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Abstract: Farmland soil respiration (Rs) significantly impacts the global carbon (C) cycle. Although
nitrogen (N) can promote crop growth and increase yields, its relationship with Rs and its constituents,
including autotrophic respiration (Ra) and heterotrophic respiration (Rh), remains unclear. Therefore,
a field study was carried out in a cabbage (Brassica pekinensis Rupr) system to probe the impact
of N addition on Rs, Ra, and Rh. Five levels of N addition, including 0 kg N hm−2·yr−1 (N0),
50 kg N hm−2·yr−1 (N50), 100 kg N hm−2·yr−1 (N100), 150 kg N hm−2·yr−1 (N150), and 200 kg
N hm−2·yr−1 (N200), started in March 2022. The Rs (Ra and Rh) and soil samples were measured
and collected twice a month. The findings revealed the following: (1) N fertilizer enhanced Ra
while reducing Rs and Rh; (2) soil temperature (ST), belowground net primary productivity (BNPP),
soil inorganic N (SIN), and soil total C/total N (C/N) were the significant elements influencing Ra,
and microbial biomass carbon (MBC), SIN, and microbial diversity (MD) were the primary factors
influencing Rh; (3) partial least squares-path models (PLS-PM) showed that ST and SIN directly
impacted Rh, while ST and BNPP tangentially influenced Ra; (4) 150 kg N hm−2·yr−1 was the ideal
N addition rate for the cabbage in the region. In summary, the reactions of Ra and Rh to N fertilizer
in the Northeast Plains are distinct. To comprehend the underlying processes of Rs, Ra, and Rh,
further long-term trials involving various amounts of N addition are required, particularly concerning
worsening N deposition.

Keywords: N addition; soil respiration; soil temperature; autotrophic respiration; heterotrophic
respiration; random forest; PLS-PM

1. Introduction

Nitrogen (N) deposition in the atmosphere from human activities has increased sig-
nificantly for over a century and is anticipated to worsen in the following decades [1].
The second-largest carbon (C) circulation in ecosystems [2] and the primary origin of
atmospheric carbon dioxide (CO2) emissions from terrestrial ecosystems are both signifi-
cantly impacted by this worldwide rise in soil respiration (Rs) [3]. Currently, there is no
consensus on how N addition affects Rs, as it can cause promotion [4,5], inhibition [6–8],
or no alteration [9,10]. Forecasting atmospheric CO2 absorption is difficult due to these
contradictory and perplexing findings, raising uncertainty when evaluating C-climate
feedback [11]. Although prior research has concentrated on forests and meadows [12–14],
there are limited investigations on the reaction of farmland Rs on N fertilizer, despite its
significant impact on global C cycling. N enhances crop yield, but its relationship with Rs
remains unclear. Therefore, this research investigates how N-adding affects Rs, Ra, and Rh
in a cabbage (Brassica pekinensis Rupr) system.
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Rs is responsible for returning photosynthesis-sequestered C into the atmosphere [15].
However, predicting how Rs will respond to N addition is complicated because it consists
of two elements: Ra (autotrophic respiration) and Rh (heterotrophic respiration), produced
by the roots of plants, mycorrhizae, rhizosphere microorganisms, and the microbial degra-
dation of vegetable matter and soil organic matter, respectively [11]. Determining the
contribution of Ra and Rh to Rs is essential to understanding the balance of soil C storage,
primarily influenced by the equilibrium of both C intake and Rs [16,17]. While it is broadly
recognized that N deposition increases aboveground output, its effects on Ra and Rh are still
being studied. This information gap hampers our knowledge of whether the agroecosystem
acts as a C sink or source under increasing N deposition.

Furthermore, as the main processes of Rh and Ra are distinct, they may respond
differently to environmental factors, emphasizing the importance of investigating their
changes under varying conditions [17]. Understanding what controls Rs is critical for crop
management because precise actions can enable the soil to take in atmospheric C [18].
N fertilizer has been shown to produce diverse effects on soil CO2 effluences [19,20].
Whereas some studies found that N input increased Rs [21–23], they also suggested that
the ecosystem-stimulating effects of N loading may cause C storage to decline. N fertilizer
has been shown to suppress Rs by reducing organic C decomposition and increasing soil
organic carbon (SOC).

Cabbage is a widely cultivated crop with significant nutritional and economic value.
Optimizing N management in cabbage cultivation can enhance crop yield, improve quality,
and reduce environmental impacts, such as nitrate leaching and greenhouse gas emissions.
Specifically, different N levels have been found to affect yield, quality, and N utilization,
indicating an optimal N application range for high productivity and quality [24]. Moreover,
studies have demonstrated that reduced nitrogen with bio-organic fertilizer can enhance
soil quality and increase the yield and quality of cabbage, pointing towards sustainable
fertilization strategies that support both crop performance and environmental health [25].
Furthermore, some studies on the effects of N fertilizer on soil and plant respiration pro-
cesses, while not exclusively focused on cabbage, offer insights applicable to its cultivation.
For instance, research has shown that N fertilizer can significantly impact the total soil, root,
and microbial respiration rates in plantations, suggesting a decrease in these rates with
N fertilizer [26–28]. This information is critical for optimizing N application in cabbage
systems to balance growth and soil microbial health.

Nevertheless, it remains obscure whether the correlations between soil biochemical
parameters and Rs (Ra and Rh) vary at different levels of N addition. N fertilizer use is
expected to continue rising with human-made N deposition rates. Therefore, it is essential
to understand the connections between N fertilizer and Rs (Ra and Rh). Additionally,
this research aims to provide a theoretical foundation for better ecosystem management
techniques, offer parameter evaluation and model verification, and enhance predictions of
farmland ecosystem responses to atmospheric N deposition. Although respiration does
happen and its degree of impact on SOC build-up is also more or less well known, it still
depends on the climates, soil type, and aboveground vegetation. This study had a specified
study site, soil type, and aboveground vegetation, its study results are more targeted, and
we further explained the relevant phenomena from a quantitative perspective. To achieve
these objectives, we performed a field study based on the cabbage system in the Northeast
China Plain. We measured and calculated Rs, Rh, Ra soil total C, total N, microbial biomass
carbon (MBC), microbial biomass nitrogen (MBN), microbial diversity (MD), microbial
richness (MR), aboveground net primary productivity (ANPP), and belowground net
primary productivity (BNPP). Specifically, this study aimed to (1) explore the implications
of distinct N application levels on Ra and Rh, (2) identify the influencing factors and
pathways between Ra and Rh, and (3) ascertain the ideal quantity of N addition for cabbage
cultivation in this region.
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2. Materials and Methods
2.1. Study Site Description

The research was conducted in Changchun City (43◦88′ N, 125◦35′ E), Jilin Province,
Northeast China. The climate is a zone known as the temperate monsoon with an average
yearly temperature of 6.9 ◦C and annual precipitation ranging from 582 to 635 mm. The
accumulative annual temperature ranges from 2650 to 2860 ◦C. Based on the USDA soil
taxonomy (Nachtergaele, 2001), the soil belongs to the Mollisols order, Ustolls suborder,
Argiustolls great group, and Calcidic Argiustolls subgroup. Before commencing the exper-
iment of measuring Rs (23 October 2021), topsoil samples (0–20 cm) were collected and
tested using Bao (1981) [29]. The results showed that the natural C content was 20 g·kg−1,
while the total N content was 3.6 g·kg−1. The soil pH ranged from 6.3 to 7.4, and its sand,
silt, and clay concentrations were 54. 34%, 16.82%, and 29.12%, respectively.

2.2. Experimental Design

A field trial was carried out using a randomized block design consisting of five treat-
ments: (1) 0 kg N hm−2·yr−1 (N0), (2) 50 kg N hm−2·yr−1 (N50), (3) 100 kg N hm−2·yr−1

(N100), (4) 150 kg N hm−2·yr−1 (N150), and (5) 200 kg N hm−2·yr−1 (N200), with six
replications for each treatment. This experiment involved planting cabbage on 15 August
2021 and 4 August 2022. A total of thirty plots were established on 9 December 2020 and
2021, with five treatment plots measuring 10 m × 10 m in every block, with a 10 m distance
between each block. Ammonium nitrate (NH4NO3, N content over 33%) was used as the
N addition and applied at the beginning of each growth season month (from August to
October). The test variety was “Jijin”, a popular cabbage cultivar in Jilin Province. Cabbage
was harvested in early October. The cabbage’s growth period, from the elongation to dough
stage, was between late August and mid-September, with controlling weeds manually
employed during the growing seasons. No chemical fertilizer or manure was used except
for N fertilizer to limit variables. The specific dates of cabbage cultivation can be seen in
Table 1.

Table 1. The specific dates of cabbage cultivation.

2021 2022

Planting 15 August 4 August
N Fertilizing 25 August, 15 September, 5 October 15 August, 1 September, 1 October

Manually weeding 15 August to 11 October 4 August to 7 October
Harvesting 11 October 7 October

2.3. Measurement of Rs and Rh
2.3.1. Experimental Setup

On December 2020, one year preceding the commencement of the formal experiment,
we initiated our experimental setup by inserting two distinct types of PVC collars into
the soil of each plot designated for measurement. This preparatory step was crucial to
minimize soil disturbance and acclimatize the site for accurate respiration assessments
that followed.

2.3.2. Instrumentation and Measurement Conditions

Respiration rates were assessed using a soil respiration system (Model 3051T, Zhe-
jiang Tuopuyunnong Co., Ltd., Hangzhou, China), which includes a respiration chamber
designed for seamless integration with the PVC collars, an industrial computer, and a
display for real-time data visualization. This system calculates and displays CO2 flux rates
in µmol m−2 s−1. The measurements were meticulously scheduled on clear, sunny days
between 9:00 and 14:00 to avoid diurnal variation impacts. ST at a 5 cm depth adjacent to
each collar was monitored using a portable temperature probe, and SWC was measured at
six proximate points with a handheld moisture probe (TDR 100, Spectrum Technologies,
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Bellevue, WA, USA), ensuring that environmental variables that could influence respiration
rates were accounted for.

2.3.3. Rs and Rh Measurement Protocol

Rs and Rh were measured in March 2022. For Rs, we employed surface PVC collars
(5 cm in height) that were carefully placed 2–3 cm into the soil. These collars encapsulated
both cabbage root systems and the associated soil microbial communities, thereby allowing
for the measurement of total soil respiration (Rs), which includes contributions from
both plant root and microbial respiration, as delineated in previous studies [30]. The
measurements were strategically conducted during the cabbage growth cycle, from the
onset of spring to the harvest period, bi-monthly. This timing was chosen to capture the
dynamic respiration rates across different growth stages. To ensure the representativeness
of our data, Rs measurements were obtained from five randomly selected, non-peripheral
locations within each cabbage plot. These readings were then averaged to estimate the Rs
rates effectively, mitigating potential edge effects.

To exclusively measure Rh, which represents microbial respiration in the absence of
root activity, we utilized deeper PVC collars (40 cm in height) and inserted them 36–38 cm
into the soil. This depth was informed by our preliminary field observations, which
indicated that the majority of root biomass was confined to the top 30 cm of the soil profile.
Thus, by removing all plant material from the vicinity of these deep collars, we ensured
that the respiration measurements captured were predominantly microbial, enabling us to
isolate Rh from Rs. The difference between Rs and Rh was subsequently used to calculate
Ra, according to the methodologies outlined in prior research [31]. The collected data
underwent rigorous analysis to parse out the contributions of microbial and root respiration
to the total soil respiration rate.

2.4. Soil Sampling and Analysis

For soil analysis, a 6 cm diameter auger randomly assembled five soil cores per plot
on the 15th and 30th of each month starting in March 2022. The five core samples were
combined and filtered through a 2 mm mesh sieve. The resulting sample was then divided
into two parts. One part was placed in a sterile plastic bag, sealed, and transported to the
laboratory as soon as possible for MBC and MBN analysis at a temperature of 4 ◦C. The
other part was air-dried to determine soil pH. Within one week, all samples were analyzed.
Elemental analysis was conducted to measure the C and N levels in the soil. A continuous-
flow auto-analyzer (Elementar vario EL cube, Frankfurt, Germany) was used to quantify the
inorganic N (NH4+-N add NO3

−-N) in soil subsamples after removing it using a 2 mol·L−1

KCL solution [32]. For MBC and MBN extraction and quantification, the chloroform
direct fumigation-K2SO4 method was utilized [33]. The number of observed species was
determined to estimate bacterial and fungal richness [34]. Bacterial and fungal diversity
was assessed using the Shannon–Wiener index (H = −ΣPi·lnPi) [35]. MD represented
bacterial and fungal diversity, while MR represented bacterial and fungal richness.

2.5. ANPP and BNPP Estimations

A 1 × 1 m2 quadrat was used in each plot where there were no uncut plants to measure
the aboveground vegetation. To estimate ANPP, live plants were taken in, sorted, and
oven-dried at 70 ◦C. For the BNPP assessment, a root-in-growth approach was utilized.
In the middle of each experimental plot, two 8 cm breadth and 40 cm deep holes were
shoveled in the soil after each growing season. A 1 mm mesh sieve was used for filtering
soil samples and filled into a nylon mesh bag with 1 mm pores. Root-free soil samples were
utilized for filling the original holes. The root pieces still in the sieve after each following
growing season were dried in the oven (Nanjing Ronghua Scientific Equipment Co., Ltd.,
Nanjing, China), weighed, and used to calculate BNPP.
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2.6. Data Analysis

The statistical analysis was performed using R 3.4.2 (R Core Team, 2015), with a sig-
nificance level of 0.05 unless otherwise stated. Firstly, we conducted a repeated-measures
ANOVA to examine the impact of N on biotic and abiotic variables, Rs, and their con-
stituents. Secondly, we utilized the random forest method to determine the relative impor-
tance of regulating biotic and abiotic factors on Ra and Rh. This powerful machine-learning
technique is robust to multicollinearity and overfitting [36]. This study ran 100 times with
evaluation based on the increased mean square error (lnMSE). The contribution of each
factor was considered significant or not based on the resulting lnMSE. Finally, we employed
a partial least squares-path model (PLS-PM) to gain a mechanistic understanding of how
the soil and cabbage changes induced by N enrichment impacted Rs and its composition.
PLS-PM is a data analysis method that uses latent variables to condense observed variables,
assuming a linear relationship between them [37,38]. We quantified the direction and
strength of the linear correlations between latent variables using path coefficients, while
variability (R2) was calculated to assess the goodness of fit. The GOF statistic assessed
model accuracy, with a value exceeding 0.7 indicating an acceptable fit [39]. We used the
“inner plot” function in the R package (pls pm) to create models with different structures.

3. Results and Discussion
3.1. N Fertilizer Effects on Rs and Its Constituent Parts (Ra and Rh)

The CO2 fluxes exhibited uneven distribution during the N0, N50, N100, N150, and
N200 treatments (Figure 1). With small amounts of N fertilizer application, the effect on
Rs and its constituents was insignificant. However, the effect changed considerably with
larger quantities of N fertilizer (beyond 150 kg N hm−2·yr−1). Across all periods, N0 had
the highest Rs values, while N200 had the lowest. The average Rs rate decreased by 6.68%,
0.93%, 5.25%, and 9.34% for N50, N100, N150, and N200 compared to N0. Rh showed a
decline of 11.39%, 4.56%, 14.59%, and 16.42%, respectively. In contrast, Ra increased by
16.67%, 17.09%, 41.07%, and 25.73%, respectively. Although we acknowledge the variability
in the CO2 fluxes observed across different N treatment levels (N0, N50, N100, N150, and
N200) and the increasing complexity in Rs responses with higher N additions, the uneven
distribution of CO2 fluxes and the variability observed in soil and microbial parameters
across different nitrogen treatments emphasize the need for caution in interpreting PLS-PM
results and the associated parameter uncertainty.
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Figure 1. Rs under different N addition. Under various N treatments (N0 to N200), CO2 fluxes
displayed irregular patterns. Minimal N fertilization had negligible impacts on Rs and its components,
but substantial changes occurred with higher N levels (>150 kg N hm−2·yr−1). N0 consistently
yielded the highest Rs, while N200 the lowest. Compared to N0, Rs decreased by 6.68–9.34% for
N50–N200. Rh declined by 4.56–16.42%, but Ra rose by 16.67–41.07%. Note: (a–c) stand for Rs, Ra,
and Rh, respectively.
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Meta-analyses have shown that N fertilizer can prevent SOC decomposition and
promote soil C storage, with estimates suggesting that European forests can sequester
50–230 kg ha−1·yr−1 of soil C in reaction to N fertilizer [40,41]. As more N becomes
available, more of it will be lost to the environment. N reduces the effectiveness of adding
more N to increase soil C content. Our study found that adding lower rates of N for shorter
durations significantly increased SOC and MBC contents. However, adding higher rates
for longer durations had the opposite effect, decreasing SOC and MBC contents.

3.2. Changes in Biotic and Abiotic Factors in Response to N Addition

With increasing N application, ST initially decreased before reaching a minimum
under the N50 treatment, after which it increased. Similarly, SWC and SOC increased
before decreasing, with maxima observed under the N150 treatment. Meanwhile, the pH
and C/N values decreased while SIN continued to rise. Specifically, SOC content was
1.61%, 4.84%, 32.26%, and 22.58% upper in the N50, N100, N150, and N200 treatments,
compared to the N0 treatment. Correspondingly, SIN was 1.22%, 2.44%, 34.63%, and 46.88%
higher in the N50, N100, N150, and N200 treatments compared to N0. Figure 2 indicated
that N addition at high levels reduced ST more than at low levels. This also illustrated the
decrease in ST under N100 addition due to N enrichment stimulating ANPP. The shaded
canopy and increased standing litter can reduce the amount of solar radiation that reaches
the soil surface, decreasing ST and potentially affecting plant growth and nutrient cycling.
Figure 2 also illustrates that C/N gradually declines with increasing N fertilizer. As a result,
the capacity of the microorganisms that could break down SOC was decreased, allowing
cabbage roots to absorb more N, which raised BNPP and Ra. Han et al. discovered that
mycorrhizal respiration accounted for 38% of Ra, suggesting that the impact of BNPP on
Ra may be overestimated due to the limitations of this approach [42].
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Figure 2. Effect of N fertilization on soil biotic and abiotic factors. As N application increased, ST
decreased to a minimum under N50 then rose. Both SWC and SOC peaked under N150 before
declining, pH and C/N decreased while SIN increased. Compared to N0, SOC was elevated by
1.61–32.26% across treatments, with SIN showing a 1.22–46.88% increase. Notes: ST stands for soil
temperature, SWC for soil moisture content, SOC for soil organic matter carbon, C/N for soil total
carbon/total nitrogen, and SIN for soil inorganic nitrogen.
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Figure 2 indicates that the soil C/N in this study is 7 to 11, and microbial reproduction
and N fertilizer decomposition are quick. Excess N was released and applied to the soil for
crop utilization, which is also helpful for Ra [43]. Rh is mostly made up of soil microbes
decomposing leaf, branch, and root litter and mineralizing soil organic C [44]. When N
inputs were high, we found that Rh reduced. The addition of N-affected MD and MR levels
was significantly reduced, and the structure and function of the soil microbial community
were improved. The changes in MD and MR could also influence Rh by affecting the C/N
ratio. Our findings suggested an optimal addition rate of 150 kg N hm–2·yr–1 for SOC
sequestration in the soil; maintaining soil as a carbon sink is low-level N addition, which
can increase litter production above and below ground, thus promoting its decomposition.
However, N addition had an improved impact on SOC. It later declined with increasing N
supplement rates.

N addition significantly increased MBC and MBN while lowering MD and MR
(Figure 3). MBC and MBN increased with higher levels of N addition, reaching their
highest values at N150 before decreasing. Conversely, MD and MR decreased with in-
creasing N addition. The microbial composition was strongly affected by N fertilization.
N addition significantly increased soil SIN and the toxic impact on microorganisms, and
decreased MD and MR in Rh. Wang et al. found that Rh changes significantly under N en-
richment, and the decreased Rh in the N32 plot was attributed to changes in MBC [11]. The
decline in MD and MR, consistent with reporting a decline in MD following N enrichment
in grasslands, can be attributed to excess N [45]. In our study, Rh decreased more than Ra
increased, resulting in a decline in Rs. Excess N can reduce BNPP in cabbage lodging, and
the drop in MD may also be related to a decline in BNPP, further inhibiting Rh.
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Figure 3. Effect of N addition on soil microbial activities. Nitrogen fertilization had a profound
impact on soil microbial parameters, causing a notable surge in microbial biomass carbon (MBC)
and nitrogen (MBN), which peaked at N150 before declining. Conversely, microbial diversity (MD)
and richness (MR) diminished with escalating N levels. This altered the microbial composition
significantly. Notes: MD stands for microbial diversity (bacterial diversity plus fungal diversity), MR
stands for microbial richness (bacterial richness adds fungus richness), MBC for microbial biomass
carbon, and MBN for microbial biomass nitrogen.
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Figure 4 shows the trends of ANPP and BNPP. With constant N addition, BNPP
and ANPP increased, peaking at N50 before declining. Compared to the N0 treatment,
BNPP increased by 21.00%, 27.40%, 68.04%, and 38.81% in the N50, N100, N150, and N200
treatments, respectively.
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Figure 4. Effects of N fertilizer on ANPP and BNPP. Under sustained nitrogen fertilization, both
aboveground (ANPP) and belowground (BNPP) net primary productivity exhibited an initial rise,
peaking at the N50 level before showing a decline. Specifically, in comparison to the control (N0),
BNPP experienced notable increases of 21.00%, 27.40%, 68.04%, and 38.81% across the N50, N100,
N150, and N200 treatments, respectively. Notes: The ANPP and BNPP stand for aboveground net
primary productivity and belowground net primary productivity, respectively.

The combined analysis of several N addition experiments revealed that increasing soil
N availability markedly decreased MD and MR [46–48]. The reasons can be divided into
the following aspects. Firstly, adding more N reduced the energy needed to assimilate it
into the soil. Secondly, it also lowered the pH value of the soil and enriched dangerous
metal ions, which inhibited the growth and activity of microorganisms. In addition to
drastically reducing soil bacteria and fungi biomass, N altered the MD and MR makeup
and lowered Rh.

3.3. Pearson Correlation Analysis for Ra and Rh

The Pearson correlation revealed significant negative associations between ST and
C/N with Ra. At the same time, BNPP, SIN, ANPP, and SOC showed positive correlations
with Ra (Figure 5a). The decrease in ST, in turn, contributed to the increase in Ra. This result
is also consistent with a survey conducted by Yang et al. [17], who found that N was 12.5 ◦C
in N0, decreased to 11.5 ◦C in the N16 plots, and 11.4 ◦C in the N32 properties. Figure 5a
also indicated a strong positive association between Ra and BNPP. Ra rising in line with the
increase in BNPP was not unexpected. The cause of the incident was that BNPP was linked
to root growth, an essential source of C for Ra [49,50]. At the same time, a global synthesis
determined that BNPP was the primary factor influencing Ra and independently explained
54% of the variation in Ra [51]. Figure 5a also shows a significant positive correlation
between Ra and SIN. The main reason was the N application significantly increasing SIN
content in this cabbage field. Using SIN as fertilizer can encourage BNPP and increase
Ra [52]. The C/N ratio is crucial to how well bacteria can break down SOC [53]. The results
in Figure 5b indicated positive correlations between MD, MR, SIN, and SOC with Rh, while
MBC and MBN were significantly negatively associated with Rh (Figure 5b).
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Figure 5a shows that N fertilizer also promotes the content of SIN, which as a fertilizer,
can promote BNPP, which in turn enables Ra [54]. N addition has been discovered to
impact C/N significantly, and one potential reason was as follows. Soil microorganisms
need 5 parts of C and 1 part of N for every aspect of dissolved SOC and 20 parts of C as an
energy source. The ideal C/N ratio in the soil is 25:1. This ratio is better for developing
soil microbes [55]. When the C/N ratio exceeds 25:1, microorganisms cannot reproduce in
significant quantities, consuming all of the N generated by SOC for their growth. When
the C/N balance of the soil is less than 25:1, microorganisms proliferate fast, N breaks
down quickly, and excess N is produced, which is transferred to the ground for crop
use. The Pearson correlation analysis provided valuable insights into the relationships
between N-induced changes in soil parameters and microbial activities, while highlighting
the influence of N fertilization on soil microbial dynamics. However, caution must be
exercised in interpreting these correlations, considering potential confounding factors and
the limitations of the dataset.

3.4. Controlling Factors and Pathways for the Ra and Rh

According to a random forest analysis, ST, BNPP, SIN, and C/N were the most critical
factors that affected Ra (Figure 6a). Figure 6b indicated that the most effective predictors of
Rh, however, were MBC, SIN, and MD (all p < 0.01). The study can account for 56% and
80%, respectively, of the variation in Ra and Rh. Figure 6 indicated that ST, BNPP, SIN,
and C/N predominantly controlled the Ra variation. The primary factors affecting soil Rh
were MBC, SIN, and MD. Soil MBC reflects the amounts of microbes gaged in Rh, which
is adversely affected by excessive N and corroborates global evidence of a decline in MD
and MR [50,56,57]. A recent meta-analysis showed that the global soil microbial biomass
carbon (MBC) decreased by an average of 11%. This decline was positively correlated with
increasing rates of N addition to the soil [58]. Excessive N also has a specific impact on MD
and MR; reducing the formation of refractory compounds increases the availability of C
to soil microorganisms, for instance, alkyl, lignin, and aromatic C, ultimately inhibiting
Rh [59,60].
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Figure 6. Box plots of the relative contributions of driving factors on Ra and Rh. The most significant
factors influencing Ra were ST, BNPP, SIN, and C/N, whereas Rh was most accurately predicted
by MBC, SIN, and MD, all with p-values less than 0.01. This study explained 56% and 80% of the
variance in Ra and Rh, respectively. Note: (a,b) represent Ra and Rh, respectively. The importance of
predictor variables is assessed based on the percentage increased mean square error (lnMSE) from
100 runs of the random forest model, with ** p < 0.01, *** p < 0.001.

This investigation revealed N response patterns and the parameters influencing Ra
and Rh in a cabbage field. Figure 6 demonstrates that ST, BNPP, SIN, and C/N were
the most dominant drivers of Ra, while the three most important drivers of Rh were
MBC, SIN, and MD. One of the significant essential elements limiting plant growth is
temperature [61]. Ra largely depends on associated rhizosphere respiration [62]. Moreover,
Ra can be impacted by slight temperature changes that immediately modify the supply
of plant photosynthates [11]. The reduction in ST with increased N enrichment rates can
be due to a decrease in the amount of photosynthetic C delivered to the roots [63], which
would have an impact on Ra. Figures 5b and 6 indicate that the lack of a significant response
of Rh to N fertilizer can be ascribed to the corrective effects of the enhanced MBC on the
Rh. The enhanced MBC with N treatment was consistent with earlier investigations [64]
because MBC and MBN restrictions have been relieved due to an improved aboveground
C substrate supply. According to the N mining theory [65], when N is sufficient to suit the
needs of soil microorganisms, labile C should be preferentially degraded over recalcitrant
C, which reduces soil labile C, which suppresses microbial activity.

In PLS-PM analysis (Figure 7), ST and BNPP were identified as direct controllers of Ra,
while ST and MBC drove Rh. SIN had an indirect effect on Ra, and its direct effect on Rh
was weak (p < 0.1). Overall, the dominant drivers controlling Ra have decreased ST and
increased BNPP, considering the combined effects of various drivers (Figure 7). BNPP and
SIN directly exerted a positive effect on Ra. In contrast, the differences in Rh were primarily
explained by MBC, SIN, and MD (Figure 7).
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by decreased ST and elevated BNPP, mediated by various factors. Both BNPP and SIN positively
influenced Ra, whereas Rh variations were primarily attributed to MBC, SIN, and MD. Note: The
letters a and b represent Ra and Rh, respectively.

The high rates of N fertilization in earlier studies may overestimate the impact of N
addition on Rs due to the potential decline or stabilization of background N deposition
rates over several decades. Consequently, the impact of N addition on Rs is determined
by adding the experimental N addition rate to the background N deposition rate [66].
Therefore, accounting for early environmental conditions is critical to accurately predicting
the effect of N fertilization on soil processes, especially in light of how crucial Rs is to
maintaining the net ecosystem C balance.

4. Conclusions

The investigation uncovered the impact of nitrogen fertilization on the nitrogen cy-
cling dynamics within cabbage cultivation sites in the designated experimental area. The
augmentation of nitrogen was found to have modulated several soil and microbial parame-
ters, specifically leading to a reduction in ST, pH, C/N, microbial diversity (MD), and MR.
Conversely, it resulted in an elevation of SOC, SIN, MBC, MBN, ANPP, and BNPP. These
observed alterations appeared to be facilitated by the intricate interactions between soil
microorganisms, soil properties, and plant biomass.

Furthermore, the application of nitrogen was associated with a decline in Rs and Rh,
but an increase in Ra in the cabbage cultivation experiment. A detailed analysis revealed
that ST, BNPP, SIN, and C/N emerged as significant factors influencing Ra, while MBC,
SIN, and MD primarily governed Rh. Notably, ST and SIN exhibited a direct influence on
Rh, whereas ST and BNPP indirectly influenced Ra.

Our findings provide valuable insights into how nitrogen enrichment shapes Ra and Rh
dynamics in cabbage fields. Based on our observations, we propose that an optimal nitrogen
application rate of 150 kg N hm–2·yr–1 would be beneficial in this experimental region,
balancing plant growth requirements with soil health and microbial activity. Another
thing that should be mentioned is that while the PLS-PM approach offers a comprehensive
framework for analyzing complex relationships in nitrogen-enriched cabbage fields, its
application should be accompanied by a critical assessment of data limitations and model
validity. Future research efforts should aim to address these challenges by incorporating
robust experimental designs, increasing sample sizes, and integrating complementary
analytical techniques to enhance the reliability of findings and facilitate more informed
management decisions in agricultural systems.
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