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Abstract: The utilization of ear tags for identifying breeding pigs is a widely used technique in the
field of animal production. Ear tag dropout can lead to the loss of pig identity information, resulting
in missing data and ambiguity in production management and genetic breeding data. Therefore, the
identification of ear tag dropout is crucial for intelligent breeding in pig farms. In the production
environment, promptly detecting breeding pigs with missing ear tags is challenging due to clustering
overlap, small tag targets, and uneven sample distributions. This study proposes a method for
detecting the dropout of breeding pigs’ ear tags in a complex environment by integrating an attention
mechanism. Firstly, the approach involves designing a lightweight feature extraction module called
IRDSC using depthwise separable convolution and an inverted residual structure; secondly, the SENet
channel attention mechanism is integrated for enhancing deep semantic features; and finally, the
IRDSC and SENet modules are incorporated into the backbone network of Cascade Mask R-CNN and
the loss function is optimized with Focal Loss. The proposed algorithm, Cascade-TagLossDetector,
achieves an accuracy of 90.02% in detecting ear tag dropout in breeding pigs, with a detection speed of
25.33 frames per second (fps), representing a 2.95% improvement in accuracy, and a 3.69 fps increase
in speed compared to the previous method. The model size is reduced to 443.03 MB, a decrease of
72.90 MB, which enables real-time and accurate dropout detection while minimizing the storage
requirements and providing technical support for the intelligent breeding of pigs.

Keywords: ear tag dropout detection; IRDSC; SENet; Cascade Mask R-CNN; Focal Loss

1. Introduction

With the rapid development of the pig breeding industry towards precision, intensi-
fication, and intelligence, individual identification of breeding pigs is crucial for genetic
breeding, feeding management, disease prevention and control, and other aspects of re-
finement of farming. Large-scale farms primarily use RFID electronic ear tags to identify
individual pigs [1]. However, factors such as differences in ear tag quality, scratches from
farm facilities, and biting among pigs lead to the ear tag easily falling off. This causes
production and genetic breeding data to be lost or mixed up, affecting intelligent farming
management [2]. Therefore, real-time and accurate detection of ear tag dropout is of great
significance for the breeding management and genetic breeding in the field of breeding
pig production.

With the rapid development of computer vision technology and deep learning [3,4],
deep convolutional neural networks show a strong feature extraction ability and are widely
used for individual recognition in smart farming [5]. Deep-learning-based target detection
networks have been applied to individual recognition [6–8], posture detection [9,10], target
tracking [11,12], and counting statistics [13,14] in the field of animal husbandry, achieving
better results and verifying the feasibility of deep convolutional neural networks for
animal individual recognition. LI Jianquan et al. utilized an improved YOLOv5s model
to solve the identification problem of group-raised pigs in real environments, achieving
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dual improvements in detection accuracy and speed and offering ideas for individual pig
identification in complex environments [15]. However, the common characteristic of these
studies is the insufficient consideration of time performance. In summary, existing studies
are mainly devoted to the accuracy of detection and identification, and the effectiveness in
complex environments still needs to be further improved. No relevant research has been
conducted on ear tag dropout detection in breeding pigs.

This study presents a novel method for identifying ear tag dropout in breeding pigs in
complex environments. This approach reduces model parameters and enhances feature
extraction capabilities through depthwise separable convolution [16] and an inverted
residual structure [17]. A channel attention mechanism [18] is integrated for deep semantic
feature enhancement. Finally, an ear tag dropout detection model based on Cascade Mask
R-CNN [19] is designed to improve the accuracy and detection speed.

2. Materials and Methods
2.1. Data Acquisition

Images of breeding pigs were captured in December 2022 at a large-scale breeding pig
farm in Hohhot, Inner Mongolia Autonomous Region, China. The pigsty accommodated
28 breeding pigs aged 2 to 3 months; 2 pigs had missing ear tags, while the remaining
26 pigs had intact ear tags. A fixed-position image collection system was set up for the
experiment utilizing a hemispherical camera (DS-2PT7D20IW-DE, Hikvision, Hangzhou,
China) mounted 3.4 m above the feeding area in the pigsty (refer to Figure 1). The camera
boasted a resolution of 1920 pixels by 1080 pixels and captured images of breeding pigs in
their natural environment. The video footage was stored in the farm’s local area network,
NVR, in ASF format and encoded with H.264.

Figure 1. The layout of the pig pens during the experiment is illustrated in the diagram. The green
star represents the location of the camera. The shaded area represents the image acquisition area,
which is also the feeding area for the breeding pigs; all of the breeding pigs pass through this area
when feeding.

2.2. Establishment of the Data Sample Database
2.2.1. Data Filtering

Sixty-four video segments featuring breeding pigs with ear tag dropout were manually
selected from the collected video files. Using FFMPEG software (3.2.19), one frame was
extracted per second, resulting in 96,087 images. To enhance the model training efficiency,
the images were cropped to focus on the feeding area of the pigs, resulting in a cropped
images size of 1438 × 973 pixels. Due to the high similarity between adjacent frames,
utilizing them directly for model training could lead to overfitting. Therefore, this study
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utilized the structural similarity (SSIM) [20] algorithm to filter out highly similar images,
as demonstrated in Equation (1).

SSIM( f1, f2) =
(2µ1µ2+c1)(2σ1,2 + c2)(
µ2

1 + µ2
2 + c1

)(
σ2

1 σ2
2 + c2

) , (1)

where µ1 and µ2 represent the pixel averages of images f1 and f2, respectively; σ2
1 , σ2

2 denote
the pixel variance of images f1, f2; σ1,2 is the pixel covariance between images f1 and f2;
and c1 and c2 are two constants used to avoid division by zero, with their values both set to
0.01. The experiment established an empirical threshold for SSIM at 0.78, resulting in the
filtering of 92% of highly similar images. Subsequent manual selection was carried out to
eliminate images that were either damaged or did not feature breeding pigs, resulting in
the retention of 5865 images of breeding pigs. The dataset was then split into a training set
(4692 images) and a test set (1173 images) at a ratio of 4:1.

2.2.2. Image Annotation

The breeding pigs were masked and annotated using the open-source image annota-
tion software PaddleSeg (V2.7), with the results saved in the COCO dataset [21] format.
The training set consisted of 10,894 annotated breeding pigs, with 4605 with ear tags and
6289 without. There were 2671 annotated breeding pigs in the test set, including 1121 with
ear tags and 1550 without. Figure 2 illustrates the distribution of the data.

Figure 2. Distribution of the number of experimental datasets.

2.2.3. Data Enhancement

To verify the robustness of the model in complex environments, the Python data
augmentation library albumentations [22] and single-sample data augmentation methods
were used to augment the images in the test set equally. This includes vertical flips,
horizontal flips, Gaussian blur (convolution kernel with a size of 5 × 5 and standard
deviation of 3.0), contrast adjustment (with adjustment factors randomly sampled within
the range of −50 to 100), modification of pixel values (randomly altering RGB channel
values within the range of −50 to 50), and random occlusion (covering with a black square
whose side length ranged from 10 to 300 pixels). This generated six groups of comparative
test data, as shown in Figure 3.
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Figure 3. Image enhancement examples.

2.3. Design of the Model

Cascade Mask R-CNN enhances the performance of object detection and instance
segmentation by incorporating a cascade structure based on Mask R-CNN [23]. Our re-
search team has proposed an improved Cascade Mask R-CNN algorithm, which showed
better results in detecting ear tag dropout for breeding pigs in a production environment,
verifying the feasibility of conducting related research based on Cascade Mask R-CNN.
However, this model also faces challenges such as a large scale, leading to longer training
and inference times that require more computational resources. Enhancing the model’s
detection accuracy and processing speed enables instant analysis of video streams or numer-
ous images, facilitating real-time and precise ear tag dropout detection and aiding farms in
prompt intervention measures, which is crucial for enhancing farm management efficiency
and animal welfare. Therefore, this paper proposes a novel ear tag dropout detection
model for breeding pigs called Cascade-TagLossDetector, based on Cascade Mask R-CNN.
This model optimizes the detection accuracy and speed by integrating a lightweight feature
extraction module (IRDSC) and a feature enhancement module (SENet). It consists of
three components: a backbone network for semantic feature extraction, a region suggestion
network for generating candidate target region bounding boxes, and a cascade detection
network for cascading detection and correction of candidate target regions.

2.3.1. The Structure of Cascade-TagLossDetector

Cascade-TagLossDetector utilizes ResNeXt101 and a feature pyramid network as
the backbone network for feature extraction, improving the model’s capability of multi-
scale feature extraction in intricate pigsty environments. ResNeXt101, with its deeper
network structure and more intricate topology compared to ResNet50, offers improved
learning and extraction abilities for complex and abstract features. It is composed of
4 groups of residue blocks in a series, with each group containing 3, 4, 23, and 3 residue
blocks, respectively. Within the residual blocks, three convolution operations of 1 × 1,
3 × 3, and 1 × 1 are utilized, with the second 3 × 3 convolution employing channel group
convolution with 32 branches and 64 groups. Previous research has shown that depthwise
separable convolution can reduce the model parameters and enhance feature extraction
capabilities, while the inverted residual structure excels in capturing features at various
scales. This study combines depthwise separable convolution and an inverted residual
structure to create a lightweight feature extraction module, IRDSC, which replaces standard
convolution in ResNeXt101. This aims to improve the feature extraction efficiency and
decrease the computational load. Furthermore, the channel attention mechanism SENet is
employed within each convolutional layer of the grouped convolution structure to capture
relationships between different channels, improving the model’s representation of crucial
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features and enabling adaptive learning of channel importance, thereby enhancing the
feature expression capability.

The region suggestion network generates anchor frames for candidate target regions
based on the outputs of the five 256-channel feature layers of the FPN network. It then
performs target classification and coordinates regression by mapping these anchor frames
back to the original image space.

The cascade detection network trains detectors in a cascaded manner to enhance the
model’s ability to recognize and localize targets. This study focuses on the challenge of the
limited number of pigs with missing ear tags and the uneven distribution of positive and
negative samples in the training data, which hinders detection accuracy improvements,
and utilizes the advantages of the Focal Loss classification accuracy for specific categories.
This study optimizes the classification and regression loss calculation approach for cascade
detection, enhancing the model’s focus on detecting rare and more challenging samples.
Additionally, dropout [24] is applied in the cascaded detection head by randomly discard-
ing neurons to reduce network overfitting. A fully connected layer performs weighted
summation and linear transformation of neurons in the previous layer for target detec-
tion and regression prediction. The structure of Cascade-TagLossDetector is illustrated in
Figure 4.

Figure 4. The model structure of Cascade-TagLossDetector.

2.3.2. Lightweight Feature Extraction Module IRDSC

The experimental image contains multi-layer semantic information; extracting rich
semantic information from the image is crucial for real-time and accurate detection of
ear tag dropout. Utilizing ResNeXt101 and feature pyramid networks as the feature
extraction backbone network can improve the network’s expressive power and accuracy.
However, this approach also leads to an increased computational complexity and parameter
count. Therefore, this study focuses on leveraging depthwise separable convolution and an
inverted residual structure to develop a lightweight feature extraction module called IRDSC
(see Figure 5). Depthwise separable convolution captures spatial correlations within the
input channels by performing convolution operations on each input channel through deep
convolution. Pointwise convolution then applies a 1 × 1 convolution kernel on the output
of the deep convolution to capture correlations and feature combinations across channels.
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Figure 5. Structure diagram of the IRDSC.

The IRDSC module initiates linear activation and batch normalization operations to
standardize the distribution of feature channels, reducing internal covariate shifts and
expediting training convergence. Following this, it expands the number of feature map
(h × w × k) channels to tk through 1 × 1 pointwise convolution and then applies a 3 × 3
deep convolution with a stride of s to extract features from each channel. Subsequently,
the feature map channels are reduced to k′ using 1 × 1 pointwise convolution to match
the input and output channel dimensions to reduce the model parameters and computa-
tional complexity. Additionally, the module establishes residual connections between input
and output feature maps to preserve original information and enhance feature extraction
capabilities. The algorithm employs a linear activation function ReLU6 [25] to prevent in-
formation loss during dimensionality reduction from high-dimensional to low-dimensional
spaces, as illustrated in Equation (2).

f (x) = min(max(0, x), 6) (2)

ReLU6 constrains feature values within a range of 0 to 6. Values exceeding 6 are limited
to 6 to avoid gradient explosion, while values below 0 are adjusted to 0 to prevent gradient
disappearance. This restriction helps stabilize the model’s training process, enhance the
model’s learning abilities, and improve the overall robustness.

2.3.3. Semantic Feature Enhancement Module SENet

The enhanced lightweight feature extraction module improves the feature extrac-
tion capability while reducing model parameters, but there is also a certain feature loss.
Therefore, this study integrates the channel attention mechanism SENet for deep semantic
feature enhancement. SENet maintains attention generation and feature enhancement
by adaptively boosting useful features and suppressing irrelevant ones. This lightweight
module helps prevent parameter count proliferation. The structure of SENet is illustrated
in Figure 6.
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Figure 6. Structure diagram of SENet.

(1) The feature map X (W ′ × H′ × C′) extracted by the backbone network is input
into the SENet module. A new feature map U (W × H × C) is generated through a 1 × 1
depthwise separable convolution, calculating the spatial correlation of the channels with a
set of filter parameters V, as shown in Equation (3).

UC = VC ∗ X =
C′

∑
S=1

VS
C ∗ XS (3)

where X denotes the input feature map, U denotes the output feature map, C is the number
of channels, W and H denote the width and height of the feature map, V = [V1, V2, . . . , Vc]
denotes the set of learned filters, VC stands for the Cth filter, * is a convolution operation, Vs

c
is the 2D spatial kernel acting on the corresponding channel of X, and XS denotes the Sth
input. After the transformation, U is the matrix that contains the C W × H feature maps
and UC is the Cth feature map in the matrix.

(2) Squeeze conducts spatial dimensional feature compression on the feature map
through global average pooling. This process converts the 2D feature channels into a single
real number with a global receptive field, effectively compressing the W × H × C feature
map into a 1 × 1 × C feature vector, as shown in Equation (4).

ZC = Fsq(UC) =
1

W × H

W

∑
i=1

H

∑
j=1

UC(i, j) (4)

where ZC denotes the local description operator of the compressed feature
information distribution.

(3) Excitation utilizes the fully connected layer operation W1 to decrease the number
of channels, which is activated by ReLU, then passes through the fully connected layer W2
to restore the number of channels, and finally applies the Sigmoid function to ensure that
the channel attention weight s takes a value in the range of [0, 1], outputting the weight
coefficients that indicate the importance of the channel.

S = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (5)

In Equation (5), W1 denotes the RC/r∗C weight matrix, W2 is the RC∗C/r weight matrix,
r is the dimensionality reduction parameter, which is set to 16 experimentally, δ is the ReLU
activation function, and σ denotes the Sigmoid function. W1 reduces the dimensionality of
1 × 1 × C to 1 × 1 × C/r, and W2 restores it back to 1 × 1 × C. The number of parameters
and the amount of calculations of the algorithm are effectively reduced after the operation
of the two fully connected layers.

(4) Scale multiplies the channel attention weights with the original feature map channel
by channel for feature recalibration; this process ensures that important information receives
attention closer to 1, while less relevant information is closer to 0. By obtaining a feature
map with attention weights, the model can dynamically enhance the weights of important
channels and suppress the weights of non-important channels to achieve the effect of
feature enhancement.
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2.3.4. The Loss of the Model

Cascade Mask R-CNN utilizes binary cross-entropy loss for classification and regres-
sion losses in the region proposal network. The cascaded detection network employs
binary cross-entropy loss, smooth L1 loss, and pixel-level binary cross-entropy loss for
classification, regression, and mask losses. This study integrates the Focal Loss function
in the cascaded detection heads for calculating classification and regression losses. Focal
Loss introduces an adjustable balancing parameter and a factor to modulate weights for
difficult and easy samples, enabling high-precision detection of common and rare samples,
as depicted in Equation (6).

FL(pt) = −αt(1 − pt)
γ log(pt) (6)

This equation includes various parameters such as pt for the predicted probability, αt
for the equilibrium parameter, and γ as the moderator. The term (1 − pt)γ is responsible
for suppressing the loss of easy-to-categorize samples in the model and focusing more on
hard-to-categorize samples.

Based on this, the loss of the Cascade-TagLossDetector model comprises the classifica-
tion loss Lrpn_cls and regression loss Lrpn_reg of the region proposal network, as well as the
classification loss L_cls, regression loss L_reg, and mask loss L_mask of the cascaded detection.
The model’s total loss is the weighted sum of these component losses, as illustrated in
Equation (7).

Lcascade = Lrpn_cls + Lrpn_reg + ∑n
i=1 λi(L_cls

i + L_reg
i) + L_mask (7)

The weights λi for each cascade are set to 1, 0.5, and 0.25, respectively.

2.3.5. Evaluation Indicators

This study evaluates the recognition performance of the model through metrics such
as Precision (P), Recall (R), Average Precision (AP), bounding box detection mean average
precision (bbox mAP), and instance segmentation mean average precision (mask mAP),
and the computational performance of the model is also comprehensively evaluated using
the detection speed (Speed), the inference time (Inference time), and the storage space
occupied by the model (Model_Size), see Equations (8)–(11). Furthermore, the accuracy
of the model in detecting ear tag dropout in breeding pigs is evaluated by defining the
accuracy as the ratio of correctly recognized breeding pigs with ear tag dropouts to breeding
pigs without ear tag dropouts, as shown in Equation (12).

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

AP =
∫ 1

0
P(R)dR (10)

mAP =
1
N

N

∑
i=1

(
∫ 1

0
pi(r)dr) (11)

Accuracy =
TPET_Drop + TPET_NotDrop

NET_Drop + NET_NotDrop
(12)

AP is the area of the region enclosed by the precision–recall curve and the x-axis and y-
axis; mAP is calculated as the mean value of AP with an IoU threshold ranging from 0.50 to
0.95 in steps of 0.05. In the experiment, pigs with ear tags are considered positive samples,
while those with missing ear tags are considered negative samples. TP, FP, and FN
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represent the categories of true positives, false positives, and false negatives, respectively.
In Equation (12), NET_Drop refers to the number of breeding pigs with missing ear tags,
NET_NotDrop represents the number of breeding pigs with present ear tags, TPET_Drop
indicates the number of breeding pigs with missing ear tags that were correctly identified,
and TPET_NotDrop signifies the number of breeding pigs with present ear tags that were
correctly identified.

2.3.6. Design of Experiments

The experiment utilized two Intel(R) Xeon(R) Gold 6137 processors with 256 GB of
RAM and eight NVIDIA GeForce RTX 3090 graphics cards for training. The system ran on
Ubuntu 20.04 OS with Miniconda3, Python 3.8.5, CUDA 11.7, Pytorch 2.0.0, and MMDetec-
tion 2.28.2 to establish a deep learning algorithm framework. Stochastic gradient descent
was used as the optimizer with an initial learning rate of 0.02, a momentum coefficient of
0.9, and a weight decay coefficient of 0.0001 for a total of 300 training epochs and a batch
size of 64.

In order to validate the effectiveness of the model for ear tag dropout detection
in breeding pigs, the experiment initially involved training Cascade Mask R-CNN and
Cascade-TagLossDetector on the training set. The training process utilized stochastic
gradient descent to adjust the parameters and determine the optimal model. Subsequently,
both the original test data and the six sets of enhanced test data were fed into the model for
detection, as shown in Figure 7.

Figure 7. Cascade-TagLossDetector’s process of ear tag dropout detection in breeding pigs.

(1) In this study, a labeled individual positioned at a minimum distance of 1 px from the
image edge is defined as a breeding pig fully within the detection field. The experi-
ment specifically targeted the detection of ear tag dropout in breeding pigs within the
field of view.

(2) NET_Drop, NET_NotDrop, TPET_Drop, and TPET_NotDrop of the model were computed on
the original test set, respectively, to calculate the accuracy.

3. Results
3.1. The Results of Training

To assess the effectiveness of the proposed model, this experiment evaluates the
training results of both Cascade Mask R-CNN and Cascade-TagLossDetector and compares
the bbox mAP, mask mAP, and loss values; the findings are depicted in Figure 8.
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(a) mAP (b) Loss

Figure 8. The parameter change curves during training.

Figure 8 illustrates that both models show an upward trend in bbox mAP and mask
mAP as the number of training epochs increases, accompanied by a decrease in loss values
that eventually stabilizes. The bbox mAP and mask mAP of the model proposed in this
study stabilize at around 94% and 90% respectively, after 50 epochs, demonstrating a notable
improvement over Cascade Mask R-CNN. The loss values of Cascade-TagLossDetector
settle around 0.1 after 1500 iterations, marking a reduction of approximately 0.2 compared
to Cascade Mask R-CNN’s loss values, thus validating the efficacy of the proposed model.

3.2. Performance Analysis of the Improvement Strategy

This paper enhances the Cascade Mask R-CNN model by incorporating ResNeXt101
as the feature extraction backbone network, along with IRDSC and SENet. Focal Loss is
utilized to compute classification and regression losses in cascade detection, replacing the
original loss functions. Ablation experiments were conducted to determine the optimal
model for recognizing ear tag dropout in breeding pigs, with the results compared in
Table 1.

Table 1. Results of ablation experiments .

Model Loss Function bbox
mAP/%

mask
mAP/%

Model
Size/MB

Recall/
%

Accuracy/
%

Inference
Time/ms

Speed/
(f/s)

Cascade Mask R-CNN Original loss 91.10 87.14 515.93 91.14 87.07 46.21 21.64
Focal Loss 91.14 87.63 515.93 91.68 87.45 46.21 21.64

Cascade Mask R-CNN + IRDSC Original loss 93.19 88.02 414.05 93.79 88.34 36.74 27.22
Focal Loss 93.24 88.59 414.05 94.67 88.98 36.74 27.22

Cascade Mask R-CNN + IRDSC + SENet Original loss 94.01 88.37 443.03 94.88 88.92 39.48 25.33
Focal Loss 94.15 90.32 443.03 97.42 90.02 39.48 25.33

Analysis of Table 1 demonstrates that incorporating Focal Loss for classification and
regression losses in cascade detection can improve the mean average precision of ear tag
dropout recognition in breeding pigs compared to the original loss functions without
impacting the model size or computational performance. This highlights Focal Loss’s
effectiveness in addressing class imbalance issues. Integrating the lightweight feature
extraction module IRDSC into the Cascade Mask R-CNN backbone network and combining
it with the Focal Loss function achieved a bbox mAP and mask mAP of 93.24% and 88.59%,
respectively, marking improvements of 2.14 and 1.45 percentage points. The model size
was reduced by 101.88 MB, and the computation speed increased by 5.58 frames per
second. Substituting standard convolutions with depthwise separable convolutions and
inverted residual structures enhanced the model’s ability to extract multi-scale information



Agriculture 2024, 14, 530 11 of 15

features and optimizes the computational performance. The addition of the semantic
feature enhancement module SENet allowed for adaptive amplification of useful features
and suppression of irrelevant ones, resulting in bbox mAP and mask mAP values of
94.15% and 90.32%, respectively, with the model’s accuracy reaching an impressive 90.02%.
The model size was reduced to 443.03 MB, a decrease of 72.90 MB compared to Cascade
Mask R-CNN. The IRDSC and SENet modules significantly enhance the model’s accuracy
and computational performance in recognizing ear tag dropout in breeding pigs.

3.3. The Comparison Experiment of the Test Set

To assess the model’s robustness under various environmental conditions, experiments
were conducted to verify the model’s performance on the original test set, and datasets
were altered through vertical flipping, horizontal flipping, Gaussian blurring, contrast
adjustment, pixel value modification, and random occlusion. As depicted in Table 2,
the models exhibited the highest detection accuracy on the original dataset; the bbox mAP
and mask mAP of the proposed model were 94.17% and 90.26%, respectively, closely
resembling the performance on the training set. This suggests that the model demonstrates
good generalization without signs of overfitting or underfitting. The accuracy of the model
for ear tag dropout detection in breeding pigs is 90.02%, which is 2.95% higher than that of
Cascade Mask R-CNN. Operations such as vertical flipping, horizontal flipping, pixel value
modification, and random occlusion have minimal impacts on the deep network, with the
presented model achieving bbox mAP values of 93.84%, 94.01%, 75.12%, and 68.59%,
and mask mAP values of 90.21%, 90.13%, 65.14%, and 61.20%, respectively, which are
all significantly higher than those of Cascade Mask R-CNN. On datasets with Gaussian
blurring and an adjusted contrast, both models exhibited a decrease in bbox mAP and
mask mAP, with the proposed model showing a lower decrease than Cascade Mask R-
CNN. The feasibility of using Cascade-TagLossDetector for ear tag dropout recognition in
breeding pigs in complex environments was also confirmed.

Table 2. Detection results of the seven test sets.

Data Set
Cascade Mask R-CNN Cascade-TagLossDetector

bbox mAP/% mask mAP/% Accuracy/% bbox mAP/% Mask mAP/% Accuracy/%

Original test set 91.10 87.14 87.07 94.17 90.26 90.02
Vertical flip dataset 90.79 86.54 85.19 93.84 90.21 89.96
Horizontal flip dataset 91.08 87.12 86.34 94.01 90.13 89.97
Gaussian blur dataset 26.02 33.54 53.64 30.32 38.89 57.88
Contrast-adjusted dataset 34.59 40.88 62.70 43.68 46.21 64.29
Pixel-value- modified dataset 71.09 64.32 74.21 75.12 65.14 77.01
Randomly occluded dataset 62.33 48.65 68.34 68.59 61.20 73.64

4. Discussion

In this experiment, the hierarchical 10-fold cross-validation method [26] is utilized to
assess the model’s performance in identifying ear tag dropout in breeding pigs to avoid
detection and evaluation errors caused by data imbalances. The experiment involved
dividing seven test sets into ten equal parts, creating ten datasets with a mix of seven types
of data by selecting one part from each set; nine datasets were utilized for training, while
the tenth dataset was used for testing, focusing on bbox mAP, mask mAP, and accuracy.
This process was iterated ten times, with average values calculated to determine the final
bbox mAP, mask mAP, and accuracy on the test set. The findings are summarized in Table 3.
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Table 3. The results of layered 10-fold cross-validation.

Test
Cascade Mask R-CNN Cascade-TagLossDetector

bbox mAP/% mask mAP/% Accuracy/% bbox mAP/% Mask mAP/% Accuracy/%

The first fold 86.8818 82.5505 82.6103 91.1250 88.1365 88.7104
The second fold 91.2304 87.1494 87.4378 93.9169 90.8662 89.9653
The third fold 90.7221 86.9565 86.7934 93.0694 89.0221 89.0211
The fourth fold 89.9554 86.1201 86.0121 93.2161 87.9151 87.6392
The fifth fold 88.2361 84.3695 84.5422 90.1264 86.9664 86.4849
The sixth fold 93.9949 89.9856 89.8145 96.4694 93.3101 92.3201
The seventh fold 91.1316 88.0221 88.1306 95.0661 90.8685 90.8741
The eighth fold 92.6651 89.0754 89.4201 96.6394 91.3155 91.5302
The ninth fold 95.0613 89.5404 88.4509 96.5664 92.8681 92.1042
The tenth fold 91.1163 87.6513 87.4922 95.2909 91.9105 91.5072
Average value 91.0995 87.1421 87.0704 94.1486 90.3179 90.0157
Variance 6.00 5.38 4.88 5.22 4.78 3.97

Analysis of Table 3 reveals that the bbox mAP and mask mAP of the two models
remained consistent within a certain range throughout the hierarchical ten-fold cross-
validation process, mainly because each dataset contains the same number of original and
data-enhanced images, whereas Gaussian blurring, the adjustment of contrast, modifica-
tions of pixel values, and random occlusion randomly shift the values to within a certain
range for data enhancement. Differences between the data lead to fluctuations up and
down in the cross-validation results of the same evaluation indexes. Notably, Cascade-
TagLossDetector demonstrates a superior detection segmentation performance in each
validation, mainly due to SENet’s ability to retain detailed features of the deep semantics,
and this conclusion is consistent with Lu Zhou et al.’s findings [27]. Furthermore, our
team’s earlier study suggests [28] that the enhanced detection segmentation performance
is linked to the utilization of ResNeXt101 as the backbone network, compared to Cascade
Mask R-CNN which utilizes ResNet50. ResNeXt101 offers a deeper network level, facilitat-
ing the extraction of multi-scale feature information, and the 32-branching strategy in the
second convolution of ResNeXt101’s residual block effectively prevents the loss of detailed
information, enhancing detection effectiveness. Additionally, the model’s bbox mAP, mask
mAP, and accuracy exhibit a lower variance (5.22, 4.78, and 3.97, respectively) compared to
Cascade Mask R-CNN, indicating that the model is more stable.

By analyzing Tables 1–3, it can be found that there is a positive correlation between
model accuracy and the mean average precision (mAP). For instance, when the model
was upgraded from Cascade Mask R-CNN to Cascade-TagLossDetector, there was a 3.18%
increase in mask mAP, accompanied by a 2.95% rise in model accuracy. This phenomenon
reveals an insight: as an indicator that comprehensively reflects the model’s detection
performance, the improvement in mAP directly contributes to an increase in the model’s
overall accuracy on the test set.

The recognition results of the model on both the training dataset and the test datasets
in Table 2 are similar; this similarity can be attributed to the use of the IRDSC module,
which incorporates a linear activation function to mitigate gradient vanishing. Addition-
ally, the utilization of fully connected linear transformations, dropout layers, and ReLU
activation functions helps to prevent overfitting.

Xie Qiuju et al. illustrated that the introduction of an attention module could strengthen
the model’s attention to the features of the pig’s face through class-activated heat maps [29].
Thus, the experiment was visualized using a class-activated heat map [30] on the feature
extraction of the ear tag dropout in breeding pigs, where warmer-colored regions indicate
higher attention from the model. Figure 9 shows breeding pigs’ head and spine parts,
particularly the head and ear regions, highlighted in warm colors. This suggests that the
inclusion of IRDSC, SENet, and the Focal Loss loss function prompts the model to pay
closer attention to fine-grained original data features during feature abstraction, leading
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to a higher activation of important features in these areas and ultimately improving the
detection accuracy.

(a) Original image

(b) Heat map of class activation for Cascade Mask R-CNN

(c) Heat map of class activation for Cascade-TagLossDetector

Figure 9. Heat map of the model.

The model proposed in this study, based on Cascade Mask R-CNN, has been im-
proved regarding feature extraction and enhancement, which improves the accuracy of ear
tag dropout detection in pigs and overcomes environmental interference to some extent,
making it valuable for pig breeding and genetic management. However, the model did
not completely solve the problems of misdetection and omission and did not realize the
identification and tracking of breeding pigs with missing ear tags. Future research will
concentrate on further refining the network model to enhance the accuracy and minimize
the model size, as well as develop methods for identifying and tracking pigs with missing
ear tags.

5. Conclusions

This paper presents a method for detecting ear tag dropout in breeding pigs in complex
environments by integrating attention mechanisms. The algorithm is based on Cascade
Mask R-CNN and incorporates IRDSC and SENet into the backbone network, optimizing
the loss function with Focal Loss. The model achieves a bbox mAP of 94.15% and a mask
mAP value of 90.32%, outperforming Cascade Mask R-CNN by 3.05% and 3.18%, respec-
tively. The detection accuracy is 90.02%, which is also improved by 2.95%, with an increase
in the detection speed of 3.69 fps and a reduction in the model size of 72.90 MB. Experimen-
tal results demonstrate that enhancing the feature extraction capability of the backbone
network with IRDSC and reducing the model size is feasible; SENet and Focal Loss can
realize the enhancement of deep semantic information and key features. The proposed
model performs better than Cascade Mask R-CNN on six enhanced test sets, confirming its
effectiveness in detecting and recognizing ear tag dropout in pigs in complex environments
and providing valuable insights for intelligent breeding in pig farms.
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