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Abstract: Drone multispectral technology enables the real-time monitoring and analysis of soil
moisture across vast agricultural lands. overcoming the time-consuming, labor-intensive, and spatial
discontinuity constraints of traditional methods. This study establishes a rapid inversion model for
deep soil moisture (0–200 cm) in dryland agriculture using data from drone-based multispectral
remote sensing. Maize, millet, sorghum, and potatoes were selected for this study, with multispectral
data, canopy leaf, and soil moisture content at various depths collected every 3 to 6 days. Vegetation
indices highly correlated with crop canopy leaf moisture content (p < 0.01) and were identified using
Pearson correlation analysis, leading to the development of linear and nonlinear regression models
for predicting moisture content in canopy leaves and soil. The results show a significant linear
correlation between the predicted and actual canopy leaf moisture levels for the four crops, according
to the chosen vegetation indices. The use of canopy leaf moisture content to predict surface soil
moisture (0–20 cm) demonstrated enhanced accuracy. The models designed for the top 20 cm of soil
moisture successfully estimated deep soil moisture levels (up to 200 cm) for all four crops. The 20 cm
range soil moisture model showed improvements over the 10 cm range model, with increases in
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2),
and Nash–Sutcliffe Efficiency Coefficient (NSE) by 0.4, 0.8, 0.73, and 0.34, respectively, in the corn
area; 0.28, 0.69, 0.48, and 0.25 in the millet area; 0.4, 0.48, 0.22, and 0.52 in the sorghum area; and
1.14, 0.81, 0.73, and 0.56 in the potato area, all with an average Relative Error (RE) of less than 10%
across the crops. Using drone-based multispectral technology, this study forecasts leaf water content
via vegetation index analysis, facilitating swift and effective soil moisture inversion. This research
introduces a novel method for monitoring and managing agricultural water resources, providing a
scientific basis for precision farming and moisture variation monitoring in dryland areas.

Keywords: inversion; vegetation index; canopy leaf moisture content; soil moisture content

1. Introduction

Agriculture forms the foundation of global economic and social development. The
demand for precision agriculture is on the rise, with soil moisture being a key determinant
of crop yield and quality [1–3]. The accuracy of soil moisture monitoring directly impacts
the study of soil nutrient availability and crop root zone soil moisture (0–1 m) serves as
a critical variable in hydrological and weather forecasting models [4,5]. Conventional
soil moisture monitoring methods are laborious and time-intensive, making large-scale
real-time observation challenging [6]. Consequently, this study, utilizing drone-based
multispectral technology for the rapid assessment of soil moisture, is vital for implementing
precision agriculture management.

In recent years, the application of multispectral remote sensing technology in mon-
itoring crop growth and analyzing soil characteristics has gradually increased [7–11]. In
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southern Africa, Ndlovu H S et al. [12] utilized drone-based multispectral imagery to
precisely estimate maize leaf water indices for crop monitoring and early warning system
development, aiming to optimize agricultural production in smallholder farms. The study
revealed that spectral variables derived from near-infrared and red-edge bands are sig-
nificant indicators of maize moisture. In research conducted in the Netherlands, Ullah S
et al. [13] used narrow-band spectral indices and Partial Least Squares Regression (PLSR) to
evaluate the intensity of each spectral region. They found that the Mid-Infrared (MIR) and
Short-Wave Infrared (SWIR) domains are the most sensitive spectral regions for inversing
leaf water content. In another study using continuous wavelet analysis to detect changes in
leaf water content, results indicated that leaf water content can be accurately inversed from
the mid-thermal infrared domain of electromagnetic radiation, offering a new monitoring
tool for crop water management [14]. In China, Yu Xufeng [15] proposed a method to
detect water content in fresh potato leaves using near infrared spectroscopy. The partial
least squares regression (PLSR) model and the BP neural network model can effectively
predict the water content of potato leaves. It was shown that these two models had high
accuracy and reliability in predicting the water content of potato leaves, with the BP neural
network model having better predictability. In addition, the prediction accuracy of the
models can be further improved by the selection of feature wavelengths. BIAN [16] utilized
an unmanned aerial vehicle (UAV) equipped with thermal infrared and multispectral
sensors to diagnose the water stress condition of cotton through the Crop Water Stress
Index (CWSI) and a combination of several vegetation indices; the results showed that
there was a strong correlation between the CWSI and soil moisture content and stomatal
conductance. Zhou [17] utilized wavelet decomposition to extract the characteristic band
and established a partial least squares regression model to quantitatively detect lettuce leaf
moisture content. The studies have shown that leaf water content can more directly reflect
the actual conditions of crop growth and development and is closely related to soil water
content [18].

Determining the interrelationship between crop and soil water content is critical to
understanding soil and vegetation dynamic interactions [19]; soil water content must
be maintained at adequate levels for optimal productivity [20]. In their research on the
relationship between soil and plant leaf moisture during the flag leaf to wax ripening
stage of winter wheat, Wang Jihua, Zhao Chunjiang [21], and others observed a positive
correlation. Significant progress has been made in deriving large-area soil moisture from
remote sensing data. Zhang Zhitao [22] employed a hexacopter drone with Multiple
Camera Array (MCA) multispectral imaging systems to accurately invert bare soil moisture
content by collecting multispectral data on soil samples prepared at different depths (5 cm
and 10 cm), and using partial least squares regression, stepwise regression, and ridge
regression methods to establish the regression model of soil water content. The results
showed that the stepwise regression method had a higher inversion accuracy with a
coefficient of determination above 0.7.

The differences in water storage dynamics with integration depth [23] (the differences
in water storage dynamics with integration depth) between the surface layer and the root
zone and monitoring soil moisture in the root zone can accurately predict the status of
vegetation vigor [24–26]. Current remote sensing data inversion techniques for soil moisture
are more closely associated with surface soil moisture [27], and further research is needed
on how to quickly obtain deep soil moisture. Scholars worldwide have explored inverting
deep soil moisture from surface soil moisture using methods like empirical formulas and
linear regression [28]. Biswas [29] proposed a nonlinear relational model for surface soil
moisture inversion of deep soil moisture. For the same shallow soil moisture to simulate
soil moisture at different depths of the soil layer, the linear model is usually more accurate
in simulating the shallower soil moisture, and the Biswas deep soil moisture estimation
model is more accurate in simulating the deeper soil moisture [30]. Liu Jilong [31] utilized
the Biswas moisture estimation model to explore the effects of different growth stages of
fruit trees on these relationships by establishing conversion relationships between surface
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and deep soil moisture in a study of pear orchards at the Yantai Academy of Agricultural
Sciences. The results showed that the estimation of deep soil moisture from 0 to 50 cm
surface soil moisture had a better effect.

Research on integrating leaf water content into spectral inversion for deep soil moisture
is currently limited. This study employs drone-based multispectral technology, building
on prior research, to swiftly monitor soil moisture in various crops such as corn, millet,
sorghum, and potatoes. The research primarily aims to collect and analyze multispectral
data from crop canopies, focusing on their correlation with leaf and soil moisture, to develop
an effective model for monitoring soil moisture. This model will serve as a scientific
foundation for swiftly monitoring deep soil moisture in dry farming areas, benefiting
various crops.

2. Materials and Methods
2.1. Overview of the Study Area

The experiment was carried out in 2023 at the Organic Dry Farming Experimental
Base in Yuzi Lifang, Jinzhong City (N 37◦51′, E 112◦45′) (Figure 1). The region belongs to
the Loess Plateau zone and has a semi-arid climate, with an average annual temperature of
9.8 ◦C, rainfall of 418~483 mm, mainly concentrated in the summer, uneven distribution of
precipitation, a frost-free period of 145~184 d, and evapotranspiration of 1600~2000 mm.
The soil type of the experimental site was a calcareous brown clay, with a medium loamy
texture, and the organic matter of the 0–20 cm tillage layer The soil type of the test site was
calcareous brown soil, the texture was medium loam, the organic matter content of the
0–20 cm tillage layer was 16.09 g/kg, the alkaline nitrogen content was 49.19 mg/kg, the
quick-acting phosphorus content was 14.73 mg/kg, and the quick-acting potassium content
was 169.11 mg/kg. The crop was sown on May 9 to May 10, 2023. The base corn variety
is Integrity 16, with a full-life span of 129 d; the grain variety is Changsheng 13, with a
full-life span of 120 d; the sorghum is a new hybrid variety, with a full-life span of 103 d;
and the potato is Jinyuan 16, with a full-life span of 150 d. The base crop was sown from 9
May 2023 to 10 May 2023, and the base crop was sown from 9 May 2023 to 10 May 2023.
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2.2. Data Acquisition and Processing
2.2.1. Drone-Based Multispectral Data Collection

The study utilized a DJI Mavic 3 multispectral drone, featuring a 4/3 inch visible light
CMOS sensor and four monochromatic spectral sensors. These sensors, operating in Red
(R), Green (G), Red Edge (RE), and Near-Infrared (NIR) spectra, had central wavelengths
of 650 nm, 560 nm, 730 nm, and 860 nm, with bandwidths of 16 nm (except for NIR at
26 nm). High-resolution multispectral remote sensing images were captured at a 65-m
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altitude. Concurrently, data on canopy leaf moisture and soil moisture were recorded.
Flights occurred from 10:00 AM to 12:00 PM, maintaining a 70% flight path overlap and
80% side overlap. Calibration cloth was used to gather data for radiometric corrections.
Spectral reflectance data from various bands were extracted through image preprocessing
using DJI Terra software.

2.2.2. Above-Ground Environmental Data Collection

In the study area, 45 sampling points were established. Canopy leaves collected at
these points were geographically coordinated via Real-Time Kinematic (RTK) systems.

Subsequently, the plant leaves were separated, labeled, and sealed in plastic bags
for preservation, then transported to the laboratory for further analysis. The initial step
involved measuring the fresh weight of the leaves. This was followed by a kill-green
process at 105 ◦C for 30 min. Finally, the leaves were dried at 80 ◦C until a constant weight
was achieved. The final step involved measuring the dry weight to determine moisture
content [32] (Formula (1)).

LWC =
FW − DW

FW
× 100% (1)

In the formula, LWC represents the moisture content of the canopy leaves; FW repre-
sents the fresh weight of the leaves; and DW represents the dry weight of the leaves.

Surface soil volumetric moisture content (0–20 cm) was measured by RS485 tempera-
ture and humidity sensors every 3 to 4 days to obtain it. The mass water content of the deep
soil (0–200 cm depth) was measured by soil auger sampling, from the top to the bottom of
the soil layer, sampling every 10 cm until the depth of 20 cm, and then every 20 cm until the
depth of 200 cm, for a total of 15 measurements during the entire growth cycle. Mass water
content measurement employed the drying and weighing method (Formula (2)). Soil bulk
density (0–200 cm) was determined using the ring knife method, involving three replicates
per layer and averaging the results (Formula (3)). Subsequently, mass water content was
converted into volumetric water content (Formula (4)).

θm =
m2 − m3

m3 − m1
× 100% (2)

In the formula, θm represents the soil’s mass water content (g/g); m1 denotes the
weight of the aluminum box (g); m2 is the total weight of the aluminum box and wet soil
(g); and m3 signifies the total weight of the aluminum box and dry soil (g).

ρb =
m4 − m5

V
(3)

Converting Mas Water Content into Volumetric Water Content,

θV =
θm

ρb
× 100% (4)

In the formula, ρb represents the soil bulk density (g·cm3); m4 is the weight of the ring
knife and dry soil (g); m5 is the weight of the ring knife (g); V is the volume of the ring
knife (cm3); and θV is the volumetric water content of the soil (%).

2.3. Selection of Vegetation Indices

This experiment established 14 primary vegetation indices using the drone’s multi-
spectral sensor channels, as detailed in Table 1 [33–35]. The selection of sensitive vegetation
indices aimed to minimize spectral variable redundancy, streamline the inversion model,
and enhance its accuracy [36]. Consequently, Pearson correlation analysis was employed to
identify crucial sensitive vegetation indices pertinent to the crops.
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Table 1. Formulas for Calculating Vegetation Indices.

Vegetation Indices Formula

Normalized Difference Vegetation Index (NDVI) NDVI = (NIR − RED)/(NIR + RED)
Renormalized Difference Vegetation Index (RDVI) RDVI = (NIR − RED)/

√
NIR + RED

Nonlinear Vegetation Index (NLI) NLI =
(

NIR2 − RED
)
/
(

NIR2 + GREEN
)

Green Normalized Difference Vegetation Index (GNDVI) GNDVI = (NIR − GREEN)/(NIR + GREEN)
Ratio Vegetation Index (RVI) RVI = NIR/RED

Soil Adjusted Vegetation Index (SAVI) SAVI = 1.5(NIR − RED)/(NIR + RED + 0.5)
Normalized Difference Green Index (NDGI) NDGI = (GREEN − RED)/(GREEN + RED)

Wide Dynamic Range Vegetation Index (WDRVI) WDRVI = (0.2NIR − RED)/(0.2R + RED)
Triangular Vegetation Index (TVI) TVI = 0.5[120(NIR − GREEN)− 200(R − GREEN)]
Difference Vegetation Index (DVI) DVI = NIR − RED

Optimized Soil Adjusted Vegetation Index (OSAVI) 1.16(NIR − RED)/(NIR + RED + 0.16)
Greenness Index (GI) GREEN/RED

Modified Simple Ratio (MSR) (NIR/RED − 1)/
√

NIR/RED + 1
Ratio Vegetation Index 2 (RVI2) NIR/GREEN

2.4. Model Construction and Evaluation

Linear regression primarily examines the linear correlation between two variables,
describing the impact of one numerical variable’s changes on another. In this model, x
represents the independent variable, y the dependent variable, and a, b, c are constants.
The essence of simple linear regression is to estimate unknown parameters a and b based
on sample observations of x and y. The study conducts regression analysis on the data and
calculates the correlation coefficient to verify the accuracy of the resulting regression model.

The Biswas soil moisture monitoring model is designed for simulating and forecasting
soil moisture dynamics, taking into account soil layers at various depths, each with its
specific moisture holding capacity. This facilitates more accurate modeling of moisture
dynamics across different depths. Using actual measurement data, the model’s ability to
estimate soil moisture content from 0 to 200 cm depth is verified and evaluated based on the
Biswas soil moisture estimation model. For further details, you might consider reviewing
sources that discuss the Biswas model and its applications in soil moisture estimation.

S = A × (d − d0) + S0 ×
[
1 + B × (d − d0)

2
]
+ SC (5)

In the formula, S denotes the moisture storage within the 0-d cm soil layer, while S0
represents the moisture storage of the soil’s surface layer in cm. A, B, and SC are constants
that quantify the nonlinear relationship between the moisture storage in the surface and
deeper soil layers.

To establish the Biswas model, it IS essential to initially deduce the three coefficients A,
B, and SC. For the sake of simplifying calculations, Equation (5) is transformed accordingly.

S − S0 = SC + A × (d − d0) + B × S0 × (d − d0)
2 (6)

Set y = S − S0; x1 = d − d0; x2 = S0 × (d − d0)
2; with these substitutions, Formula (5)

is transformed accordingly.
y = Ax1 + Bx2 + SC (7)

To investigate the relationships between vegetation indices, leaf water content, surface
soil water content, and deep soil moisture (0–200 cm), we employed correlation and
regression analysis methods, as well as the Biswas model [37]. For the four crop types,
data were partitioned with 80% allocated for model development and 20% for validation
purposes [38]. Model evaluation was conducted using five metrics: Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2), Relative
Error (RE), and Nash–Sutcliffe Efficiency Coefficient (NSE).
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3. Results and Analysis
3.1. Modeling Canopy Leaf Moisture Content Using Vegetation Indices

Pearson correlation analysis, involving 14 vegetation indices and canopy leaf moisture
content for four crops, indicated highly significant correlations (p < 0.01) across all indices
(Table 2). Correlation coefficients varied among crops, ranging from 0.678 to 0.897 for corn,
0.824 to 0.878 for millet, 0.646 to 0.871 for sorghum, and 0.349 to 0.859 for potatoes. To
ensure the model’s simplicity and efficiency, for each crop type, the top six vegetation
indices were selected in order of their correlation strength, from the highest to the lowest.
Specifically, selected indices included WDRVI, RVI, MSR, NDGI, NDVI, and SAVI for corn;
OSAVI, RDVI, MSR, NLI, RVI2, and RVI for millet; OSAVI, NLI, MSR, NDVI, SAVI, and GI
for sorghum; and TVI, DVI, RDVI, OSAVI, NLI, and GNDVI for potatoes.

Table 2. Correlation of Spectral Bands and Vegetation Indices with Canopy Leaf Moisture Content.

Vegetation
Index

Correlation Coefficient Vegetation
Index

Correlation Coefficient

Maize Millet Sorghum Potato Maize Millet Sorghum Potato

NDVI 0.889 ** 0.824 ** 0.839 ** 0.565 ** WDRVI 0.898 ** 0.864 ** 0.729 ** 0.435 **
RDVI 0.768 ** 0.876 ** 0.819 ** 0.845 ** TVI 0.686 ** 0.836 ** 0.795 ** 0.859 **
NLI 0.842 ** 0.866 ** 0.867 ** 0.775 ** DVI 0.679 ** 0.839 ** 0.789 ** 0.859 **

GNDVI 0.861 ** 0.835 ** 0.646 ** 0.631 ** OSAVI 0.834 ** 0.879 ** 0.871 ** 0.780 **
RVI 0.898 ** 0.864 ** 0.729 ** 0.435 ** GI 0.878 ** 0.838 ** 0.830 ** 0.277 **

SAVI 0.889 ** 0.824 ** 0.839 ** 0.565 ** MSR 0.898 ** 0.870 ** 0.850 ** 0.486 **
NDGI 0.891 ** 0.821 ** 0.805 ** 0.349 ** RVI2 0.882 ** 0.865 ** 0.654 ** 0.594 **

Note: ** indicates significance at p < 0.01.

In this study, linear and nonlinear regression models were constructed to analyze the
relationship between canopy leaf moisture content and vegetation indices. The findings
(refer to Table 3) reveal that nonlinear regression models significantly correlated with the
moisture content in four crops (corn, millet, sorghum, and potato), evidenced by high R2

values (corn: 0.80–0.86, millet: 0.76–0.82, sorghum: 0.74–0.85, potato: 0.67–0.78). These
results suggest that nonlinear models more accurately represent this relationship than
linear models, highlighting a notable statistical link between vegetation indices and canopy
leaf moisture.

Table 3. Univariate Regression Analysis of Vegetation Indices and Canopy Leaf Moisture Content
Across Various Crops.

Crop Vegetation Index Model Formula R2

Maize

NDVI
Linear Regression y = 0.8077x + 0.068 0.792

Nonlinear Regression y = 3.0852x2 − 3.5396x + 1.5667 0.860

RVI Linear Regression
Nonlinear Regression

y = 0.0282x + 0.4213
y = −0.0009x2 + 0.0427x + 0.3677

0.816
0.820

SAVI Linear Regression
Nonlinear Regression

y = 0.5386x + 0.0679
y = 1.3722x2 − 2.3615x + 1.5675

0.792
0.860

MSR Linear Regression
Nonlinear Regression

y = 0.5386x + 0.0679
y = 1.3722x2 − 2.3615x + 1.5675

0.792
0.860

NDGI Linear Regression
Nonlinear Regression

y = 0.9709x + 0.4905
y = 0.3919x2 + 0.8429x + 0.4982

0.802
0.822

WDRVI Linear Regression
Nonlinear Regression

y = 0.1695x + 0.5625
y = −0.0311x2 + 0.2042x + 0.5595

0.816
0.820
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Table 3. Cont.

Crop Vegetation Index Model Formula R2

Millet

RDVI Linear Regression
Nonlinear Regression

y = 0.636x + 0.3069
y = 0.085x2 + 0.5427x + 0.3315

0.768
0.768

NLI Linear Regression
Nonlinear Regression

y = 0.3445x + 0.4817
y = 0.2758x2 + 0.1066x + 0.5214

0.765
0.794

RVI Linear Regression
Nonlinear Regression

y = 0.0334x + 0.3928
y = 0.0015x2 + 0.0108x + 0.4707

0.777
0.785

OSAVI Linear Regression
Nonlinear Regression

y = 0.7087x + 0.1874
y = 0.9731x2 − 0.5186x + 0.5647

0.783
0.805

MSR Linear Regression
Nonlinear Regression

y = 0.1339x + 0.3684
y = 0.0376x2 − 0.0165x + 0.5085

0.791
0.810

RVI2 Linear Regression
Nonlinear Regression

y = 0.0679x + 0.3186
y = 0.0117x2 − 0.0431x + 0.5683

0.793
0.814

Sorghum

NDVI Linear Regression
Nonlinear Regression

y = 0.9863x − 0.02814
y = 8.138x2 − 11.443x + 4.7057

0.747
0.813

NLI Linear Regression
Nonlinear Regression

y = 0.3103x + 0.542
y = 0.3395x2 − 0.1232x + 0.6748

0.737
0.746

SAVI Linear Regression
Nonlinear Regression

y = 0.6576x − 0.0281
y = 3.6169x2 − 7.6287x + 4.7057

0.747
0.813

OSAVI Linear Regression
Nonlinear Regression

y = 0.5862x + 0.3139
y = 0.6286x2 − 0.3333x + 0.6471

0.757
0.759

GI LLinear Regression
Nonlinear Regression

y = 0.2113x + 0.4144
y = 0.3657x2 − 0.8752x + 1.209

0.774
0.843

MSR Linear Regression
Nonlinear Regression

y = 0.1248x + 0.4437
y = 0.102x2 − 0.3431x + 0.9707

0.764
0.798

Potato

TVI Linear Regression
Nonlinear Regression

y = 0.0056x + 0.5431
y = −0.0002x2 + 0.0158x + 0.409

0.638
0.681

DVI Linear Regression
Nonlinear Regression

y = 0.3513x + 0.5475
y = −0.7505x2 + 1.0434x + 0.4039

0.627
0.679

RDVI Linear Regression
Nonlinear Regression

y = 0.4919x + 0.4144
y = −0.5974x2 + 1.181x + 0.224

0.723
0.736

OSAVI Linear Regression
Nonlinear Regression

y = 0.8076x + 0.2114
y = 0.4003x2 + 0.3384x + 0.3461

0.757
0.792

NLI Linear Regression
Nonlinear Regression

y = 0.3102x + 0.5229
y = 0.1972x2 + 0.1127x + 0.5626

0.772
0.779

GNDVI Linear Regression
Nonlinear Regression

y = 1.3023x − 0.1577
y = −1.8966x2 + 3.7887x − 0.9687

0.741
0.744

3.2. Modeling Canopy Leaf Moisture and Surface Soil Moisture Content

A correlation analysis assessed the relationship between canopy leaf moisture content
and soil moisture at depths of 0–10 cm and 0–20 cm in corn, millet, sorghum, and potato
observation areas. The correlation coefficients were 0.660 for corn, 0.596 for millet, 0.483 for
sorghum, and 0.505 for potato, indicating varying degrees of association between canopy
leaf moisture and soil moisture at 0–10 cm depth. Additionally, the correlations with soil
moisture at 0–20 cm were significantly higher: 0.852 for corn, 0.832 for millet, 0.843 for
sorghum, and 0.845 for potato (p < 0.01). This indicates a significant positive correlation
between the two, emphasizing the potential impact of leaf moisture status on soil moisture
conditions. Linear regression models were established using canopy leaf moisture content
of different crops as input variables to predict two distinct soil surface depths (Table 4).
The results show that the model’s R2 values for canopy leaf moisture and soil moisture
at depths of 0–20 cm are generally higher than those for depths of 0–10 cm, suggesting a
stronger predictive capability of canopy leaf moisture for soil surface moisture content at
depths of 0–20 cm.
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Table 4. Univariate Regression Models Comparing Canopy Leaf Moisture Content with Surface Soil
Layers Across Various Crops.

Depth/cm Formula R2

Maize
0~10 y = 0.2953x − 0.0541 0.442
0~20 y = 0.3831x − 0.0916 0.751

Millet
0~10 y = 0.2593x − 0.034 0.399
0~20 y = 0.3567x − 0.083 0.722

Sorghum 0~10 y = 0.3957x − 0.1351 0.207
0~20 y = 0.5083x − 0.2028 0.719

Potato
0~10 y = 0.3269x − 0.0958 0.246
0~20 y = 0.4188x − 0.1461 0.737

3.3. The Biswas Model for Soil Moisture Estimation

Experimental data analysis showed variations in soil moisture coefficients at varying
depths for corn, millet, sorghum, and potatoes (Table 5). In corn and sorghum, soil moisture
variation decreased between 10 and 100 cm depths, rose at 120–140 cm, and stabilized at
approximately 12% and 10% beyond 140 cm, respectively. Millet showed a decrease in soil
moisture variation from 10 to 60 cm, an increase from 80 to 100 cm, and stabilization at
about 12% past 140 cm. In potatoes, the variation decreased from 10 to 60 cm, increased at
80 cm, and then stabilized at approximately 12% beyond 140 cm. These findings suggest a
general decrease in soil moisture variation with increasing depth across different crops. Soil
moisture variation for all crops was lower in the 0–20 cm range compared to the 0–10 cm
range, with minimal changes beyond 140 cm.

Table 5. Variations in Soil Moisture Across Different Soil Layers for Various Crops.

Soil Layer Depth/cm 10 20 40 60 80 100 120 140 160 180 200

Soil Moisture
Average/%

Maize 12.56 14.44 13.69 11.45 11.47 10.52 9.86 11.00 11.73 13.40 14.80
Millet 11.26 11.61 13.08 11.12 10.73 12.34 14.04 15.50 15.90 17.69 18.12

Sorghum 11.91 12.62 12.15 11.94 13.12 13.91 14.09 15.33 14.34 14.69 14.62
Potato 13.21 15.02 15.30 13.33 13.01 13.09 13.12 14.83 16.51 17.49 18.84

Coefficient of
Variation/%

Maize 43.97 21.22 19.44 17.52 14.06 11.23 11.05 13.29 11.25 12.43 12.03
Millet 44.81 23.85 28.67 11.13 14.68 15.06 14.39 13.77 12.27 12.31 12.24

Sorghum 60.18 29.60 20.08 15.05 14.91 13.12 13.36 14.80 9.34 10.13 10.36
Potato 43.80 26.38 23.67 11.28 12.13 11.05 13.70 11.96 12.02 12.73 11.11

In the Biswas soil moisture estimation model, the surface soil layer (d0) was analyzed
at depths of 0–10 cm and 0–20 cm. Coefficients for estimating soil moisture content at
depths up to 200 cm were identified. Subsequently, models for estimating soil moisture in
four different crops, tailored to various surface layer depths, were developed (Table 6).

Table 6. The Biswas Model for Estimating Soil Moisture.

Crop d0/cm Biswas Soil Moisture Estimation Model R2

Maize
0~10 y = 0.108449x1 − 0.0000334x2 + 0.673764 0.9980
0~20 y = 0.096848x1 − 0.000036x2 + 0.816500 0.9984

Millet
0~10 y = 0.094493x1 − 0.000212x2 + 0.468915 0.9996
0~20 y = 0.090255x1 − 0.000121x2 + 0.699142 0.9998

Sorghum 0~10 y = 0.12128x1 − 0.0000795x2 + 0.002632 0.9998
0~20 y = 0.125145x1 − 0.0000348x2 − 0.152142 0.9998

Potato
0~10 y = 0.114459x1 − 0.000121x2 + 0.746847 0.9991
0~20 y = 0.103714x1 − 0.000079x2 + 1.074666 0.9995
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3.4. Model Validation
3.4.1. Validation of the Vegetation Index and Canopy Leaf Moisture Content Model

The model’s reliability was assessed using a nonlinear regression analysis of six vege-
tation indices across four crop types. Figure 2 illustrates that the R2 values for predicting
leaf water content were above 0.6 for all indices. Specifically, in corn, most R2 values
were above 0.7, with Root Mean Square Error (RMSE) ranging from 3.14% to 4.73%, and
Mean Absolute Error (MAE) between 2.69% and 4.36%. For millet, indices like OSAVI,
NLI, and RDVI showed R2 values exceeding 0.8, demonstrating minimal RMSE and MAE
fluctuations. In sorghum, R2 values for OSAVI and NLI were above 0.7, with less than
1% fluctuation in RMSE and MAE. In potatoes, all R2 values surpassed 0.7, with RMSE
and MAE ranging from 2.3% to 4.1% and 1.9% to 2.7%, respectively. The comparison of
inversion results for canopy leaf moisture content under various crop conditions with actual
measurements revealed that the selected vegetation indices, determined through Pearson
correlation analysis, effectively represent the relationship between leaf moisture content
and the indices, thus providing a solid data foundation for soil moisture content inversion.
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Figure 2. Comparison between predicted and measured values of canopy leaf moisture content using
vegetation index in Maize (a); Millet (b); Sorghum (c); Potato (d).

3.4.2. Validation of a Predictive Model for Assessing Canopy Leaf and Soil Surface
Water Content

The models estimating soil surface water content at depths of 0–10 cm and 0–20 cm
were validated for corn, millet, sorghum, and potatoes. Validation results reveal that the
models’ R2 values for the linear relationships are 0.677 for corn, 0.643 for millet, 0.641 for
sorghum, and 0.680 for potatoes, respectively. The models exhibited RMSE values of 2.46%
for corn, 1.52% for millet, 1.70% for sorghum, and 1.69% for potatoes, and MAE values
of 2.1%, 1.3%, 1.3%, and 1.4%, respectively (Figure 3). This suggests a superior fit of the
0–20 cm models over the 0–10 cm models for all crops in estimating soil water content. The
reduced RMSE and MAE values further confirm the models’ accuracy in predicting soil
water content at 0~20 cm, supporting the inversion analysis of deeper soil moisture.
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3.4.3. Verification of the Biswas Model for Estimating Soil Moisture

The Biswas model predicted deep soil moisture content (20–200 cm) using surface soil
moisture data (0–10 cm and 0–20 cm). Model performance was assessed with five metrics:
RMSE, MAE, NSE, R2, and RE. Table 7 shows the 0–20 cm data-based model outperforms
the 10 cm model in estimating deep soil moisture. Relative to the 10 cm model, the corn
area saw improvements in R2 (0.4), RMSE (0.8), MAE (0.73), and NSE (0.34). In the millet
area, improvements were R2 (0.28), RMSE (0.69), MAE (0.48), and NSE (0.25). For sorghum,
there were improvements in R2 (0.4), RMSE (0.48), MAE (0.22), and NSE (0.52). In the
potato area, the model showed improvements in R2 (1.14), RMSE (0.81), MAE (0.73), and
NSE (0.56). These findings suggest the 0–20 cm data-based model excels at estimating deep
soil moisture content.

Table 7. Evaluation of the Biswas Inversion Model.

Crop d0/cm 0~10 0~20

Maize

RMSE 1.714% 0.918%
MAE 1.419% 0.687%
NSE 0.372 0.714
R2 0.366 0.763

Millet

RMSE 1.702% 1.012%
MAE 1.354% 0.873%
NSE 0.621 0.869
R2 0.654 0.931

Sorghum

RMSE 1.265% 0.788%
MAE 0.871% 0.656%
NSE 0.149 0.670
R2 0.3317 0.731

Potato

RMSE 2.030% 0.883%
MAE 1.521% 0.715%
NSE 0.120 0.850
R2 0.294 0.855

The analysis in Figure 4 indicates that with d0 set to 10 cm, the RE for most crops
remains under 10%. However, at certain depths, RE increases. For corn, RE ranges from
13.8% to 25.76% at depths of 20–40 cm, 120 cm, and 200 cm. Millet demonstrates RE values
between 12.29% and 26.10% at depths of 20–100 cm. Sorghum shows a significant RE of
29.28% at 40 cm depth. Potatoes exhibit RE ranging from 21.88% to 35.69% at depths of
20–40 cm and 120 cm. With d0 at 20 cm, most crops maintain RE below 10%. Yet, corn’s
RE reaches 24.03% at 120 cm. Millet displays RE of 18.40% at 60 cm and 12.75% at 80 cm.
Potatoes exhibit a 15.85% RE at 120 cm depth. A comparison of RE values under different
d0 settings suggests that a 20 cm setting generally yields better inversion performance than
10 cm. Consequently, this experiment recommends using 0–20 cm soil moisture data to
estimate the 200 cm soil moisture content for corn, millet, and sorghum.
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4. Discussion

Increased vegetation coverage from growing crops poses challenges for drones in
directly capturing soil spectral reflectance. Furthermore, an interaction exists between
canopy leaf water content and soil moisture [39]. This study considered canopy leaf water
content to enhance understanding of water content dynamics in both vegetation and soil.
The results indicate that leaf water content models, developed through Pearson correlation
analysis, show high inversion accuracy for all crops, confirming their predictive reliability.
This corroborates with prior studies [40,41], validating the feasibility of multispectral
data-based models for quantitatively estimating canopy leaf water content [42].

Correlation models were established between soil moisture at depths of 0–10 cm
and 0–20 cm and leaf water content for four crops: corn, millet, sorghum and potatoes.
The model for 0–20 cm depth showed higher correlation, yielding validation R2 values
of 0.677, 0.643, 0.641, and 0.680 for each crop, respectively. This result aligns with Wang
Huaishu et al.’s study [43], which also found a strong correlation between soil moisture
at 20 cm depth and leaf water content. Soil moisture at 0–10 cm depth is likely affected
by surface evaporation, whereas the 0–20 cm depth offers a broader perspective of soil
moisture dynamics and root water uptake, enabling a more accurate depiction of water
utilization patterns.

The vegetation index-canopy leaf water content-20 cm surface soil moisture model was
used to estimate soil moisture for four major crops (corn, millet, sorghum, and potatoes)
at a dryland base on three dates: 18 July, 29 August, and 30 September. According to the
hydrological characteristics of the region, soil moisture is mainly influenced by two major
factors: infiltration recharge from atmospheric precipitation and crop water absorption.
(Figure 5). On 18 July, high water demand during the crops’ rapid growth period and
limited rainfall in the dryland area resulted in an average soil moisture content of less than
10%. On 29 August, continuous rainfall temporarily increased the average soil moisture
content to between 20% and 25%. By 30 September, the maturation of crops, coupled
with cooler temperatures and reduced sunlight, led to decreased soil evaporation and a
stabilization of soil moisture content at below 20%. During this period, a potato cultivation
region was severely impacted by pest infestations, leading to poor growth and reduced
vegetation cover. This, in turn, caused increased soil evaporation and a reduction in soil
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moisture content. The model’s predictions were consistent with actual measurements,
confirming its effectiveness in estimating soil moisture content within the 0 to 20 cm layer.
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Soil moisture movement, influenced by soil permeability, root distribution, and cli-
matic conditions, is complex [44,45]. In our study using the Biswas model for surface soil
moisture inversion in deep layers, we observed that the model’s predictions for 0–20 cm
soil moisture had better accuracy in terms of R2, RMSE, MAE, NSE and RE compared to
measured values. Specifically, for corn, the RE at a depth of 100–120 cm was 24.03%, while
for millet, it was 18.40% at 60–80 cm and 12.75% at 80–100 cm depths. This discrepancy
could be attributed to the presence of zero-flux surfaces in the soil, where water move-
ment at certain depths is almost negligible [46]. If a zero-flux surface occurs at a specific
depth, like the potential extent of corn roots to 100–120 cm in dryland conditions [47], the
opposing water movements at this depth counteract each other. This complicates accurate
reflection of soil moisture at that depth using surface moisture, leading to significant errors
in inversion. For other depth inversions, the RE values ranged between 0 and 10%. This is
consistent with Wang Guoyu et al.’s findings [48] in the dryland area of southern Shanxi,
where the Biswas model accurately estimated deep soil moisture with an average relative
error of approximately 10%. These results further affirm the Biswas model’s capability for
inverting deep soil moisture content.

5. Conclusions

This study developed models to estimate deep soil moisture from vegetation indices
using Drone multispectral imaging, incorporating data on leaf water content and soil
moisture. We applied these models to maize, cereal grains, sorghum, and potatoes in
dry-farming environments for rapid soil moisture estimation. Results revealed a strong
correlation between vegetation indices and leaf water content for all four crops, with a
significance level of 0.01. Moreover, the model accurately predicted leaf water content when
estimating soil moisture from 0 to 20 cm deep. Nonlinear regression models, based on six
indices related to leaf water, outperformed linear models. This confirmed its effectiveness
as a surface soil moisture indicator. Additionally, soil moisture was found to stabilize
with depth. The Biswas model confirmed the accuracy of deep soil moisture estimation
(0~200 cm) under varying surface conditions (0~10 cm, 0~20 cm). The 20 cm depth model
showed improvement in all metrics over the 10 cm model, with enhanced R2, RMSE, MAE,
and NSE values for maize, cereal, sorghum, and potatoes. The average error remained
below 10%, suggesting the 20 cm model’s superior accuracy in deep soil moisture estimation.
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In summary, this research highlights Drone multispectral remote sensing’s potential for
soil moisture monitoring in dry-farming. It identifies the best model for deep soil moisture
estimation in drylands, enhancing monitoring and management efficiency and accuracy.
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