Acquisition

There are a limited number of gas compounds present in the soil pyrolysis compo-
nents that characterize potassium and phosphorus. As a result, the electronic nose method
may not be very effective in detecting AK and AP. Previous studies have shown that the
600–800 nm spectral range is a common spectral response range for organic matter in
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various types of soils within the study area [30]. The 250–750 nm range is particularly sen-
sitive to soil phosphorus [31], while the 400–600 nm range is where the spectral sensitivity
for available potassium is concentrated [32]. The strongest correlation between spectral
reflectance and total soil nitrogen is found within the 400–600 nm range [33]. Therefore, a
multispectral camera was used in this study, which was the one carried by the DJI Elf 4
Multispectral Edition UAV, produced by SZ DJL Technology Co., Ltd. Shenzhen, China.
The camera is equipped with one visible light lens and five multispectral lenses (blue (B):
450 ± 16 nm, green (G): 560 ± 16 nm, red (R): 650 ± 16 nm, red edge (RE): 730 ± 16 nm,
and near-infrared (NIR): 840 ± 26 nm). As shown in Figure 5a, the camera lens essentially
covers the sensitive spectral bands of the main soil nutrients, enabling clear acquisition
of multispectral data from the soil. The process of acquiring a multispectral image of the
soil is shown in Figure 5b. The multispectral camera was fixed on a shooting platform
with a petri dish of 9.5 cm in diameter placed beneath the lens. A 30 g soil sample, spread
evenly to a thickness of 0.25 cm, was placed in the dish. The multispectral image acqui-
sition conditions of the soil as shown in Table 3, the camera was positioned 18 cm above
the soil surface, capturing the entire sample. Soil spectral images were collected at Jilin
Agricultural University in 2023. The weather was clear and sunny on that day, and the soil
was photographed with sunlight as a supplementary light source. Each soil sample yielded
5 single-band spectral images, as shown in Figure 5c, which could be obtained for each soil
sample. The resolution of all the images was 1600 × 1300. A total of 106 soil samples were
collected and used for spectral index feature extraction.
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Figure 5. (a) is a schematic diagram of the lens of the multispectral camera; (b) is a schematic diagram
of soil sample collection by the multispectral camera; and (c) is a single-band spectral image of
soil samples.

Table 3. Soil spectral image acquisition conditions.

Experimental Parameters Conditional Values

Shooting location Jilin Agricultural University
Shooting time 2023

Image resolution 1600 × 1300
Supplementary light source Sunlight

Shooting distance 18 cm

Some studies have suggested that it is possible to use spectral indices to predict
soil nutrients. For example, Biney and their team [34] used a drone equipped with a
multispectral camera (with 6 bands: blue (475 nm), green (560 nm), red (668 nm), red edge
(717 nm), near-infrared (840 nm), and thermal 11 µm) to capture multispectral images
of soil. They then extracted spectral indices and used them to model and predict soil
organic carbon, comparing their approach with remote sensing methods and proximal
spectroscopy. Heil [35] also used a drone equipped with a multispectral camera (with
5 bands: blue (465–485 nm), green (550–570 nm), red (663–673 nm), red edge (713–723 nm),
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and NIR band (820–840 nm)) to capture multispectral images of soil. They used a threshold
method to remove vegetation from the soil, extracted indices from the resulting bare soil
images (including brightness index, red–green difference index, deep green index, etc.), and
established a model for predicting soil organic matter content. The results of their research
suggest that it is feasible to use indices extracted from bare soil multispectral images for
predicting soil nutrient levels. Xu [36] conducted a study on the extraction of spectral
indices from remote sensing images of bare soil and developed a model for predicting
soil organic matter. The results of this study were promising. These studies highlight the
significance of vegetation indices for soil studies. After reference, in this study, ENVI 5.3
software was used to process the spectral images of bare soil and calculate and extract seven
spectral indices from 106 soil samples. These indices included the Normalized Differences
Vegetation Index (NDVI) [37], Enhanced Vegetation Index (EVI) [38], Normalized Difference
Red Edge (NDRE) [39], Ratio Vegetation Index (RVI) [40], Modified Soil Adjusted Vegetation
Index (MSAVI) [41], Transformed Vegetation Index (TVI) [42], and the Second Brightness
Index (BI2) [43]. The calculation formulas for each index are shown in Equations (1)–(7).
The maximum (max), minimum (min), mean, and standard deviation (StdDev) of each
index were extracted to form a 106 × 7 × 4 spectral index feature space. The feature
numbers are listed in Table 4.

NDVI =
NIR − R
NIR + R

(1)

EVI = 2.5 × NIR − R
NIR + 6 × R − 7.52 × B + 1

(2)

NDRE =
NIR − RE
NIR + RE

(3)

RVI =
NIR

R
(4)

MSAVI =
2 × NIR + 1 −

√
(2 × NIR + 1)2 − 8 × (NIR − R)

2
(5)

TVI =
(

NIR − R
NIR + R

+ 0.5
) 1

2
× 100 (6)

BI2 =

√
R × R + G × G + NIR × NIR

2
(7)

Table 4. Spectral indices and their corresponding feature numbers.

Spectral Index Features Feature Numbers

NDVI Nmax, Nmin, Nmean, and Nstd
EVI Emax, Emin, Emean, and Estd

NDRE Dmax, Dmin, Dmean, and Dstd
RVI Rmax, Rmin, Rmean, and Rstd

MSAVI Smax, Smin, Smean, and Sstd
TVI Tmax, Tmin, Tmean, and Tstd
BI2 Bmax, Bmin, Bmean, and Bstd

The seven extracted index features were individually analyzed for correlation with the
true values of SOM, TN, AK, and AP. The resulting heatmap is shown in Figure 6. These
figures display the correlations between features as well as the correlations between the
features and the true values. The bottom row of (a), (b), (c), and (d) in the figure indicates
varying levels of correlation between the features and the true values of SOM, TN, AK, and
AP. This heatmap confirms the feasibility of using a multispectral camera to capture bare
soil images in this study, as it demonstrates a significant correlation between the extracted
spectral features and the actual values of soil nutrients.



Agriculture 2024, 14, 605 8 of 16

Agriculture 2024, 14, x FOR PEER REVIEW 8 of 17 
 

 

TVI Tmax, Tmin, Tmean, and Tstd 
BI2 Bmax, Bmin, Bmean, and Bstd 

The seven extracted index features were individually analyzed for correlation with 
the true values of SOM, TN, AK, and AP. The resulting heatmap is shown in Figure 6. 
These figures display the correlations between features as well as the correlations between 
the features and the true values. The bottom row of (a), (b), (c), and (d) in the figure indi-
cates varying levels of correlation between the features and the true values of SOM, TN, 
AK, and AP. This heatmap confirms the feasibility of using a multispectral camera to cap-
ture bare soil images in this study, as it demonstrates a significant correlation between the 
extracted spectral features and the actual values of soil nutrients. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Spectral index features correlation heatmaps with soil nutrients: (a) is the heatmap of the 
correlation between features and SOM; (b) is the heatmap of the correlation between features and 
TN; (c) is the heatmap of the correlation between features and AK; and (d) is the heatmap of the 
correlation between features and AP. 

2.4. Feature Optimization Algorithms 
The spectral index features of 106 × 28 were randomly fused with the electronic nose 

response features of 106 × 70, resulting in a fused feature space of 106 × 98. However, high-
dimensional data often suffer from information redundancy issues. Feature extraction and 
optimization play a crucial role in the quality of subsequent modeling. By selecting the 

Figure 6. Spectral index features correlation heatmaps with soil nutrients: (a) is the heatmap of the
correlation between features and SOM; (b) is the heatmap of the correlation between features and
TN; (c) is the heatmap of the correlation between features and AK; and (d) is the heatmap of the
correlation between features and AP.

2.4. Feature Optimization Algorithms

The spectral index features of 106 × 28 were randomly fused with the electronic nose
response features of 106 × 70, resulting in a fused feature space of 106 × 98. However,
high-dimensional data often suffer from information redundancy issues. Feature extraction
and optimization play a crucial role in the quality of subsequent modeling. By selecting
the most effective features from the original features to reduce the dimensionality of the
dataset, the accuracy of regression can be improved.

The feature optimization currently applied in soil nutrient detection can be divided
into feature dimensionality reduction and feature selection. The former widely utilizes
PCA for dimensionality reduction, where the method maps the N-dimensional features of
the original data to K dimensions. The new K dimensions are orthogonal features, known
as principal components, obtained by the coefficient matrix composed of feature vectors in
the new coordinate system. After PCA dimensionality reduction, the principal components
are orthogonal to each other, which can eliminate the factors of mutual influence among the
original data while retaining most of the essential information, achieving the dimensionality
reduction effect.

Feature selection is mostly achieved through PCC. By calculating the covariance
between the feature and the true value, divided by the product of their respective standard
deviations, the correlation coefficient between the two can be evaluated. The value ranges
from −1 to 1, with a coefficient closer to 0 indicating less correlation between the features.
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This method utilizes importance feature ranking to intuitively select significant features.
However, features with low correlation also contain important information about sample
variations. Discarding them during dimensionality reduction may impact the effectiveness
of subsequent modeling.

2.5. The Regression Prediction Model

Currently, machine learning methods used for predicting soil nutrient content mostly
include RF and PLSR [44,45]. RF uses a simple averaging method to construct multiple
decision trees and combine their prediction results for regression prediction. However, it
may not be suitable for small samples of data. The PLSR model combines the strengths of
multiple linear regression, principal component analysis, and canonical correlation analysis,
making it suitable for high-dimensional datasets and situations with multicollinearity.

In this study, the coefficient of determination (R2), root mean square error (RMSE),
and residual prediction deviation (RPD) were selected as the evaluation criteria for the
model. The R2 (Equation (8)) is used to measure the proportion of the variability in
the dependent variable that can be explained by the independent variables. It ranges
from 0 to 1, where a higher R2 value indicates a larger proportion of the total variance
explained by the regression, and a closer fit between the regression line and the observed
data points suggests that a greater portion of the variation in the y-values can be explained
by changes in the x-values, indicating a better fit of the regression. The RMSE (Equation (9))
is a typical metric for regression models, indicating the magnitude of errors in the model
predictions. A smaller RMSE is preferred, as it reflects smaller errors and a better fit of the
model. RPD (Equation (10)) is similar to R2, but is more suitable for non-linear models. It
reflects the variation in the response variable explained by the model and is used to further
evaluate the predictive performance of the model.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (8)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (9)

RPD =

√√√√∑n
i (yi − yi)

2

∑n
i (yi − ŷi)

2 (10)

3. Results and Discussion
3.1. Data Downscaling and Selection

The dimension of the fusion feature space, which is 106 × 98, was optimized using
the PCA and PCC methods. The PCA method was utilized to reduce the dimension
of the fused feature space, with a target cumulative contribution rate of 95% for the
variance information. This resulted in the first principal components for SOM, TN, AK,
and AP having contribution rates of 40.41%, 40.49%, 40.36%, and 40.36%, respectively. The
cumulative contribution rates for the first 17 principal components were 95.46%, 95.30%,
95.32%, and 95.37%, indicating that only 17 principal components are necessary to capture
the essential information of the feature space for all four soil nutrients. In other words,
the fused feature space can be reduced to 17 dimensions. As an example, Figure 7 shows
the number of principal components after PCA dimensionality reduction for SOM, where
G(k) represents the contribution rate, Pi represents the i-th principal component, and the
curve represents the cumulative contribution rate. The contribution rates for the 1st to
17th principal components in SOM are 40.41%, 16.94%, 9.68%, 5.97%, 5.34%, 3.69%, 2.14%,
1.92%, 1.68%, 1.58%, 1.23%, 1.12%, 0.90%, 0.87%, 0.77%, 0.67%, and 0.53%, respectively. The
cumulative contribution rate for the 17 principal components can reach 95.46%.
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The PCC method was used to select features in the fused feature space. The condition
set was set at r > 0.1, meaning that only features with a correlation coefficient of r > 0.1
were considered important. The results are shown in Table 5, with 71 features having
a correlation greater than 0.1 with SOM. One-third of these features are spectral index
features. There are 79 features with a correlation greater than 0.1 with TN, and sensor 5
shows a stronger correlation with TN. For AK, there are 57 features with a correlation
greater than 0.1, with the spectral index feature (Bstd) being the most highly correlated.
There are 68 features with a correlation greater than 0.1 with AP. To further refine the
features, modeling was conducted using the most important features, resulting in 31, 37,
17, and 15 features being optimal for SOM, TN, AK, and AP, respectively.

Table 5. Importance ranking of features after PCC dimensionality reduction.

Main Soil Nutrients Feature Importance Ranking (r > 0.1)

SOM
R2, E2, M2, T3, T2, E3, R3, A2, D2, C2, M3, A3, Nmax, Tmax, C3, D3, Smax, Sstd, Dstd, T1, Dmax, Smean, Nmean, Tmean, M6,
R6, E6, A6, T6, Emean, Bmax, M9, Bstd, T8, E10, R10, A9, M10, R9, E9, Bmean, T9, D9, Bmin, C9, A10, Rstd, E1, R1, T10, Emin,
Rmean, A7, M1, Tmin, Dmean, Smin, Nmin, A1, C8, D8, M7, Rmin, E7, R7, E8, R8, A4, Rmax, T7, and T5

TN
A5, R5, E5, M5, T5, C5, D5, Rmax, M1, M8, R1, E1, C7, D7, C8, D8, R8, E8, A1, A8, A7, M7, T9, E7, R7, T1, T10, C9, D9, R9,
E9, T4, A9, E10, R10, A10, M10, D3, M9, C3, C1, D1, T8, T7, A4, A3, C10, A6, D10, M6, C6, D6, R6, E6, R4, E4, A2, M4, Nmin,
Emin, Emean, Estd, M3, R2, E2, M2, T2, Dstd, T6, Dmean, Nstd, R3, E3, Nmean, D2, C2, Rstd, Nmax, and Tmax

AK
Bstd, T3, D4, C4, E3, R3, T9, D6, C6, M3, Tmean, M2, E2, R2, C2, D2, A2, T2, C3, D3, Nmean, A3, T1, Smean, Smax, Rstd, Tmax,
Nmax, Nstd, D8, C8, Emin, C1, D1, T10, Dmax, Tstd, E1, R1, E4, R4, E9, R9, M4, Rmean, M1, E10, R10, T4, Dmin, C7, M10, D7,
M9, D10, Sstd, and C10

AP
R2, E2, A2, M2, A3, T2, M3, C2, D2, E3, R3, C3, D3, T3, A5, M5, E5, R5, D6, C6, C7, D7, D5, C5, T6, D8, C8, C4, A1, D4, D1,
C1, M1, R6, E6, T5, Sstd, Emin, M6, Bmean, Bstd, M8, A7, M7, T9, Dmean, E1, R1, E7, R7, D10, Nstd, C10, Dstd, A6, A8, Tmin,
Nmin, Rmin, Smax, Smin, Bmax, Tmax, Nmax, Emean, M4, Emax, and Rmax

To validate the effectiveness of the feature optimization method, a genetic algorithm-
backpropagation neural network (GA-BP) was used to establish regression models for
SOM, TN, AK, and AP. The evaluation criterion used was R2, and a comparison was made
to determine the best feature space optimization method. The results for the test set are
shown in Table 6. The optimized feature space generated by the PCA algorithm enhances
the performance of the prediction model. For the SOM, TN, AK, and AP prediction
models constructed with PCA, the prediction accuracy R2 values are 0.8380, 0.7944, 0.6812,
and 0.5904, respectively, with all feature spaces having 17 dimensions. While PCC may
intuitively select important features, it directly eliminates features with low correlation
from the original set, resulting in suboptimal performance due to the loss of features.
In contrast, PCA maps important information from high-dimensional features to low-
dimensional features, retaining a broader range of feature information with the fewest
feature dimensions and ultimately achieving the best predictive performance.
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Table 6. Validation results of the feature optimization method.

Methods Main Soil Nutrients Optimal Number of Features
GA-BP

R2

PCA

SOM

17

0.8380
TN 0.7944
AK 0.6812
AP 0.5904

PCC

SOM 31 0.7592
TN 31 0.7356
AK 17 0.5793
AP 15 0.4792

3.2. Modeling Results of Different Regression Models

The feature space was optimized using PCA and combined with machine learning
algorithms to establish RF and PLSR regression models for predicting the main nutrient
content of the soil. The results of the RF modeling can be seen in Figure 8, with (a), (b), (c),
and (d) displaying the predictive performance of the RF model on the validation set for
SOM, TN, AK, and AP, respectively. The predictions for SOM resulted in an R2 value of
0.88, an RMSE of 1.12, and an RPD of 2.84. For TN, the values were R2 = 0.85, RMSE = 0.08,
and RPD = 2.54. For AK, the values were R2 = 0.77, RMSE = 4.16, and RPD = 2.06. And for
AP, the values were R2 = 0.63, RMSE = 5.25, and RPD = 1.52.
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The prediction results of the PLSR modeling with the reduced feature space of PCA
can be seen in Figure 9. The predictive performance for SOM on the test set is represented
by (a), with evaluation metrics of R2 = 0.96, RMSE = 0.56, and RPD = 5.66. Similarly,
(b) represents the predictive performance for TN on the test set, with evaluation metrics of
R2 = 0.95, RMSE = 0.07, and RPD = 4.48. The predictive performance for AK on the test set
is shown by (c), with evaluation metrics of R2 = 0.84, RMSE = 3.21, and RPD = 0.37. Lastly,
(d) represents the predictive performance for AP on the test set, with evaluation metrics of
R2 = 0.73, RMSE = 3.70, and RPD = 1.73.
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After comparing the results of the two models, it can be seen that the PLSR model
achieved higher R2 values for predicting SOM, TN, AK, and AP, with an increase of 8, 10, 7,
and 10 percentage points, respectively, in contrast to the RF model. Additionally, the PLSR
model had lower RMSE values and demonstrated better RPD performance. Furthermore,
from the result figures, it can be visually observed that the positions of the training and
validation set samples in Figure 9a–d corresponding to the PLSR-predicted SOM, TN,
AK, and AP, respectively, exhibit significantly better fitting than those in Figure 8a–d
corresponding to the RF-predicted results. This indicates that the PLSR model outperforms
the RF model in predicting the major nutrient content of soil.

3.3. Comparison of Soil Nutrient Detection Methods

To validate the effectiveness of our multi-spectral technology combined with the
thermal decomposition–electronic nose method for detecting soil nutrient content, we
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conducted a comparison with a method that uses a single electronic nose for detecting
soil nutrient content, as shown in Table 7. The results demonstrate that our proposed
fused feature space modeling approach outperforms feature space modeling based on
the response of a single electronic nose. Specifically, for predicting SOM, our R2 value
improved by 5 percentage points, and the RMSE was reduced by 5.37 compared to the
results reported in reference [46]. Similarly, for TN prediction, our R2 value improved
by 2 percentage points and the error decreased by 0.15 compared to the results reported
in reference [47]. Furthermore, our prediction accuracy for AK and AP was 0.84 and
0.73, respectively, representing improvements of 5 and 15 percentage points, respectively,
compared to the results reported in reference [48]. These findings demonstrate that the
fused features obtained from the integration of multiple sources of data in this study
effectively compensate for the limited accuracy of the single electronic nose detection
method for AK and AP. It verifies the feasibility of the proposed approach in this study.

Table 7. Comparison with single e-nose detection methods from other studies.

Authors
SOM TN AK AP

References
R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD

Xia 0.90 5.98 2.85 - - - - - - - - - [46]
Li - - - 0.93 0.22 3.79 - - - - - - [47]

Liu - - - - - - 0.78 23.10 1.88 0.58 4.69 1.52 [48]
Ours 0.96 0.56 5.66 0.95 0.07 4.48 0.84 3.21 2.37 0.73 3.70 1.73 -

To further validate the effectiveness of the soil nutrient content detection method
proposed in this study, its performance was compared with two commonly used methods
(spectroscopy and remote sensing) for soil nutrient content detection. The results of this
comparison are presented in Table 8. Proximal spectral detection technology exhibits
higher accuracy compared to remote sensing methods. This is attributed to the fact that
remote sensing methods acquire images of large land areas from a macroscopic perspective
and predict soil nutrient content by extracting indices related to soil nutrients. However,
the detection process is influenced by factors such as cloud cover and spatial resolution,
resulting in lower detection accuracy [49,50]. Spectral methods characterize soil nutrient
content by acquiring microscopic soil spectral reflection information. The prediction
accuracy for SOM content can reach above 0.90 [51]. However, spectral methods are
influenced by factors such as soil sample particle size and detection environment. Wang
utilized spectral methods to detect available potassium in soil, with a prediction accuracy
R2 of only 0.49 for AK content [52], which is much lower than the prediction accuracy of
this study. In the study of soil nutrient content, spectroscopy and remote sensing methods
are mostly based on soil organic matter, with limited research on nitrogen, phosphorus, and
potassium in soil. This paper investigates the content of soil nutrients, including SOM, TN,
AK, and AP, laying the theoretical foundation for further soil nutrient content detection.

Table 8. Comparison with commonly used methods for detecting soil nutrient content.

Methods
SOM TN AK AP

References
R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Remote sensing Zhou - - 0.57 0.24 - - - - [49]
Gasmi 0.69 0.56 - - 0.51 159.29 0.44 44.10 [50]

Spectroscopy He 0.91 0.08 - - - - - - [51]
Wang - - - - 0.49 22.80 - - [52]

Ours 0.96 0.56 0.95 0.07 0.84 3.21 0.73 3.70 -
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4. Conclusions

In this study, a data fusion method based on a multispectral combined electronic nose
is proposed. Soil spectral index features were data fused with electronic nose response
features. By utilizing algorithm optimization to construct the optimal feature space, a soil
nutrient content prediction model is built, enabling high-precision prediction of SOM, TN,
AK, and AP content in soil nutrients. The main conclusions were as follows:

(1) The correlation heatmap between spectral index features and SOM, TN, AK, and AP
showed a certain degree of correlation between spectral indices and soil nutrients,
with each feature exhibiting varying degrees of correlation with different nutrients.
This indicates that spectral indices can effectively utilize multispectral images of soil.

(2) The modeling results indicate that the utilization of multispectral technology can assist
electronic nose techniques in achieving higher precision prediction of soil nutrient
content. Compared with other studies, whether employing single electronic nose
methods or conventional detection techniques, the performance of the multi-source
feature fusion method proposed in this study demonstrates superiority. Additionally,
it significantly reduces the prediction cost of soil nutrient content, paving the way for
new avenues in subsequent research on soil nutrient detection.

(3) Compared to existing methods that primarily focus on predicting SOM content, this
study also achieved the prediction of two nutrients (AK and AP) that, although they
represent a small proportion of soil nutrients, are nevertheless important. This lays
the theoretical foundation for multi-nutrient detection methods in soil. Although the
prediction accuracy of AK and AP in this study meets the requirements of general
agriculture, further research is needed to develop higher-precision detection methods
to enhance the prediction accuracy of AK and AP content, aiming for precision and
intelligent agricultural practices.
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