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Abstract: The number of highly automated machines in the agricultural sector has increased rapidly
in recent years. To reduce their fuel consumption, and thus their emission and operational cost, the
performance of such machines must be optimized. The running gear–terrain interaction heavily
affects the behavior of the vehicle; therefore, off-road traction control algorithms must effectively
handle this nonlinear phenomenon. This paper proposes a linear parameter-varying model that
retains the generality of semiempirical models while supporting the development of real-time state
observers and control algorithms. First, the model is derived from the Bekker–Wong model for the
theoretical case of a single wheel; then, it is generalized to describe the behavior of vehicles with an
arbitrary number of wheels. The proposed model is validated using an open-source multiphysics
simulation engine and experimental measurements. According to the validated results, it performs
satisfactorily overall in terms of model complexity, calculation cost, and accuracy, confirming
its applicability.

Keywords: linear parameter-varying systems; traction systems; validation; wheel–terrain interaction

1. Introduction

Modeling terrain–machinery interaction and terrain–vehicle interactions in real-time
applications has become one of the main challenges of terramechanics in the last three
decades. Related research has focused on two main topics: real-time dynamic simulation
and real-time controller design. These algorithms enable the advanced control of off-
road vehicles, such as through the online traction control of intelligent tractors [1]. Due
to increasing energy prices and tightening emission standards, increasing the efficiency
of agricultural vehicles has become crucial [2]. The higher level of automation reduces
operational costs and energy consumption and increases overall productivity and safety [3].

Off-road vehicle dynamics are heavily affected by the interaction between the running
gear and soft soil; hence, typical solutions developed for on-road vehicles are not applicable.
Models that describe the wheel–terrain interaction range from purely analytical to purely
empirical models. Empirical models are based on large amounts of experimental data and
utilize different dimensionless parameters to describe the wheel–terrain interaction. Thus,
their applicability is limited to the vehicle and soil type used during the measurements [4].
On the other hand, discrete element and finite element methods (DEM and FEM) are
increasing in popularity in simulators due to their high accuracy [5,6] and the increase
in the computational power of computers; yet, their computational cost still prevents
their widespread application in control-oriented models and real-time tasks. Semiempirical
models like the Bekker–Wong model [7] utilize experimental data and theoretical analysis to
offer a good trade-off between accuracy and computational cost. Hence, they are attractive
for real-time simulation purposes. An extensive literature review of the developed and
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applied techniques is presented in [8]. In the case of real-time controller design, the
parameters and states of the vehicle and the terrain are divided into four categories. Some
parameters, such as the moisture content in rover applications, are known beforehand.
Other parameters can be measured in real time (e.g., slip angle [9]), predicted based on
current states [10], or estimated from easily measurable vehicle states [11].

Still, semiempirical models are considered too complex for control-oriented model
development [12]. To overcome this issue, several synthesis models have been developed.
In [13,14], augmented kinematic models were proposed to incorporate the sliding phe-
nomenon without incorporating the wheel dynamics. The results showed that including the
sliding phenomenon in the observer and controller design significantly reduced the lateral
deviation. Other researchers used experimental models, such as the empirical Brixius tire
model. The conventional Brixius tire model includes wheel sinkage, which is often difficult
to estimate; hence, in [15], a modification was proposed to include the soil reaction. In [16],
an empirical model was derived from the statistical analysis of soil experiments to achieve
maximum slip efficiency on stochastic terrain.

Another solution is adaping the various on-road tire models for off-road applications,
such as the Pacejka tire model [17]. In [18], the slip–friction relationship was described
using the Pacejka model fitted to the measurement data. Then, it was combined with
the traction effectiveness to determine an optimal slip value for the traction controller.
Due to the lack of available off-road tire measurement data, ref. [19] estimated the traction
performance using the Bekker–Wong model and then derived the Pacejka model coefficients
from these results. In [20], an adapted Burckhardt tire model was introduced for model-
based control design. The coefficients of the model were derived from the Bekker–Wong
model through nonlinear optimization. The model was further improved in [12] to include
the antisymmetric off-road feature in a large operating range in longitudinal and lateral
modes.

Contributions

Conventional tire models are widely used in controller development and can be
successfully adapted to off-road circumstances. In these examples, the model parameters
are mainly attained through optimization; therefore, they lose their physical meaning.
Furthermore, this optimization must be performed for different terrain types and vehicle
parameters.

This paper presents the development of a linear parameter-varying (LPV) model for
off-road vehicles that can be utilized in model-based control design. The model for a single
wheel is derived from Bekker–Wong theory. It explicitly includes the terrain and vehicle
parameters, thus ensuring its generality.

Next, it is augmented for vehicles with an arbitrary number of wheels. The results
of the model were verified using the Project Chrono 8.0 simulator. At last, the model was
validated against experimental measurements.

The paper is organized as follows: Section 2 introduces the theory of LPV models
and details the derivation of the proposed control-oriented model. Section 3 presents the
verification and validation of the model. Section 4 summarizes the results, and Section 5
contains some concluding remarks.

2. Materials and Methods
2.1. Introduction to Linear Parameter-Varying Models

The LPV approach is widely used to model and control a subclass of nonlinear systems.
It has many applications related to on-road vehicles, for example, controlling active [21]
and semiactive [22] suspension systems, lateral vehicle control [23] and longitudinal vehicle
control, such as adaptive cruise control (ACC) [24], antilock braking systems (ABS) [25],
and the and the integrated control of driver assistance systems (DAS) [26,27].
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Linear parameter-varying systems are time-varying state-space models written as
follows: [

ẋ(t)
y(t)

]
=

[
A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

][
x(t)
u(t)

]
(1)

where x(t) is the state vector, y(t) is the output vector, u(t) is the input vector, ρ(t) is the
vector of scheduling parameters, and A, B, C, and D are parameter-dependent matrices of
the state-space representation.

The dynamics of the system heavily depend on a set of time-varying parameters
described by ρ(t), which must be well known and measurable in real-time. Parameter
uncertainty is a major challenge for semiempirical approaches, as terrain parameters
depend heavily on several other parameters, such as moisture content or grouser height [28].
These parameters are either exogenous variables modeling the nonstationary behavior of
a system or endogenous variables representing nonlinear system dynamics, also called
quasi-LPV (qLPV) systems.

Several representations are available to describe the parameter dependence of LPV
systems. Linear fractional representation (LFR) models use linear fractional transformation
(LFT) to separate the nonlinearities of the system from the nominal model. Such nonlin-
earities often include time-varying parameters and uncertainties, but LFR models can be
used only for rational parameter dependence. Several equations used in semiempirical
models include irrational parameter dependence, limiting the applicability of LFR models.
Affine LPV models are usually described using polytopic models, where the vector of
parameters evolves inside a polytope. Thus, it is written as a complex combination of
the polytope’s vertices. Affine LPV models deal with smooth and continuous parameter
variation and are sensitive to measurement errors in the scheduling parameters. In the
case of a grid-based representation, the linear dynamics can be defined at each grid point
of the model. Grid-based LPV models capture the parameter dependence of the system
implicitly; therefore, they can handle any parameter representation. They offer certain
robustness advantages over affine LPV models in the presence of measurement errors in the
scheduling parameters, which is advantageous in dealing with the uncertainty of terrain
parameters. Considering the semiempirical nature of the models describing wheel–terrain
interactions, grid-based LPV models are a reasonable choice for modeling the phenomena.

2.2. Model Development

The forces acting on a vehicle moving over an inclined terrain are shown in Figure 1.
The longitudinal dynamics can be calculated according to the following force balance
equation:

v̇ =
∑ F − ∑ R − Fair − Fgrade − Fdrawbar

m
(2)

where ∑ F is the sum of the tractive efforts acting on the wheels, ∑ R is the sum of the
motion resistances acting on the wheels, Fair is the aerodynamic resistance, Fgrade is the
grade resistance, and Fdrawbar is the drawbar pull.

The torque balance of the wheel dynamics is written as follows:

ω̇ =
Tw − Tf − Fr

Jw
(3)

where ω and Jw are the angular velocity and inertia of the wheel, Tf is the friction, and Tw
is the input torque of the wheel.

First, some of the forces are neglected to simplify model development. While it signifi-
cantly affects the behavior of the vehicle at higher velocities, the aerodynamic resistance
below 48 km/h can be neglected [29]. Hence, it is omitted from the model. The drawbar
pull is the amount of horizontal force available to a vehicle at the drawbar for pulling a load.
In our case, the drawbar pull is assumed to be zero, and the remaining force accelerates
the vehicle. In Figure 1, the color red notes the neglected forces, while the forces taken into
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account are blue. Therefore, the nonlinear state-space model describing the movement of a
single wheel on a flat terrain is written as follows:

[
v̇(t)
ω̇(t)

]
=

 F−R
m

Tw−Tf −Fr
J

 (4)

Fair

Rfront

Rrear

Ffront

Ffront

x
Fgrade

Fdrawbar

y

Figure 1. Forces acting on an off-road vehicle.

Based on the simplified model of the wheel–soil interaction shown in Figure 2, the
equilibrium of the horizontal and vertical forces is written as follows:

Rc = b
∫ θ0

0
σr sin θdθ (5)

W = b
∫ θ0

0
σr cos θdθ (6)

where b and r are the smaller dimensions of the contact patch and radius of the wheel, and
θ0 is the contact angle of the wheel.

To predict the performance of a rigid wheel, Bekker [30] assumed that the terrain
reaction on the contact patch is purely radial and is equal to the normal pressure beneath a
sinkage plate:

σr sin θdθ = pdz (7)

σr cos θdθ = pdx (8)

where θ and z are the angle and sinkage shown in Figure 2, σ is the radial pressure on the
wheel–terrain interface, and p is the normal pressure below a sinkage plate.

Combining (5) and (7), the motion resistance is written as follows:

Rc = b
∫ z

0
pdz (9)

For homogeneous soils, Bernstein [31] proposed an empirical model to describe their
pressure–sinkage relationship:

p = kzn (10)

where k is the sinkage modulus, and n is the sinkage exponent.
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Tw, ω

W

D Rc

F

z

σ

𝜏

v

θ

Figure 2. Rigid wheel–deformable terrain interaction.

Later, Bekker [32] separated the sinkage modulus used by Berstein into two parts to
represent both the soil cohesion and the effect of the internal shearing resistance:

p =

(
kc

b
+ kϕ

)
zn (11)

where kc is the cohesive modulus of deformation, kϕ is the frictional modulus of deforma-
tion, and b is the smaller dimension of the contact patch.

Substituting the pressure–sinkage Equation (11) into (9), the motion resistance is
rewritten as:

Rc = bti

∫ zr

0
(

kc

b
+ kϕ)zndz (12)

The solution of the definitive integral along the sinkage is the following:

Rc = bti

[(
kc

b
+ kϕ

)
zn+1

n + 1

]
(13)

For the geometry shown in Figure 2, assuming slight sinkage and expressing the
sinkage from (8), the motion resistance of wheeled vehicles can be expressed in a closed
form [29]. This solution takes a highly nonlinear form; thus, it is not optimal for state-space
models.

According to Bekker, the thrust–slip relationship of a tire can be determined as that of
a rigid track. First, the shear stress developed at the running gear–terrain interface must be
calculated to calculate the tractive effort. For plastic soils, ref. [33] proposed a modification
of Bekker’s equation to describe the shear stress–displacement relationship:

τ

τmax
= 1 − e

−j
K (14)

where τ and τmax are the shear stress and the maximum shear stress, respectively, j is the
shear displacement, and K is the shear deformation parameter.

The maximum shear displacement that the terrain can bear is defined using the Mohr–
Coulomb equation:

τmax = c + σ tan ϕ (15)
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where c is the cohesion, σ is the normal stress below the track, and ϕ is internal angle of
friction of the terrain.

The shear displacement is the relative movement between the running gear and the
terrain, which causes slip. The slip can be expressed as follows:

i = 1 − V
rω

= 1 − V
Vt

=
Vt − V

Vt
=

Vj

Vt
(16)

where ω, V, Vt, and Vj are the rotational speed, actual forward velocity, theoretical forward
speed, and slip speed of the running gear, respectively.

At a given point, which is at x distance from the front of the contact patch, the shear
displacement can be written as:

j = Vjt =
Vjx
Vt

= ix (17)

where t is the contact time of the point.
Then, assuming uniformly distributed normal pressure below the running gear, the

equation describes the shear stress–displacement relationship:

F = b
∫ l

0
τmax

(
1 − e

−j
K

)
dl (18)

Calculating the definitive integral along the length of the contact patch results in the
following equation:

F = (Ac + W tan ϕ)

[
1 − k

il

(
1 − e

−il
k

)]
(19)

where A and l are the area and length of the contact patch, while W is the normal force.
The viscous friction acting on the wheel is calculated as follows:

Tf = b f ω (20)

where b f is the viscous friction coefficient.
Substituting (13), (19), and (20) into (4), the nonlinear state-space model takes the

following form:

[
v̇(t)
ω̇(t)

]
=


(Ac+W tan ϕ)

[
1− k

il

(
1−e

−il
K

)]
−bti

[
( kc

b +kϕ) zn+1
n+1

]
m

Tw−bω−(Ac+W tan ϕ)

[
1− k

il

(
1−e

−il
K

)]
r

J

 (21)

Next, some simplifications must be made to create an LPV representation from the
nonlinear model. While the exponential term e

−il
K could be handled as one of the scheduling

parameters of the model, it rapidly converges to zero at higher slip values. For typical
agricultural vehicles, such as tractors, it is negligible above 10% slip. Thus, it can be
neglected under normal operational conditions. As a result, the tractive effort is formulated
as follows:

F = τmax A
(

1 − k
il

)
(22)

Furthermore, substituting Bekker’s pressure–sinkage Equation (11) into the closed
form equation of the motion resistance (13) yields:

Rc = bti

[(
kc

b
+ kϕ

)
p

kc
b + kϕ

z
n + 1

]
(23)
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As the normal pressure is the product of the normal force and the contact patch area,
the equation is rewritten as:

Rc = bti

( kc

b
+ kϕ

)
mg(

kc
b + kϕ

)
Ac

z
n + 1

 (24)

Then, kc and kϕ can be simplified from the equation of the motion resistance:

Rc =
btimg

(n + 1)Ac
z (25)

Due to the applied simplification, the nonlinear state-space model takes the follow-
ing form: [

v̇(t)
ω̇(t)

]
=

 τmax Ac(1− K
il )−

btimg
(n+1)Ac

z
m

Tw−bω−[τmax Ac(1− K
il )]r

J

 (26)

As the aim of this model is to support traction control algorithms, the input of the
model shall be the motor torque applied at the wheel:

u = Tw (27)

Then, the remaining time-dependent variables in the state matrix A and the input
matrix B can be collected in the scheduling parameter vector ρ. However, applying Jacobi
linearization using the current state and input vector would yield inapt results. The traction
force (22) and the motion resistance (25) are independent of both the state vector and the
input vector. Eliminating them from the state-space model would result in an unusable
model. On the other hand, the traction force is a linear function of the maximum shear
stress, while the motion resistance is a linear function of the static sinkage. They must be
handled either as states or inputs of the model.

Including them among the states of the system would require their differential equa-
tions. Therefore, handling them as uncontrollable system inputs is a more reasonable choice:

uuc =

[
τmax

z

]
(28)

In agricultural applications, the terrain is usually known; hence, the maximum shear
stress of the terrain is usually known beforehand. However, the shear stress of the soil
also shows a relationship with its color [34], while online estimators, such as [35], have
also been developed. Hence, it can also be determined using vision-based methods. Such
methods are also applicable for determining e wheel sinkage [36].

At last, the state equation of the LPV model for a single wheel can be written as follows:

[
v̇(t)
ω̇(t)

]
=

[
0 0
0 −b

J

][
v(t)
ω(t)

]
+

[
0
1
J

]
Tw +

 Ac− Kb
i

m
−g

(n+1)Ac
Kbr

i −Ac
J 0

[τmax
z

]
(29)

In the case of an LTI model, the state and input matrices are constants. In (29), several
parameters of the state and input matrices vary over time or change based on the inputs or
states of the model. These parameters are collected in the vector of scheduling parameters:

ρ =
[
k n Ac

1
i

]
(30)

Next, the state-space model must be augmented to describe the behavior of a vehicle
with an arbitrary number of wheels. First, v(t) shall be the longitudinal speed of the vehicle,
and each added wheel shall have its rotational speed as a new state of the model. Then, the
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traction forces and motion resistances must be summarized for all wheels to determine the
longitudinal velocity of the vehicle:



v̇(t)
ω̇1(t)
ω̇2(t)

...
ω̇n(t)

 =



0 0 0 . . . 0
0 −b1

J1
0 . . . 0

0 0 −b2
J2

. . . 0
...

. . .
...

0 0 0 . . . −bn
Jn





v(t)
ω1(t)
ω2(t)

...
ωn(t)

+



0 0 0 . . . 0
1
J1

0 0 . . . 0
0 1

J2
0 . . . 0

...
. . .

...
0 0 0 . . . 1

Jn




Tw1

Tw2
...

Twn

+


Ac1−
k1b1

i1
m1

−g cos α1
(n1+1)Ac1

Ac2− k2b2
i2

m2

−g cos α2
(n2+1)Ac2

. . .
Acn− knbn

in
mn

−g cos αn
(nn+1)Acn

k1b1r1
i1

−Ac1

J1
0 0 0 . . . 0 0

0 0
k2b2r2

i2
−Ac2

J2
0 . . . 0 0

...
. . .

...

0 0 0 0 . . .
knbnrn

in
−Acn

Jn
0





τ1,max
z1

τ2,max

z2
...

τn,max

zn



(31)

where the indices 1, 2, and n refer to the states of the corresponding wheel.

2.3. Implementation Details

The developed model was implemented using a Matlab R2023b function. There were
five groups of input arguments for the function:

• The actual state vector of the model;
• The model parameters (such as the wheel inertia, assumed to be constant);
• The inputs of the model over time;
• The actual scheduling parameter vector;
• The simulation time.

The function determines the actual inputs of the model based on the simulation time.
Thus, variable step solvers can be used for simulation. Using the derived LPV model, the
function determines and returns the gradient of the state vector. During simulation, a
function handle was created for the function of the state-space model, whose arguments
were the simulation time and the state vector. Then, the function handle was passed to the
selected ordinary differential equation (ODE) solver. The results presented in this paper
qwew attained using a variable-step Runge–Kutta (ODE45) method.

3. Results
3.1. Simulation Results

First, the developed model was verified using Project Chrono [37], an open-source
multiphysics simulation engine. It has various applications, such as vehicle dynamics,
terramechanics, granular flows, and seismic engineering. Built upon the Bekker–Wong
soil model, it is capable of modeling the operation of wheeled and tracked vehicles on
deformable terrain. Custom parameters defining soil types can be assigned to every point
of the managed map. The simulator features dynamic models of various wheeled and
tracked vehicles with numerous suspension, drivetrain, and steering system configurations.
Furthermore, custom vehicle models can also be implemented.

Project Chrono supports multi-ore, distributed computing modes and can harness
GPU power for particle motion modeling. It can be faster than real time when using
rigid surfaces, although its performance significantly degrades with increasing deformable
terrain size. The environment created in Project Chrono is presented in Figure 3. It consisted
of flat terrain created using the Soil Contact Model (SCM) deformable terrain class [38],
built upon the Bekker–Wong theory, but also taking into account contact kinematics and
the pressure distribution in the footprint. The terrain was modeled using a mesh, which
could be deformed only in the vertical direction.
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Figure 3. Project Chrono simulation environment.

On the other hand, the LPV model was a lumped model, which also neglected the
velocity of the impact on the sinkage. Hence, for the same soil type, the contact area
remained constant. In Project Chrono, the wheel is created slightly above the ground
to avoid unintended collision detection and numerical instabilities at the start of the
simulation.

After the wheel touches the ground, a constant torque of ca. 3140 Nm is applied
to the wheel, which is also used as the input of the state-space model. The comparison
consisted of test cases with different terrains. For example, the parameters used to simulate
a cohesionless, purely frictional terrain (LETE Sand) are summarized in Table 1.

Table 1. Terrain and vehicle parameters—Project Chrono simulation.

Terrain parameters

Sinkage coefficient [-] 1.1

Cohesion [Pa] 0

Shear deformation modulus [m] 0.01

Friction angle [°] 30

Contact area [m2] 0.224

Vehicle parameters

Wheel inertia [kgm2] 20

Vehicle mass [kg] 500

Wheel width [m] 0.4

Wheel radius [m] 0.5

First, the test case was simulated in Chrono, and the simulated states were exported to
a text file. Then, ithey were imported to Matlab to feed the relevant inputs of the simulation
to the LPV model and to perform the comparison.

The comparison of the models is presented in Figure 4. The first diagram shows
the longitudinal velocity, the second diagram presents the angular velocity, and the third
diagram shows the wheel slip. The slip of the LPV model envelops that of the simulator,
and the quantitative results are nearly identical; the maximum difference between the
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calculated slips is below 2%. An increasing oscillation could also be observed in the outputs
of the simulator, which was caused by the ideal motor driving the wheel and the spring-like
modeling of the contact.
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Figure 4. Verification of the proposed LPV model using Project Chrono—high slip.

The tests were carried out using different wheel torques. Another example is presented
in Figure 5, where the input torque is ca. 1570 Nm. As can be seen, the difference between
the two models increases in the case of lower slip values. The LPV model overestimates the
angular and longitudinal velocities compared to the Chrono simulation. While there is a
difference between the exact values, the main characteristics of the two models are similar.
Furthermore, overestimating the values errs on the side of caution.
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Figure 5. Verification of the proposed LPV model using Project Chrono—low slip.

3.2. Experimental Measurements

The model was also validated against experimental measurements. The measurements
used to validate the developed model were obtained previously to analyze the energetic
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balance of tractors. Several studies have presented results regarding the energy balance
aspects, such as [39,40].

The measurements were conducted using a John Deere 6600 tractor and a Dyna-Cart
dynamometer vehicle shown in Fig. 6 on a flat, sandy-clay terrain. The measurements
aimed to determine the energy absorption of the terrain; hence, the traction force was
nearly constant during the measurements. The original drive shafts were replaced with
shafts equipped with strain gauge stamps to determine the torque of the rear wheels. The
measurements were conducted on straight sections, with the rear axle differential locked.
Therefore, only one measurement point was sufficient to determine the rear wheel speeds,
to which an electronic tachometer was used. The longitudinal velocity of the vehicle was
measured using a radar.

Figure 6. John Deere 6600 tractor and Dyna-Cart dynamometer vehicle.

Each measurement was conducted on virgin, undisturbed track sections to determine
vertical soil deformation. The vertical terrain profile was measured in front of the tractor, in
the expected wheel path, and behind the tractor, in the remaining wheel path, to determine
the vertical soil deformation under the tractor wheels. Soil samples were taken from
various parts of the field, and their composition, density, volume weight, water content,
and porosity were determined in a laboratory to determine the soil properties of the
experimental area. However, the Bekker–Wong terrain parameters of the soil were not
determined during the measurement presented in [29,34] for similar types of soils with the
same moisture content. The same applies to the inertia of the wheel: the vehicle mass is,
in this case, half of the mass on the rear axle of the tractor, which was measured using a
weight-bridge. The parameters used for validation are summarized in Table 2.

Figure 7 presents the validation results. As in the case of the verification results, the
first diagram shows the longitudinal velocity, the second diagram presents the angular
velocity, and the third diagram shows the wheel slip. During the measurements, the total
fraction force was nearly constant, although there was a slight oscillation in the torque
measured at the wheels, which was used as the input of the model. The oscillation of the
torque resulted in a similar behavior in the simulated angular velocity, although it was
nearly constant during the measurements, which indicated that the reduced inertia of the
wheel and the transmission system was underestimated.
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Table 2. Terrain and vehicle parameters—measurement.

Terrain parameters

Sinkage coefficient [-] 0.85

Cohesion [Pa] 2200

Shear deformation modulus [m] 0.08

Friction angle [°] 30

Contact area [m2] 0.224

Vehicle parameters

Wheel inertia [kgm2] 20

Vehicle mass [kg] 1662.5

Wheel width [m] 0.46

Wheel radius [m] 0.9
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Figure 7. Validation of the proposed LPV model.

The absolute differences between the simulated and measured velocities are small.
The maximum absolute error of the longitudinal velocity is below 0.3 m/s and 0.5 rad/s in
the case of the angular velocity. On the other hand, the relative errors are significant due to
the low reference values, which is also reflected in the slip, where the absolute error of the
model reaches 0.06. While the difference could be caused by both parameter uncertainty
and simplifications of the model, it is interesting to note that the errors significantly decrease
after 8 seconds.

4. Discussion

The deviation of the LPV model compared to both the Chrono simulators and the
experimental measurements are summarized in Table 3. Quantitatively, the most significant
deviance can be seen in the case of the angular velocity error during the high-slip simulation,
which comes from the sawtooth-like form of the angular velocity simulated in Chrono. The
absolute differences are low in all other cases.

According on the results, the proposed model can describe the behavior of off-road
vehicles with an accuracy acceptable for control design. Furthermore, it can run in real-
time: the simulation of 10 s of driving required approximately 0.0365 s. Yet, the proposed
model has some drawbacks, which must be discussed. Due to the applied simplifications,
the operating domain of the model was narrowed. As Figure 5 shows, the accuracy of
the model decreases in the case of lower slip values, which is caused by neglecting the
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exponential term in (19). Similarly, its performance degrades in the presence of a significant
slope or if the velocity of the vehicle increases.

Table 3. Performance metrics of the LPV model.

High-Slip
Simulation

Low-Slip
Simulation Measurement

Velocity [m/s]
Max 1.406 0.908 0.283

Mean 0.314 0.456 0.075

Angular velocity [rad/s]
Max 40.631 2.650 0.423

Mean 14.706 1.416 0.202

Slip [-]
Max 0.02 0.019 0.076

Mean 0.008 0.015 0.022

On the contrary, grid-based LPV models often suffer from the curse of dimensionality.
Narrowing the operation domain of the model reduces the number of grid points, simplify-
ing control synthesis. Depending on the requirements of the control design, it is possible to
include the neglected forces in the LPV model.

Some model parameters, such as the area of the contact patch or the terrain param-
eters, are difficult to measure or estimate in real time. Even if the terrain is traversed in
advance, the accuracy of these parameters is uncertain, or they could have changed since
the measurement. While this is a common drawback of semiempirical models, robust
control techniques, such as the LPV H-∞ algorithm, can handle parameter uncertainty.

On the other hand, the number of terrain parameters was reduced compared to the
original equations, and grid-based LPV models can provide some robustness against
measurement errors in the scheduling parameters. Furthermore, contrary to several of the
adapted on-road tire models, the proposed model takes into account the characteristics
of the vehicle; hence, the same model can be used for different vehicles without any
intermediate steps, contrary to the adapted on-road models.

5. Conclusions

An LPV model was developed for off-road vehicles, which aims to model terrain–
vehicle interactions in real time with acceptable accuracy and support the development of
model-based control algorithms. First, a nonlinear state-space model was derived from the
Bekker–Wong equations; then, it was simplified and reformulated using the LPV approach.

Next, the model was verified using Project Chrono, a multiphysics simulator, and
validated against experimental measurements. Based on the results, the accuracy of the
developed model is suitable for control design purposes. Furthermore, off-road traction
control algorithms have to estimate the terrain parameters, which can be computationally
expensive and inaccurate. The proposed model requires only three terrain parameters: the
shear deformation coefficient, the sinkage exponent, and the maximum shear stress. Thus,
the uncertainty caused by the accuracy of the estimated parameters can be reduced.

The proposed model can be used to design model-based estimator algorithms, such
as different variants of the Kalman filter algorithm. However, in this case, the uncontrol-
lable and controllable inputs can be combined into a single input vector to simplify the
design process.

Traction control algorithms usually aim to control either the slip or the longitudinal
velocity of the vehicle. However, in the presented form of the model, the latter is an
uncontrollable state as it is independent of the controllable input and the controllable states
of the model. It depends only on the uncontrollable inputs of the system. A possible solution
is using the slip or its reciprocal as a system state instead of a scheduling parameter. This
way, both the slip and the longitudinal velocity become controllable states of the system.
The nonlinearities caused by the inclusion of the slip among the state variables can also be
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handled by the LPV representation. LPV-based slip ratio controllers are already presented
in the literature for on-road vehicles, such as the method presented in [41].

Further work will focus on the generalization of the presented model and the improve-
ment in the model’s accuracy. The possibility of considering the effects of steep slopes,
different pressure–sinkage values, shear stress–displacement models, or even organic
terrain must be analyzed.
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