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Abstract: Apocynum spp., known as Chinese Luobuma species, are perennial herbaceous plants that
not only have good ecological characteristics, such as drought resistance, salt resistance, freezing
resistance, high-temperature resistance and wind sand resistance, but also have good medicinal and
textile value. However, studies on the genetic variation in Chinese Luobuma are rare. In this study,
the genotypic variation in the agronomic traits and molecular markers among eight germplasm
accessions (referred to as genotypes) of Apocynum spp. was investigated. The accessions were
evaluated at two locations in China, Altay and Yuzhong, during a three-year period. Analysis of the
variance in yield-related traits revealed significant genotypic variation (p < 0.05) among the eight
genotypes at the early flowering and full flowering stages. There were also significant (p < 0.05)
genotype × year and genotype × location × year interactions for all the traits except leaf dry weight.
In comparison to those evaluated at Yuzhong, the plant height, number of branches, leaf dry weight
and stem dry weight at the early flowering stage were greater in Altay, with averages of 991.0 mm,
5.52, 26.41 g and 25.35 g, respectively. There were significant (p < 0.05) differences among genotypes
in terms of the quality traits measured at the early and full flowering stages. The crude protein and
crude fat content for each genotype at different locations at the early flowering stage in different
years ranged from 8.64 to 10.07%. The average flavone (FLA) content was 2.31 mg/100 g. Principal
component analysis (PCA) revealed that the G1 genotype in Altay had a higher neutral detergent
fiber content and leaf dry weight, and the G2 genotype had a larger stem thickness, branch number
and stem-to-leaf ratio. Five DNA sequences, ITS, matK, psbA-trnH, rbcL and trnL-F, were selected for
analysis of the molecular variance in Chinese Luobuma. Analyses of molecular variance (AMOVA)
based on the nuclear DNA sequences and chloroplast DNA sequences showed that most of the
variation occurred within species. Our study indicated the significant genetic variation in Chinese
Luobuma for future cultivar domestication. Genotypes with high leaf dry weights and many branches
are beneficial for tea production, while tall plants with long internode lengths are valuable for the
production of hemp.

Keywords: Apocynum spp.; agronomic traits; genetic variation; genotype-by-environment interactions;
molecular markers

1. Introduction

Chinese Luobuma is the general term for Apocynum spp. Apocynum spp. have good
textile and medicinal value [1,2] and are helpful for the treatment of liver yang dizziness,
palpitations, insomnia, hypertension and neurasthenia [3,4]. In recent years, due to the
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deterioration of the ecological environment and excessive and aggressive mining driven by
economic interests, the number of wild Apocynum spp. has decreased sharply, and these
plants are nearly endangered [5]. In recent years, the development of related products
has received a lot of attention. The leaves of Apocynum spp. can be used to produce
tea [6] due to their medical effects, such as sleep aid and lowering blood pressure [7,8].
The stems of Apocynum spp. can produce hemp, which is mostly blended with other
fibers [9]. In addition to Apocynum spp. fibers having excellent characteristics, such as
moisture absorption, breathability, antistatic properties and comfort, they also reduce the
frequency of far-infrared radiation [10,11]. The flowers of Apocynum spp. can also be used
to make essential oils and produce cosmetics [12]. Studies have shown that the essential oil
components in Apocynum spp. are mainly alcohols and esters and have inhibitory effects
on E. coli and Penicillium [12]. Unfortunately, the genetic potential of these valuable plants
has been underutilized due to the lack of new productive varieties with resistance to leaf
rust [13,14]. The success of plant breeding depends on the extent of genetic variation in
order to improve their traits. The key to detecting the genetic variation among plants, for
example, in their agronomic traits, is to distinguish the genetic effects from the non-genetic
effects that together make up the observed phenotype [15–17].

Agronomic traits are the result of the combined action of genes and the environ-
ment [18,19]. The phenotypic variation in agronomic traits among plants is affected not
only by their growth environment but also by their individual genetics [20,21]. In Apoc-
ynum spp. breeding programs, increasing the biomass yield is the principal goal. A
higher biomass yield improves the economic viability and sustainability of Apocynum spp.
production [22,23]. In Apocynum spp., biomass was shown to be correlated with several
morphological traits, such as plant height, stem diameter and branch number.

The development of DNA barcoding technology has brought new research directions
to molecular biology, species classification and identification, etc. Because DNA line codes
use unique DNA sequences, a large number of samples can be quickly identified using
DNA barcoding through the construction of DNA libraries. At the same time, it is also
a kind of molecular marker technology, which has been widely used in many research
fields [24–27]. Due to their synchronous evolution, ITS sequences are found in many
species, and there is relatively less intraspecific variation than interspecific variation [28,29].
Although the rbcL + matK composite sequence recommended by the International Plant
Barcoding Working Group has a success rate of 86.3% in the identification of vascular
plant taxa, there are still some taxa with a low success rate. Combined with previous
studies, we believe that plant DNA barcodes should be studied in the form of multi-gene
composite barcodes for specific taxa [30]. The trnL-F sequence has the advantages of less
selection pressure and a faster evolutionary rate and is often used for phylogenetic analysis
of intergeneric and subgenus taxa [31,32].

In this study, eight germplasm accessions of Apocynum spp. were evaluated in terms of
their agronomic traits associated with yield and quality from 2017 to 2019. The objective of
this study was to evaluate these accessions under field conditions to morphologically char-
acterize them and estimate the genotypic variation among these accessions for agronomic
traits. This study was conducted to assess the potential of using these eight accessions to
develop base populations for future breeding programs.

2. Materials and Methods
2.1. Plant Materials and Field Trials

Trial location 1 was in Altay City in the Xinjiang Uygur Autonomous Region
(E 85◦31′36′′–91◦04′23′′, N 45◦00′00′′–49◦10′45′′), and the altitude was 548 m. Based on
50 years of data recorded at the Altay weather station, the highest annual temperature is
37.6 ◦C, the lowest temperature is −43.5 ◦C, the average annual temperature is 4.5 ◦C, the
average annual precipitation is 131–223 mm, the annual evaporation is 1367–2066 mm and
the frost-free period is 123–152 days.
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Trial location 2 was in Yuzhong County of Gansu Province (E 103◦49′15′′–104◦34′40′′,
N 35◦34′20′′–36◦26′30′′), and the altitude was 1900 m. The annual average temperature is
6.6 ◦C, the annual extreme maximum temperature is 35.8 ◦C, the annual minimum temper-
ature is −27.2 ◦C and the frost-free period lasts 100–140 days. The annual precipitation is
300–400 mm, and the evaporation is 1343.1 mm.

The eight accessions of Apocynum spp. are presented in Table 1 and Figure 1. A
randomized complete block experimental design with 4 replicates was used at each location.
Each replicate included more than 100 plants. In each 10 m × 30 m experimental plot, the
plant spacing was 1 m and the row spacing was 3 m and we selected 20–50 plants from
each replicate.

We collected 8 phenotype seeds, which were incubated and germinated in an incubator
at 25 ◦C. After 15 days of germination, 10 individual plants were selected for each material,
and their young tissues were collected and stored at −80 ◦C for DNA extraction. To ensure
the quality of the samples, the A260/A280 value and concentration of the extracted genomic
DNA were determined using a NanoDrop ND-1000 (NanoDrop, Wilmington, DE, USA).
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Table 1. List of evaluated germplasm accessions.

Accession Number Species Phenotype

G1 A. venetum Red stems and little flowers

G2

A. pictum

Red stems and medium-sized flowers
G3 Purple spotted medium-sized flowers
G4 Thick leaves and medium-sized flowers
G5 Slender leaves and medium-sized flowers
G6 Green stems and medium-sized flowers
G7 Green stems and medium-sized flowers
G8 Green stems and big flowers

2.2. Measurements

The agronomic traits were measured during the early flowering and full flowering
growth periods during the years 2017, 2018 and 2019. The yield-related morphological traits
were measured in 10 random individual plants sampled from each replicate. The traits
measured were: plant height (PH/mm), stem diameter (SD/mm), number of branches
(BN), internode length (IL/mm), leaf dry weight (LDW/g), stem dry weight (SDW/g)
and the stem-to-leaf ratio (SLR). The leaves and stems (including inflorescences and leaf
sheaths) were weighed separately to determine the stem-to-leaf ratio [33].

Quality traits: The leaves of five individual samples were mixed, crushed in a pul-
verizer and screened through a 1 mm sieve for further measurement; neutral detergent
fiber (NDF), acid detergent fiber (ADF), crude fiber (CF), ether extract (EE), crude protein
(CP) and ash were also collected. The crude fat was measured using an ANKOM XT15i
automatic fat analyzer (ANKOM Technology Corporation, Beijing, China). Neutral deter-
gent fiber, acid detergent fiber and crude fiber were measured using filter bag technology
and using an ANKOM A200i semiautomatic fiber analyzer (ANKOM Technology Cor-
poration, China). The flavone (FLA) (mg/100 g) was extracted using high-performance
liquid chromatography and using an Agilent XDB C18 column in a methanol–water (65:35)
mobile phase.

2.3. ANOVA

All the data collected at the Altay and Yuzhong locations were analyzed within the
different growth periods for each year of the 2017, 2018 and 2019 trials. Analysis was
conducted at two levels: (i) within individual locations and (ii) across years and locations.

The genotypic variation among the eight germplasm accessions for the 7 yield-related
traits, 6 quality traits and flavone (FLA) was estimated by applying linear mixed-model
analysis using the residual maximum likelihood (REML) [34–36] procedure in DelteGen
3.1 [37–39].

The mixed linear model:

Yijkl = M + gi + lj + (gl)ij + yk + (gy)ik + (gly)ijk + rjkl + εijkl

where Yijkl is the value of an attribute measured from accession i in replicate l in location
j in year k and i = 1..., ng, j = 1..., nl, k = 1..., n and m is the mean value; gi is the random
genotypic effect of accession i, N(0, σ2

g); lj is the fixed effect of location j; yk is the fixed
effect of year k; rjkl is the random effect of replicate l within location j, in year k, N(0, σ2

b);
(gl)ij is the effect of the interaction between accession i and location j, N(0, σ2

gl); (gy)ik is the
effect of the interaction between accession i and year k, N(0, σ2

gy); (gly)ijk is the effect of the
interaction between accession i, location j and year k, N(0, σ2

gly) and εijkp is the residual
effect for accession i in replicate l in location j and year k, N(0, σ2

E).
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2.4. Pattern Analysis

Pattern analysis, a combination of cluster analysis and principal component analysis,
was conducted to provide a multi-trait graphical summary of the performance of the eight
germplasm accessions. This analysis was based on the accession-by-trait BLUP matrix
constructed using the individual trait outputs generated from the REML analysis across
years. Only traits with significant (p < 0.05) genotypic variation among the eight accessions
were included in the analysis, which was conducted using the DeltaGen 2.0 software.

2.5. Phenotypic Correlation

The phenotypic correlation coefficients among the eight accessions for the traits mea-
sured were estimated using the multivariate analysis option in DelteGen.

2.6. Genetic Variation in Molecular Markers

ITS, psbA-trnH, matK, trnL-F and rbcL were selected for PCR amplification. The
sequences of primers used are listed in Table S7. The PCR mixture included 12.5 µL of
2× Master Mix, 2.5 µL of the upstream and downstream primers, 2.5 µL of 50 ng/µL
template DNA and 5 µL of dd H2O. The PCR procedure was as follows: pre-denaturation
at 95 ◦C for 3 min; 35 cycles of denaturation at 94 ◦C for 30 s; annealing at 55 ◦C for
40 s; extension at 72 ◦C for 50 s; extension at 72 ◦C for 7 min and preservation at 4 ◦C.
The PCR amplification products were detected using 1% agarose gel electrophoresis, and
products of the appropriate fragment sizes and meeting the sequencing standards were
subsequently sent to Sangong Bioengineering (Shanghai, China) Co., Ltd., for Sanger
sequencing. The Chromas software (version 2.22) and the Sequencher software (version 4.8)
were used for sequence correction and manual calibration of the DNA sequencing results.
The MEGA 7.0 software was used for sequence alignment, and neighbor-joining (NJ) was
used to construct a phylogenetic tree for the clustering. AMOVA was performed using
Arlequin version 3.5 [40].

3. Results
3.1. Genotypic Variance Components of Yield-Related Traits

The analysis of variance indicated significant (p < 0.05) genotypic variance in the
yield-related traits at the early flowering stages across years 2018 and 2019 and across
locations in Altay and Yuzhong (Table 2). The accession-by-year interaction effects were
significant (p < 0.05) for the traits PH, SD, LDW and SDW. There were also significant
(p < 0.05) accession-by-year-by-location interactions for all the traits except for the stem
dry weight and leaf dry weight. There was no significant difference (p > 0.05) in the annual
genotypic variation. The mean plant height across years ranged from 66.41 cm to 77.98 cm,
and the mean stem diameter and internode length were 0.43 cm and 3.73 cm, respectively.
The leaf dry weight ranged from 19.15 g to 21.77 g.

Analysis of the data collected from Altay showed significant (p < 0.05) genotypic
variance among the eight accessions and an interaction between the accession and year
for yield-related traits at the early flowering stage from 2017 to 2019 (Table S1). There was
significant (p < 0.05) genotypic variance among the accessions for the yield-related traits
and the accession-by-year interactions in Yuzhong at the early flowering stage from 2017 to
2019 (Table S2).

The analysis of variance indicated significant (p < 0.05) genotypic variance among
the eight accessions for the yield-related traits at the full flowering stages from 2017 to
2018 in Altay, except for the trait of IL (Table 3). There were also significant (p < 0.05)
genotype-by-year interactions, except for with SLR. However, there was no significant
(p > 0.05) variation among years, except for with SD. The mean plant height among the
accessions in different years ranged from 54.34 cm to 82.77 cm. The mean stem diameter
and internode length were 0.39 cm and 4.03 cm, respectively, and the leaf dry weight ranged
from 10.19 g to 16.45 g.
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Table 2. Mean, range, least significant difference (LSD0.05), genotypic effect (σ2
g), year effect (σ2

y),
genotype-by-year interaction (σ2

gy), genotype-by-location interaction (σ2
gl), genotype-by-year-by-

location interaction (σ2
gly), experimental error (σ2

E), variance components and associated standard
errors (±SE), estimated from across-year and across-location analyses among the eight Chinese
Luobuma germplasm accessions for yield-related traits measured during the early flowering stage in
the years 2018 and 2019 in Altay and Yuzhong.

PH (mm) SD (mm) IL (mm) BN LDW (g) SDW (g) SLR

Mean 714.5 4.3 37.3 4.39 20.13 18.45 0.86
Range 664.1–779.8 3.9–4.5 34.5–40.9 3.75–4.88 19.15–21.77 17.52–19.09 0.79–0.96

LSD0.05 88.11 0.26 1.41 11.03 20.12 13.77 0.86
σ2

g 841.23 ± 95.56 5.57 ± 0.36 1.87 ± 0.28 3.63 ± 0.62 29.07 ± 14.48 0.07 ± 0.001 0.04 ± 0.005
σ2

y ns ns ns ns ns ns ns
σ2

gy 29.05 ± 12.73 0.06 ± 0.03 ns ns 17.21 ± 8.49 21.97 ± 7.94 ns
σ2

gl ns ns ns ns ns ns ns
σ2

gly 46.02 ± 19.50 0.09 ± 0.04 0.22 ± 0.07 0.42 ± 0.20 ns ns 0.0009 ± 0.0003
σ2

E 591.57 ± 33.99 2.92 ± 0.17 8.09 ± 0.45 9.78 ± 0.54 79.28 ± 5.31 77.21 ± 6.22 0.02 ± 0.002

PH, plant height; SD, stem diameter; IL, internode length; BN, branch number; LDW, leaf dry weight; SDW, stem
dry weight; SLR, stem-to-leaf ratio; ns, not significant.

Table 3. The trait mean, range, least significant difference (LSD0.05), genotypic effect (σ2
g), year

effect (σ2
y), genotype-by-year interaction (σ2

gy) and experimental error (σ2
E) variance components

and associated standard errors (±SE) were estimated for eight Chinese Luobuma accessions for
yield-related traits measured at the full flowering stage from 2018 to 2019 at the Altay location.

PH (mm) SD (mm) IL (mm) BN LDW (g) SDW (g) SLR

Mean 685.6 3.9 40.3 5.08 14.90 15.37 0.90
Range 543.4–827.7 3.3–4.8 33.4–43.4 3.98–5.99 10.19–16.45 10.00–17.63 0.74–1.06

LSD0.05 88.95 0.21 1.08 10.32 26.83 70.81 0.66
σ2

g 890.40 ± 77.45 0.003 ± 0.001 ns 11.71 ± 1.44 80.25 ± 8.17 574.91 ± 27.31 0.04 ± 0.008
σ2

y ns 0.04 ± 0.02 ns ns ns ns ns
σ2

gy 44.70 ± 13.86 0.003 ± 0.0008 0.23 ± 0.07 0.92 ± 0.38 5.17 ± 1.73 8.97 ± 2.79 ns
σ2

E 121.03 ± 7.18 0.01 ± 0.0006 0.75 ± 0.04 10.60 ± 0.62 12.68 ± 0.88 16.58 ± 1.15 0.16 ± 0.01

PH, plant height; SD, stem diameter; IL, internode length; BN, branch number; LDW, leaf dry weight; SDW, stem
dry weight; SLR, stem-to-leaf ratio; ns, not significant.

3.2. Genotypic Variance Components for Nutritional Quality Traits

The analysis of variance indicated significant (p < 0.05) genotypic variation in the
nutritional quality traits among the eight accessions at the early flowering stage of 2018
across the two locations, Altay and Yuzhong (Table 4). These trait means and ranges
indicated wide phenotypic variation in the nutritional quality traits and FLA content in
the Apocynum spp. The genotypic variances estimated among the eight accessions for all
the different traits measured were significant (p < 0.05) (Table 4). There were no significant
(p > 0.05) differences among locations and no genotype-by-location interaction variance,
except for in CP and FLA. The crude protein content in different years ranged from 12.18%
to 16.77%, the average crude fiber and ash contents were 22.16% and 11.28%, respectively,
and the average FLA content was 2.12 mg/100 g.

In Altay, there was significant (p < 0.05) genotypic variance among the eight accessions
in the nutritional quality traits during the early flowering stages, from 2017 to 2018, except
for the traits CP and NDF (Table S3). There were no significant (p > 0.05) differences among
years or in the genotype-by-year interaction variance, except for that of CP. Compared to
those in the full flowering stage, the early flowering stage presented higher levels of NDF,
ADF and FLA (33.97%, 79.09% and 2.64 mg/100 g, respectively). There was significant
(p < 0.05) genotypic variance in the nutritional quality traits among the eight accessions at
the full flowering stage during 2017 and 2018 (Table S4). There were no significant (p > 0.05)
differences among the years or among the genotype-by-year interactions, except for in the
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CP and FLA. In Yuzhong, there was significant (p < 0.05) genotypic variance among the
eight accessions for the nutritional quality traits during the early flowering stage in 2018,
except for in the CP, NDF and CF (Table S5).

Table 4. The nutritional quality trait mean, range, least significant difference (LSD0.05), genotypic
effect (σ2

g), location effect (σ2
l), genotype-by-location interaction (σ2

gl), and experimental error (σ2
E)

variance components and associated standard errors (±SE) were estimated among eight Chinese
Luobuma accessions evaluated at the early flowering stage from 2018 to 2019 in Altay and Yuzhong.

CP (%) NDF (%) ADF (%) EE (%) CF (%) Ash (%) FLA (mg/100 g)

Mean 15.36 26.83 69.14 7.48 22.16 11.28 2.12
Range 12.18–16.77 22.88–30.39 66.05–73.81 4.88–13.54 18.68–24.73 9.73–12.09 1.94–2.36

LSD0.05 18.32 9.09 21.21 40.08 7.71 16.18 0.73
σ2

g 37.79 ± 3.26 8.05 ± 2.46 44.19 ± 11.32 174.07 ± 30.56 0.02 ± 0.02 29.57 ± 2.45 0.03 ± 0.01
σ2

l ns ns ns ns ns ns ns
σ2

gl 1.48 ± 0.69 ns ns ns ns ns 0.05 ± 0.02
σ2

E 2.01 ± 0.42 12.07 ± 2.13 43.62 ± 7.58 87.69 ± 15.03 45.29 ± 8.16 1.71 ± 0.37 0.05 ± 0.01

CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber; EE, ether extract; CF, crude fiber; FLA,
flavone; ns, not significant.

3.3. Pattern Analysis

The biplot generated from the PCA based on the yield and quality traits measured in
Altay during the full flowering stages in 2017 and 2018 indicated that the eight germplasm
accessions were clustered into three groups (Figure 2). In group 2, accessions G2, G3, G4
and G6 had a greater average stem diameter, stem-to-leaf ratio, number of branches and
amount of crude protein. Accession G1 had high neutral detergent fiber.
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Figure 2. Principal component analysis of agronomic traits of different genotypes of Apocynum
spp. and Poacynum spp. during the full flowering stage from 2018 to 2019 in Altay. Different
colors represent different groups. PH, plant height; SD, stem diameter; IL, internode length; BN,
branch number; LDW, leaf dry weight; SDW, stem dry weight; SLR, stem−-to−leaf ratio; ns, not
significant; CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber; Different
colored a represents genotypes with the same trend.

According to the biplot generated from the PCA using the yield and quality traits
measured in Altay during the early flowering stages in 2017 and 2018 (Figure S2), the first
principal component explained 34.8% of the total trait variation. The above-average plant
height, branch number, internode length and leaf dry weight were shown for accessions



Agriculture 2024, 14, 332 8 of 16

G3, G4 and G5 in group 4. Accession G1 had a high crude fiber content and stem diameter.
Accession G7 had a high stem-to-leaf ratio. A biplot (Figure 3) generated from the PCA
of the yield and quality traits measured in Yuzhong during the early flowering stages in
2018 and 2019 indicated six accession groups. Accessions G2, G3 and G4 had above-average
stem diameters and acid detergent fiber contents. Accession G1 had high amounts of
neutral washing fibers and crude fat and a high internode length, crude fiber content and
branch number.
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represents genotypes with the same trend.

3.4. Phenotypic Correlation

The phenotypic correlation coefficients among the eight accessions for the traits mea-
sured during the early flowering stage in Altay are presented in Table 5. The correlation
coefficients ranged from strongly to weakly positive or negative pairwise associations
between the 12 traits. Of special interest are the phenotypic correlations between the FLA
and the other traits. The correlation coefficients between the FLA and PH and between the
FLA and IL were −0.86 and −0.71, respectively, indicating a strong negative phenotypic
correlation (p < 0.05).

The phenotypic correlation coefficients among the accessions for the different traits
measured during the early flowering stage in Yuzhong are presented in Table S6. These
coefficients ranged from strongly to weakly positive or negative pairwise associations
between the 14 traits. The correlation coefficients between LDW and SDW and between
LDW and BN were 0.93 and 0.63, respectively, indicating significant positive phenotypic
correlations (Table S6).
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Table 5. Phenotypic correlation coefficients among the eight germplasm accessions of Chinese
Luobuma based on trait means across the early and full flowering stages and across different years
in Altay.

Trait SD IL BN LDW CP NDF ADF EE CF FLA Ash

PH 0.23 0.56 0.66 * 0.40 −0.50 0.03 −0.14 0.39 −0.51 −0.86 ** 0.39
SD 0.38 −0.41 0.63 −0.20 −0.10 0.08 −0.17 0.13 −0.47 0.18
IL 0.26 0.39 −0.51 −0.64 −0.13 0.31 −0.72 * −0.71 * 0.53
BN 0.08 −0.48 −0.09 −0.44 0.03 −0.38 −0.53 0.27

LDW 0.68 * 0.18 0.33 −0.17 −0.23 −0.39 0.63
CP 0.19 −0.15 0.20 0.31 0.47 −0.93 **

NDF −0.53 0.18 0.16 0.37 −0.18
ADF 0.38 −0.22 0.46 0.41
EE −0.72 −0.08 0.00
CF 0.33 −0.42

FLA −0.31

*, ** indicate significance at the 0.05 and 0.01 probability levels, respectively. PH, plant height; SD, stem diameter;
IL, internode length; BN, branch number; LDW, leaf dry weight; ns, not significant; CP, crude protein; NDF,
neutral detergent fiber; ADF, acid detergent fiber; EE, ether extract; CF, crude fiber; FLA, flavone.

3.5. Genotypic Variance Components of Molecular Markers

The PCR amplification efficiency and sequencing success rate are important indices
for evaluating molecular markers. The analysis of each DNA sequence showed that the
percentage range of GC content was 34.78–61.05%. The GC content was highest in the ITS
sequence and lowest in the matK sequence. The number of variation sites ranged from 5 to
37, among which the psbA-trnH sequence had the most variation sites (Table S8).

The analyses of molecular variance (AMOVAs) for Chinese Luobuma based on the ITS
sequences revealed that most of the variation occurred within groups. For the combined se-
quences of matK+psbA-trnH+trnL-F+rbcL, most of the variation also occurred within groups
(Table 6). Cluster analysis of eight genotypes based on five sequences was performed
using neighbor-joining, and a dendrogram was inferred (Figure 4). The sequence com-
parison of ITS, matK, psbA-trnH, rbcL and trnL-F in eight genotypes and the gel diagram
showed that the sequence differences of five molecular markers could be clearly displayed
(Figures S3 and S4). ITS, matK, rbcL and trnL-F can be used to divide all accessions into
two major clusters and distinguish G1 from the other genotypes. The composite sequence
matK+psbA-trnH+trnL-F+rbcL can also be used to divide all the genotypes into two clusters.
However, we found that G1 and G3 were clustered together (Figure S5). The groups were
generated according to species type; most Apocynum spp. accessions were grouped together,
as was G8 (Figure 4). psbA-trnH could not distinguish the eight genotypes because the
sequence was short and the similarity was high. We found that not all single-molecule
marker techniques were able to distinguish the eight genotypes at the species level.

Table 6. Analyses of molecular variance (AMOVAs) for Chinese Luobuma based on five DNA
sequences.

Sequence Source of
d.f.

Sum of
Squares

Variance
Components

Percentage of
Variation

FstVariation

Nuclear sequence ITS Among groups 1 0.45 0.12 33.33
0.33Within groups 6 1.43 0.24 66.67

Chloroplast DNA sequences
(matK+psbA-trnH+rbcL+trnlL)

Among groups 1 7.13 1.24 26.57
0.27Within groups 6 20.5 3.42 73.43
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4. Discussion

A. venetum has a good ecological restoration ability and good feeding value. Moreover,
these plants are taller and contain more branches, which can aid in wind prevention
and sand fixation. This approach is helpful for ecological restoration [41]. There is good
evidence that plant breeding has successfully improved populations whenever there is
genetic variation within germplasm pools, and selection has been focused on the right
traits being measured in the appropriate environments [42]. Previous studies have reported
the results of germplasm evaluation in terms of pest and disease resistance in Apocynum
spp. [43,44] and have economic value for agriculture, medicine and industry [25]. However,
very few varieties are registered in China. The development of new varieties of Apocynum
spp. has become a priority in China to increase the utilization of these valuable species [25].

Information on the phenotypic and genotypic diversity in germplasms in terms of
the agronomic traits associated with breeding objectives enhances the development of
appropriate breeding methods. Estimates of the genotypic and genetic variation in agro-
nomic traits have been reported for the Gossypium barbadense [25], Glycine max [45], Melilotus
officinalis [46] and Oryza sativa subspecies [47] and many other plant species [48–50].

In our study, analysis of the agronomic traits showed that Apocynum spp. are tall
plants with a high number of branches and high leaf yield. These characteristics make these
species useful for ecological restoration [51]. The stems of Apocynum spp. can produce
hemp, and the internode length is a direct indicator of the length and toughness of the
hemp plants. Therefore, the internode length measured in our study can provide a basis
for selecting and breeding specific varieties of industry hemp [52,53]. Apocynum spp. show
a good forage palatability with a high leaf dry weight and low crude fiber and crude ash
contents [54,55]. Tea prepared from Apocynum spp. leaves has gained popularity as a
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nutritional supplement beverage for anti-aging purposes [56]. The flavonoid content in
Luobuma tea is an important indicator of the tea quality [57], as flavonoids can scavenge
free radicals [58,59]. Therefore, to select high-quality Apocynum spp. plants, we measured
the flavonoid content. We found that the flavonoid content was 2.12 mg/100 g during the
early flowering stage. Moreover, the flavonoid content during the full flowering stage was
greater than that during the early flowering stage in the same year and at the same location.

The presence of genotype × environment interactions complicates the selection of ma-
terial for broad adaptation due to variable relative performances across environments [55].
Quantifying the magnitude and understanding the causes of genotype × environment
interactions can be helpful when planning breeding strategies [60,61]. Studies have re-
ported that a range of traits in white clover, especially yield-related traits, are sensitive to
genotype × environment interactions [62–64]. In our study, most of the traits exhibited
significant differences under interactions between genotype and environment, indicating
the importance of multisite evaluation. In this study, the yield and quality traits of Apoc-
ynum spp. were evaluated in Altay and Yuzhong, China. The results showed that there
were significant genotypic differences in the yield traits among the genotypes and among
the genotype × year and genotype × year × location interactions (p < 0.05). There were
significant differences in the quality traits among the genotypes (p < 0.05).

The application of pattern analysis in this study provided a graphical summary of the
yield and quality traits of the Apocynum spp. evaluated in different years and locations.
These results will aid in the identification of genotypes with trait combinations beneficial
for developing varieties for tea and hemp production. The principal component analysis
(PCA) revealed that G1 had a greater leaf dry weight, branch number and plant height,
while G2 had a greater stem diameter, internode length and plant height. In a similar
study, Luo et al. (2018) [22] used pattern analysis to examine the associations among key
agronomic traits of Melilotus albus and identified material for breeding new varieties with
a high yield and a low coumarin content. Correlation analysis revealed that the crude
protein content was positively associated with leaf dry weight, while the flavone content
was negatively correlated with the plant height and internode length. These relationships
between traits provide a basis for the future selection of new Apocynum spp. varieties (lines)
with favorable yield and quality traits. From the different genotypes of Apocynum spp.,
we screened out the genotypes conducive to tea production, with a large leaf dry weight
and more branches, and the genotypes conducive to hemp production, with tall plants,
long internodes and large stems, which can a provide theoretical basis for breeding new
varieties (lines) of Apocynum spp. with good agronomy and quality traits and suitable for
domestic popularization.

The genetic background of Apocynum spp. is complex, and there are many genotypes
affected by habitat changes. Apocynum spp. varieties are cultivated through genetic se-
lection in different environments. In this study, cluster analysis of the eight genotypes of
Apocynum spp. based on different barcodes found that there was a large genetic differ-
ence between G4 and the other genotypes, suggesting that there might be gene exchange
between G4 and other genotypes, or it might be a heterozygote with multiple parental
sources. Molecular marker technology is based on the nucleotide sequence variation in
genetic material between individuals [23,65]. It is often used to detect differences be-
tween organisms. Compared with morphological, biochemical and cytological markers,
molecular markers have many advantages [66]. For example, most molecular markers
are codominant, and it is very convenient to select recessive traits [67,68]. The success
rate of individual DNA barcodes for plant identification varies, especially in hybrids or
varieties with a gene penetration phenomenon [30]. Scholars have commonly chosen DNA
barcodes from nucleotide gene sources and chloroplast sources for plant identification and
found that the DNA barcodes from the nuclear gene source had higher species-specific
differences [69]. Of course, our results are similar to those of previous studies. On the other
hand, DNA barcodes evolve at different rates from chloroplast-derived DNA barcodes,
and the identification success rate is also different [23]. This study also confirmed that the
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chloroplast-derived DNA barcodes in different genotypes of Apocynum spp. had fewer loci
of variation (except psbA-trnH, the barcode with the most loci of variation), and the genetic
distance of each barcode was less different among different genotypes.

The success rate of individual DNA barcodes for plant identification varies, especially
in hybrids or varieties with gene penetration phenomena [30]. Therefore, some scholars
have proposed using DNA barcode sequence combination to solve the problem. The
arpF-atpH+psbK-psbL+trnH-psbA combination barcode was used to identify Orchidaceae
plants, and the identification success rate was 98.8% [23]. In this study, phylogenetic tree
analysis of different barcodes showed that some individual barcodes were less able to
distinguish different genotypes of Apocynum spp., and the eight genotypes could not be
distinguished at the genetic level using different combinations of barcodes. Genomes are
rich in variation, and the number of molecular markers is almost unlimited []. In our study,
the analyses of molecular variance (AMOVAs) for Chinese Luobuma based on the nuclear
and chloroplast sequences showed that most of the variation occurred within species. Using
their agronomic traits and DNA barcoding technology, phenotypic morphological analysis
and studies on the molecular genetic variation in different genotypes of Apocynum spp.
were conducted, aiming to reveal the phenotypic differences in different genotypes of
Apocynum spp. and provide a theoretical basis for the breeding of new varieties (lines) with
a high yield and quality.

5. Conclusions

The significant genotype × year and genotype × year × location interactions estimated
for the yield traits across the two locations, Yuzhong and Altay, indicate the importance of
conducting multilocation trials to develop new broadly adapted varieties in China. The
estimates of the genotypic variation indicated the potential genetic variation available
in the key agronomic traits of Apocynum spp. At the Altay site, there were significant
differences between the genotypes in the quality traits at the early flowering stage and the
full flowering stage (p < 0.05). Principal component analysis found that the genotype G1 in
Altay has a higher neutral detergent fiber content and leaf dry weight, and the genotype
G2 has a larger stem thickness, branch number and stem-to-leaf ratio.

The barcodes matK, rbcL and trnL-F could divide all genotypes into two groups, which
can distinguish Apocynum spp. and G8. ITS, matK, rbcL and trnL-F can be used to divide
all the genotypes into two major clusters. The analyses of molecular variance (AMOVAs)
for Chinese Luobuma based on five sequences showed that most of the genetic variation
occurred within species. For the matK, psbA-trnH, trnL-F and rbcL sequences, most of the
variation presented among the genotypes.
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//www.mdpi.com/article/10.3390/agriculture14030332/s1, Figure S1: Distribution map of sampling
locations. Figure S2: Principal component analysis of agronomic traits in different genotypes of
Apocynum spp. and Poacynum spp. during early flowering stage from 2017-2019 at Altay. Figure S3:
gel pictures of five molecular markers for 8 genotypes. Figure S4: Comparison of sequences for eight
genotypes ITS, matK, psbA-trnH, rbcL, trnL-F. Figure S5: Neighbor-joining (NJ) tree for different
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