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Abstract: This study presents an approach to address the challenges of recognizing the maturity stage
and counting sweet peppers of varying colors (green, yellow, orange, and red) within greenhouse
environments. The methodology leverages the YOLOv5 model for real-time object detection, classifi-
cation, and localization, coupled with the DeepSORT algorithm for efficient tracking. The system was
successfully implemented to monitor sweet pepper production, and some challenges related to this
environment, namely occlusions and the presence of leaves and branches, were effectively overcome.
We evaluated our algorithm using real-world data collected in a sweet pepper greenhouse. A dataset
comprising 1863 images was meticulously compiled to enhance the study, incorporating diverse
sweet pepper varieties and maturity levels. Additionally, the study emphasized the role of confidence
levels in object recognition, achieving a confidence level of 0.973. Furthermore, the DeepSORT
algorithm was successfully applied for counting sweet peppers, demonstrating an accuracy level
of 85.7% in two simulated environments under challenging conditions, such as varied lighting and
inaccuracies in maturity level assessment.

Keywords: yield estimation; maturity detection; deep learning; computer vision; precision agriculture;
sweet peppers

1. Introduction

Precision agriculture refers to a contemporary method of farming management that
employs advanced technology to enhance crop yields, minimize resource wastage, and re-
duce environmental impact. This approach involves integrating technology into various
aspects of agriculture to monitor, measure, and adapt to variations in crop conditions [1].
Precision agriculture aims to improve crop yields, reduce costs, and enhance sustainability
by using resources more efficiently and reducing the environmental impact of farming
practices. It is becoming an increasingly important field as the global population continues
to grow, and there is a need for more efficient and sustainable food production [2].

Modern agriculture technology has made predicting crop yields a priority. This
information is critical for farmers as it allows them to make informed decisions regarding
seed quantities, fertilizers, and other resources. Precision in predicting crop yields enables
farmers to increase profitability, optimize crop cultivation, and minimize waste. It also
assists in their long-term planning by providing insights into prospective harvests and
guiding crop selection and planting schedules [3]. Farmers can use various methods such as
visual checks, sampling, remote sensors, fruit counting, and assessing greenhouse maturity
levels to predict crop yields. These methods are crucial because they enable farmers to
plan their harvests effectively and maximize their crop yields [4]. Computer vision is a
technological advancement that allows computers to interpret images or videos captured
through cameras or sensors. It has been used in estimating crop production by performing
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tasks such as plant counting, identifying various plant components, detecting disease,
and evaluating maturity. Computer vision algorithms can accurately tally the number of
plants within a field, assess the dimensions and forms of individual plants, and determine
the total crop production for the entire area by analyzing high-resolution images of crops.
These advantages assist farmers in receiving early alerts regarding possible issues that
could affect their crop yield and taking measures promptly to stop the spread of diseases,
thus preventing substantial damage to their crops. Fuzzy Logic, support vector machines,
and convolutional neural networks (CNNs) are the latest technologies used for the maturity
classification and counting of fruits. These methods can detect fruit maturity levels more
accurately and quickly [5]. The effectiveness of maturity detection through object detection
can vary, depending on the technique employed. Object recognition technology must
accurately identify real-time information about characteristics such as sweet peppers’ color,
size, and shape. These factors are critical in determining the yield level. Greenhouses are
typically designed to optimize crop production, which can limit the placement of cameras
and their field of view. Additionally, the appearance of sweet peppers varies as they
progress through different stages of development, and the dense vegetation in greenhouses
further complicates the issue [6].

In a recent study, Zhao et al. [7] proposed an automated technique for detecting
ripe tomatoes in greenhouse environments that combines the AdaBoost classifier and
color analysis. The method was tested on 150 positive and 683 negative samples, and it
successfully identified over 96% of ripe tomatoes in real-world conditions. However, there
was a 10% false-negative rate, meaning that 3.5% of tomatoes were undetected. Despite
this, the proposed method remains a simple and practical approach for spotting ripe
tomatoes in greenhouse environments. To automate tomato harvesting, G. Liu et al. [8]
developed a system that uses Histograms of Oriented Gradients (HOG) and a support
vector machine (SVM) to identify ripe tomatoes. The algorithm was tested on a dataset of
500 images with tomatoes and different background objects. The results showed 90.00%
recall, 94.41% precision, and an F1 score of 92.15%, which significantly outperformed
other advanced tomato detection algorithms. Liu et al. [9] also presented a method for
automatically grading tomatoes based on color, shape, and size using machine vision to
analyze tomato images and classification algorithms in order to determine maturity and
size. The method achieved an accuracy of 90.7% when tested with a dataset of 350 tomato
images, demonstrating its effectiveness in categorizing tomatoes based on their physical
features. While rule-based algorithms can technically identify pepper maturity, they often
involve complex decision making and require expensive equipment, resulting in slower
identification rates.

Deep learning models, on the other hand, offer significant advantages, including high
accuracy and the ability to generalize well across various conditions, addressing these
challenges. Alajrami and Abu-Naser [10] suggested a way to use deep learning for auto-
matically classifying types of tomatoes. The design included three convolutional layers,
two pooling layers, and one fully connected layer. The outcomes demonstrated a classifica-
tion accuracy of 93.2%. Long et al. [11] created a better Mask R-CNN model to accurately
outline tomatoes in greenhouses. The model was built on the original Mask R-CNN but
with improvements like a changed backbone network, altered pooling layer, and adjusted
mask prediction. The model accurately identified ripe tomatoes in greenhouse images
with 95.58% accuracy and 97.42% for the mean average precision (MAP). Long et al. [12]
proposed a new network called SE-YOLOv3-MobileNetV1 to detect ripe tomatoes in green-
houses. This network improved accuracy by using mosaic data augmentation and K-means
clustering. The network achieved a 95.58% accuracy rate and a 97.42% mean average preci-
sion in identifying ripe tomatoes. The model identified branch-occluded tomato images,
leaf-occluded tomato images, and overlapping tomato images. The branches of tomatoes
are larger and have fewer leaves than those of peppers, which means that the fruit is more
exposed, making it is easier to detect. Moreira et al. [13] compared two deep learning
models, SSD MobileNet v2 and YOLOv4, for their ability to detect tomatoes. YOLOv4
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performed better, reaching the highest overall performance with an 85.51% F1 score for
detection. In another study by Moon et al. [14], the authors proposed using a combi-
nation of convolutional and multilayer perceptron (CNN-MLP) to predict sweet pepper
growth stages. Using images, the CNN identified fruits in three stages (immature, breaking,
and mature). The MLP further broke down the immature stage into four sub-stages using
plant and environmental data. When tested on 4000 sweet pepper images, the combined
model reached an overall accuracy of 77%, performing better than using just a CNN or
MLP alone. This highlights the strength of the combined approach. Dassaef et al. [15]
used a dataset of more than 1400 images with manually annotated fruits and peduncles
to detect fruits and stems of green sweet peppers in greenhouse environments. The study
explored the use of Mask R-CNN, considering challenges such as occlusion, overlaps,
and varying light conditions. The authors achieved a precision of 84.53% in fruit detection
and 71.78% in peduncle detection, with an overall mean average precision (mAP) of 72.64%
for instance segmentation. Following a similar approach, this project aims to detect fruit
for harvesting and estimate yields. Seo et al. [16] introduced a robot monitoring system
designed for tomato fruits in hydroponic greenhouses. This system employed machine
vision to detect and track tomatoes while classifying their maturity levels. Operating in real
time, it proved resilient to lighting conditions and background clutter changes. The system
achieved an accuracy of 90% in detecting tomato fruits and an 88% accuracy in classifying
their maturity levels.

On the other hand, in the counting process, feature extraction techniques for elements
such as shape, texture, and changes in color space are employed to highlight the objects of
interest [17]. Counting presents a challenge due to issues like inconsistent fruit detection
and the potential for double counting. Detecting fruits reliably is tough due to variations in
size, making it challenging to extract useful information. One common solution is using
a multi-object tracking (MOT) algorithm to build global models containing all relevant
objects in the environment. MOT is applied in agricultural and food settings for monitoring
and fruit counting [18]. In their work, Rapado-Rincon et al. [19] employed a multi-view
perception algorithm to detect and track tomatoes on plants from different angles. The
results demonstrated that the method accurately located and reconstructed all tomatoes,
even in challenging conditions. It estimated the total tomato count with a maximum
error of 5.08%, achieving up to 71.47% tracking accuracy. Wojke et al. [20] introduced a
DeepSORT technique to improve the data association abilities of basic tracking algorithms
using the Kalman filter and the Hungarian algorithm. In their experiments, these additions
reduced identity switches by 45%, showing competitive performance at high frame rates.
DeepSORT employs a small convolutional neural network to extract features from identified
objects, merging them with positional data to enhance tracking, especially in situations with
occlusions. It has been successfully applied in agro-food environments. Kirk et al. [21] came
up with a way to track strawberries as they grow using a feature extraction network. They
upgraded the regular DeepSORT network by adding a classification head. This extra part
learned to recognize different fruit IDs and ripeness stages at the same time. The authors
found that adding the classification head improved the feature extractor network’s ability
to connect and organize data. Villacrés et al. [22] provided a detailed comparison of
tracking-by-detection algorithms for counting apples in orchards. The findings indicated
that DeepSORT performed the best overall, boasting a mean average precision (mAP) of
93.00%. The Kalman filter also delivered strong results, with an mAP of 92.15%. The authors
concluded that both DeepSORT and the Kalman filter are effective for accurately counting
apples in orchards. Egi et al. [23] evaluated tracking-by-detection algorithms for counting
apples in orchards and greenhouses using a UAV. DeepSORT obtained a 93.00% mean
average precision (mAP), while the Kalman filter obtained an mAP of 92.15%. The authors
suggested that both DeepSORT and the Kalman filter are effective for apple counting
in orchards. Zhang et al. [24] introduced a deep-learning-based algorithm designed for
detecting and tracking citrus fruits (oranges) in the field. This algorithm utilized the Orange
YOLO model for citrus fruit detection in images and employed Orange Sort, a modified
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version of the SORT tracking algorithm, for fruit tracking over time. Achieving a 95.7%
mean average precision for fruit detection and a 93.2% tracking accuracy, the system
excelled in challenging conditions like occlusion and clutter. In the current literature, there
are no works related to classifying the maturity levels of sweet peppers and tracking in
greenhouse environments.

In this study, we developed a methodology to identify the maturity stage and track
sweet peppers across their typical color variations (green, yellow, orange, and red). Our
goal was to estimate the yield of these fruits in greenhouse production. We utilized
YOLOv5 for detection, enabling the classification of sweet pepper maturity. Additionally,
we integrated DeepSORT for counting, providing estimates of the pepper count in a
greenhouse lane. To train and validate our algorithm, we gathered 1127 images from
CAETEC (the Experimental Agricultural Field of the Tec de Monterrey). To ensure accurate
fruit detection, our approach overcomes challenges like overlapping objects and changing
obstacles such as leaves and branches. Importantly, due to environmental factors, our
system can identify immature sweet peppers, particularly the most challenging color
(green). This work aimed to enhance the maturity recognition and fruit counting of
sweet peppers, which have not previously been reported in relation to the state-of-the-art
application of YOLOv5 and DeepSORT.

The subsequent sections of this article are organized as follows: Section 2 introduces
important concepts that are necessary to consider, such as basic knowledge of YOLOv5, the
DeepSORT algorithm, evaluations metrics, and intersection over union (IOU). Section 3
describes the experimental setup, while Section 4 presents the results. Lastly, in Section 5,
conclusions and future work are presented.

2. Materials and Methods
2.1. Sweet Peppers

Sweet peppers, also known as bell peppers, paprika, or peppers, are the fruits of plants
in the Grossum group of the species Capsicum annuum. Although botanically classified as
fruits, they are usually considered vegetables in culinary terms. Sweet peppers come in a
variety of colors, such as red, yellow, orange, green, white, chocolate, candy-cane striped,
and purple, as shown in Figure 1. The color of the pepper indicates its ripeness, with red
peppers being the ripest [25].

Figure 1. Sweet peppers.

2.2. Greenhouse

Greenhouses are structures that provide protection from different weather elements
such as wind, rain, and snow. They also allow for the manipulation of growing conditions
like temperature, humidity, and light levels. Greenhouses made of glass or plastic are
commonly used to grow sweet peppers, with sloped roofs to allow rainwater runoff and
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insulated walls for temperature regulation. Sweet peppers can be grown year round in
greenhouses regardless of the weather outside, making it possible to produce sweet peppers
even in cold climates. The most common types of sweet bell peppers grown in greenhouses
come in green, orange, yellow, and red varieties. Pests and diseases are a common threat to
greenhouse plants and must be prevented. The greenhouse at CAETEC, where the images
used for the algorithm’s training were obtained, is shown in Figure 2.

Figure 2. (Left) Greenhouse at CAETEC, (right) mature sweet peppers.

2.3. Intel Real-Sense D435i

The D435i RGB-D camera (Intel, 2200 Mission College Blvd, Santa Clara, CA, USA)
uses a projector to create a random, sharply focused infrared (IR) dot pattern. The camera
also features right and left IR cameras, which enable it to capture and measure the distance
between the projector’s output and the objects within its field of view (FOV), as illustrated
in Figure 3. The depth is primarily determined by comparing the left and right video
images recorded simultaneously and calculating the disparity for each pixel. Subsequently,
the results are triangulated [26].

Figure 3. Intel D435i camera.

The device measures 90 mm × 25 mm, weighs 258g, and can be used alone or inte-
grated with a laptop or mobile device. See Table 1 for technical specifications [26].
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Table 1. Technical specifications.

Parameter Properties Units

Depth field of view (FOV) 87 ± 3 × 58 ± 1 × 95 ± 3 °
IR camera resolution 1280 × 720 pix

Depth frame rate 30 Hz
RGB camera resolution 1920 × 1080 pix
Maximum frame rate 90 Hz

Baseline 50 mm
Measurement range 200–10,000 mm

The RealSense APIs allow direct access to internal and external camera sensor proper-
ties. Additionally, a wide range of external testing methods are available [27].

2.4. Evaluation Metrics

To evaluate the effectiveness of YOLOv5, we used the following five metrics: accuracy,
precision, recall, F1 score, and mean average precision (mAP). The classification outcomes
were categorized into four groups: true positives (Tp), which represent the number of
correctly identified objects; true negatives (TN), indicating correct rejections; false positives
(Fp), which correspond to the number of incorrectly identified data points; and false
negatives (FN), representing the number of missed objects [28].

Three analytical criteria were derived from these evaluation metrics, as defined by
Equations (1)–(3): Accuracy, Precision, and Recall.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

A valid prediction algorithm is usually indicated by a high degree of proportionality
between recall and precision [29]. The F1 score defined in Equation (4) combines precision
and recall into a single metric. This metric is normally used to gauge the overall accuracy
of a model. Additionally, the F1 score can be a valuable way to demonstrate how stable a
model is. A higher value suggests that the model is more stable.

F1 score =
2 × Precision × Recall

Precision + Recall
(4)

Mean average precision (mAP) combines precision and recall into a comprehensive
metric. It takes the average of the “average precision” calculated for each class, as expressed
in Equation (5):

mAP =
1
n

n

∑
i=1

ai

∫ 0

1
Pi(Ri)dRi (5)

where P stands for precision, while R represents recall, i represent the current class, and n
indicates the total number of classes.

2.5. Intersection over Union

Imagine two boxes: one representing a prediction (e.g., where a model thinks an object
is) and the other representing the ground truth (where the object actually is). The IOU
measures how much these two boxes overlap. Find the area where the two boxes overlap.
This is the “intersection”. Combine the areas of both boxes, but only count overlapping
areas once. This is the “union”. Divide the intersection area by the union area. This gives
the IOU score, a value between 0 and 1. An IOU of 1 means a perfect overlap (the boxes
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are identical). An IOU of 0 means no overlap at all. Higher IOU scores generally indicate
better object detection or tracking accuracy [30]. The IOU metric, essential for this method,
can be calculated using Equation (6).

IOU(a, b) =
Area(a) ∩ Area(b)
Area(a) ∪ Area(b)

(6)

The IOU tracker depends largely on how well object detection models can spot objects.
It is a very good object tracker because it is not computationally expensive and can handle
frame rates of over 50,000 fps. By predicting with the Kalman filter, users can save time
by not analyzing every frame. The detector can also save time and energy by skipping
unnecessary frames and dealing with fewer overall images.

2.6. SORT Counting Algorithm

The SORT algorithm is an effective way to track objects in live videos. It uses the
Kalman filter and the Hungarian algorithm to figure out where objects are and how fast they
are moving in different frames. To track objects accurately, two algorithms work together.
The Hungarian algorithm ensures correct identity assignment, preventing confusion across
frames. The Kalman filter then predicts future positions by filtering out noise and jitters in
the video data. SORT proves invaluable in the realm of computer vision, particularly in
applications like surveillance, autonomous driving, and robotics. Its effectiveness shines
in challenging scenarios, such as instances where objects obstruct each other, undergo
appearance changes, or move at varying speeds. SORT is effective at tracking objects in real
time, and it is popular because it is accurate, works fast, and can handle different situations
well [20]. For a quick overview of the SORT algorithm, refer to the simplified summary
provided in Figure 4.

Figure 4. Object tracking SORT algorithm diagram.

The SORT data association module compares the Kalman filter’s (KF) predicted bound-
ing boxes with the image object detector’s measured bounding boxes. This component is
essential to the SORT method because it improves real-time tracking efficiency by linking
new detections to previously established object tracks. This component inputs the KF-
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obtained bounding boxes (N) and the forecasted bounding boxes (M). The module defines
a linear assignment problem (Di, i ∈ 1 . . . N, and Pj, j ∈ 1 . . . M, respectively) utilizing
the intersection-over-union (IOU) metric. This is accomplished by creating a cost matrix
that establishes the relationship between each detected bounding box and all expected
bounding boxes.

IOU(D, P) =


iouD1, P1 . . . iouD1, PM
iouD2, P1 . . . iouD2, PM

...
. . .

...
iouDN, P1 . . . iouDN, PM

 (7)

The Hungarian method may be used to resolve this problem by reducing it to a
minimization problem defined by the IOU between the detected and anticipated bound-
ing boxes:

IOU(a, b) = 1 − Di ∩ Pj
Di ∪ Pj

(8)

After calculating the cost matrix, the Hungarian technique links the bounded regions.
The resulting correlations are displayed as an N-by-M matrix, where M is the number of
tracks and N is the number of measurements. Associations are filtered using a minimum
IOU threshold and a maximum IOU threshold. Any connections with IOU values below
the cutoff are disregarded. In the KF estimation module, a linear constant velocity model
represents each object’s motion. An item’s bounding box determines the track’s new
state if linked to a tracked object. The state can only be anticipated if an item and a
track’s condition cannot be connected. The tracking control component is responsible
for adding and removing tracks. Additional tracks are generated when the IOU value
between two tracks is less than a certain threshold. The KF state is first set based on the
detection’s bounding box. Since the item’s boundary is the sole information given, the KF
has significant covariance and zero velocity for the object.

2.7. Artificial Neural Networks
2.7.1. Deep Learning

Today, the ML methodology that shows the most promise for detecting and localizing
produce in very complex environments is deep learning (DL). DL is characterized by
adding more complexity to a model, allowing it to represent data at multiple levels of
abstraction [31]. These techniques excel at solving complex problems well and fast (through
parallelization) if provided with adequately large datasets describing the problem [32].

Convolutional neural networks (CNNs) are the basis of DL, as CNNs are made up
of deep (multiple-layer) feed-forward artificial neural networks (ANNs) [31]. CNNs have
been widely used for image processing tasks such as object detection. As they can learn
translationally invariant patterns, they can accurately detect objects wherever they are
placed on an image. A CNN is basically composed of 4 types of layers: convolutional,
pooling, flattening, and fully connected layers. The convolutional and pooling layers can
be used more than once before using the flattening layer. This decreases the computational
size and is one of the principles of a CNN. Figure 5 shows a diagram of a convolutional
neural network.

Figure 5. CNN architecture diagram.
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The input of a CNN can be an RGB image, consisting of three channels: red, green,
and blue. Each channel has the same image size, which is determined by the number of
width pixels and height pixels. The value of each pixel depends on the color depth, and
in most cases images have an 8-bit color depth, meaning that the value of each pixel at each
channel is in the range of 0 to 255. Using the 3D matrix of the image, a convolutional layer
is applied.

The main objective of the convolutional layer is to extract the height-level features of
the image. This layer consist of a smaller matrix, which is often called a kernel or filter.
Using this filter, a convolutional operation is computed with each channel of the 3D input
image. The values of each of the pixels from the filter are called weights.

2.7.2. YOLOv5

YOLOv5 was picked because it is accurate, small, and stable [33]. YOLOv5 builds on
YOLOv3, achieving equal detection performance but using only 10% of the space. This
makes it efficient and suitable for many uses [34].

YOLOv5 comes in four sizes. YOLOv5s is compact and fast but less accurate. The oth-
ers (YOLOv5m, YOLOv5l, and YOLOv5x) are slower but more accurate. Figure 5 shows
the whole YOLOv5s structure, which has four parts: input, backbone, neck, and prediction.

In the Figure 6, CONVindicates convolution; BN indicates batch normalization; and, fi-
nally, CONCAT indicates the feature fusion method of adding up the number of channels.

Figure 6. YOLO architecture diagram.

CBL is a module that encompasses CONV, BN, and Leaky Relu, collectively forming
the activation functions. The adaptive anchor is a box predicted from the network’s output.

The predicted and actual boxes are compared to make the network better (backward
updates). The best anchor box size is then determined for the dataset. During training,
the network dynamically decides the best anchor box for each set [34]. The aspect ratio and
bounding box size are set when defining the anchor boxes. Equation (9) shows the formula
for finding a bounding box.{

w × h = s
w/h = ratio

{
w = ratio × h
ratio × h2 = s

(9)

The equation uses the following notation: w denotes the width of the bounding box, h
represents the height, and s indicates the area of the anchor. By integrating an adaptive
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anchor during the network’s training process, we improve the model’s accuracy, decrease
the computational time, and accelerate the target detection speed. This synergy makes the
whole process more efficient and effective [35]. The focus module is utilized in the first
layer of the underlying network. An essential step known as slicing is involved. When
examining a standard image with dimensions of 3 × 608 × 608 in YOLOv5s, the image is
divided into smaller sections, resulting in a 12 × 304 × 304 map. Then, with the help of
32 special filters, as shown in Figure 7, it changes the map to a 32 × 304 × 304 one. This
whole process is designed to speed up detection.

Figure 7. Focus module diagram.

Figure 8 illustrates the structure of the YOLOv5s network, highlighting two significant
CSPNet nodes identified as CSP1 and CSP2. CSP1 operates within the backbone, while
CSP2 is situated in the neck network. One part focuses on running convolution for more
detailed features, while the other combines the processed features. This special design helps
the network learn better, maintain accuracy, and use fewer resources. It is also effective
for speeding up the process without needing a lot of memory [36]. The Res unit employs
ResNet’s special structure to create a deep network.

Figure 8. CSP diagram.

2.7.3. DeepSORT

To fix the issues with regular object tracking methods in live videos, DeepSORT uses
deep learning. It upgrades the basic but effective search technique known as SORT. SORT
struggles when trying to track objects that are too close or hidden. DeepSORT tackles this
by connecting identical object detections across frames using deep learning. It checks how
similar two detections are, allowing it to follow several objects even when they are close or
blocked. DeepSORT is also better at handling changes in how things look and the lighting.
The parts of DeepSORT related to estimating and managing tracks work similarly [20].
Figure 9 summarizes how the algorithm works, and Table 2 shows an overview of the
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DeepSORT structure. We use a wide residual network with specific layers to calculate
features and make the system work well with the cosine arrival metric [37].

Figure 9. DeepSORT diagram.

Table 2. Technical specifications.

Name Patch Size/Stride Output Size

Conv 1 3 × 3/1 32 × 128 × 64
Conv 2 3 × 3/1 32 × 128 × 64

Max Pool 3 3 × 3/2 32 × 64 × 32
Residual 4 3 × 3/1 32 × 64 × 32
Residual 5 3 × 3/1 32 × 64 × 32
Residual 6 3 × 3/2 64 × 32 × 16
Residual 7 3 × 3/1 64 × 32 × 16
Residual 8 3 × 3/2 128 × 16 × 8
Residual 9 3 × 3/1 128 × 16 × 8
Dense 10 200–10,000 128

Batch and l2 128

The Hungarian technique, similar to SORT, follows a two-step process to match
observed bounding boxes with existing tracks. First, we use the DeepSORT method to find
suitable tracks based on their movement and appearance. In the second step, we use the
same method as SORT to connect new potential tracks with unmatched detections. We
calculate the Mahalanobis (squared) distance to consider motion between predicted states
and detections. Alongside this distance measure, we also use another metric based on the
shortest cosine distance to figure out how separate each measurement’s tracks are in terms
of their visual characteristics.

2.7.4. Data Augmentation

In the training of deep CNNs, a common way to improve performance is through
data augmentation. This involves artificially expanding the training dataset by making
various changes like translations, rotations, flips, cropping, and adding noise, as shown in
Figure 10. The two most popular techniques are random flipping and random cropping.
Random flipping rotates the input picture horizontally, while random cropping randomly
takes out a part of the original image.
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Figure 10. Data augmentation algorithm diagram.

3. Experimental Setup
3.1. Greenhouse Data Acquisition

The images used for experimentation were captured within the sweet pepper green-
houses at CAETEC (the Experimental Agricultural Field of the Tec de Monterrey) by Luis
Enrique Montoya Cavero [38]. We can see an example of the data in Figure 11. The im-
ages were acquired with an Intel Real-Sense D435i camera (Intel, 2200 Mission College
Blvd, Santa Clara, CA, USA). The Real-Sense camera was configured to produce pixel-
aligned RGB and depth images using default settings and a resolution of 1280 × 720 pixels.
Figure 12 depicts the technique utilized for taking the photos, with the camera placed per-
pendicular to the crops at an estimated height of 1.3 m. The horizontal distance between the
camera and the crop was approximately 60 cm. These images were taken from 11:00 a.m. to
4:00 p.m. The images were taken at varying distances, angles, and time intervals and under
varying lighting situations. At the time of image acquisition, the climate was sunny without
clouds. The dataset contained 620 images with different colors of sweet peppers (green,
red, yellow, and orange), including heavily overlapping sweet peppers, branch-occluded
sweet pepper images, sweet peppers with occlusion and overlaps, leaf-occluded sweet
pepper images, and a mix between branch- and leaf-occluded sweet peppers. For other
scenarios, generating another dataset with specific conditions was necessary. Additionally,
to the base dataset [38], we added one dataset from the Roboflow website [39] to increase
the amount of data and obtain better results. Both collections of images were saved in PNG
format with identical resolutions:

• Training set—70% of the data;
• Validation set—20% of the data;
• Test set—10% of the data.
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Figure 11. (Left) CAETEC dataset, (Right) Roboflow dataset.

Figure 12. Image acquisition diagram.

3.2. Dataset Construction and Health Check

This study included pictures of sweet peppers captured under various natural con-
ditions, avoiding duplication, and resized to a uniform resolution of 640 × 640 pixels to
ensure diversity within the image dataset. For training the YOLOv5 model was used the
version YOLOv5s, a total of 1863 images were selected. The dataset followed the common
practice of allocating 70% of the images for training, 20% for validation, and 10% for testing.
Each dataset comprised two main directories: ‘images’ and ‘labels’. After the training and
validation, 186 pictures were used to test the model. These images were selected to cover
diverse aspects of natural production environments, incorporating variations in daylight
illumination spanning the entire harvest period, shadows, overlapping fruits, the presence
of leaves and stems from the main crop, and distortions induced by movement. The images
used in the experiment had variations in size, visibility, brightness, and the quantity of
sweet peppers. These variations represented different ripeness levels and colors. The ex-
periment mainly focused on the most complex color variety of sweet peppers. Therefore,
the training and evaluation sets mainly comprised examples of green sweet peppers. This
was because they resemble the natural production environment, and the intention was to
provide results that closely aligned with the challenges faced in real production scenarios.
The aim was to not rely on ideal examples where lighting and other factors were tightly
controlled to facilitate analysis. The dataset was a realistic and complex representation of
the production environment and encompassed various scenarios. It is essential to mention
that the algorithm may not detect sweet peppers correctly in certain situations and in some
greenhouses where there may be too little or too much light. Another situation where this
could occur is when there are many leaves and the fruit cannot be seen correctly.

In Figure 13a, is a class frequency plot of the dataset. This plot shows how often
each class appeared in the dataset. In this case, the immature class appeared the most
because there were more images of this class than the others. Having a balanced dataset
can improve accuracy. In the same Figure 13b, is a graph that shows the distribution of
bounding box labels in relation to normalized height and width space. This graph can
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help illustrate the variability in box dimensions and identify patterns or anomalies in the
distribution. Looking at the graph, we can see that the bounding boxes had different sizes
but maintained a pattern. The last plots, in Figure 13c,d, detailed information about the
specific position of bounding boxes in relation to image coordinates. These scatter plots
represent the specific coordinates of bounding boxes in the dataset. In the context of object
detection, bounding boxes are defined by their coordinates, usually the coordinates of
the upper-left corner and the lower-right corner. It is worth noting that the dataset in
reference [38] was chosen as a base dataset because it has similar characteristics to this
experiment, reinforcing its relevance. Another open-source dataset obtained from the
Roboflow platform was added to increase the quantity and improve the detection accuracy
further [39]. The Roboflow platform is accessible online and free for anyone, making
annotating and labeling the experimental dataset for the maturity classification of peppers
easy and user-friendly. For more detailed information about the dataset created for this
perception system, please refer to the following source: https://github.com/luisviveros/
green_sweet_pepper_detection_using_yoloV5_deepsort (accessed on 9 January 2024).

Figure 13. Label distribution.

3.3. Maturity Classification

This experiment divided pepper maturity into four levels (immature, early-mid, mid-
late, mature).

Table 3 shows the maturity levels of the peppers referenced in this study.
The cumulative temperature is the accumulated excess or deficit in temperature based

on fixed data. It is often closely linked to the color variations in peppers and can be used in
crop growth models. With the increasing impact of climate change, cumulative temperature
may gain more significance [40]. In a greenhouse, sweet peppers can be harvested from mid-
summer until autumn. However, outdoors, plants usually start fruiting later, in August,
and finish earlier once temperatures drop in late summer or early autumn. When the fruits
become swollen and glossy, it is time to pick them. The majority of peppers ripen from

https://github.com/luisviveros/green_sweet_pepper_detection_using_yoloV5_deepsort
https://github.com/luisviveros/green_sweet_pepper_detection_using_yoloV5_deepsort
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green to red, although some varieties turn yellow, orange, or purple. The fruits become
sweeter as they mature, so the peppers can be picked at whichever color and stage of
ripeness is preferred.

Table 3. Technical specifications.

Maturity Description Image

Immature Entirely green

Early-Mid From 10–50% ripeness but no
more

Mid-Late From 50–90% ripeness but no
more

Mature Over 90% ripeness

3.4. YOLOv5 Model Implementation

We utilized YOLOv5s, an open source model package developed by the Ultralytics
team, along with Anaconda Environment 23.7.2 running Python 3.11. Our implementation
used Keras 2.1.2 and PyTorch 1.8.0, and it was executed on a Dell G7 7790 computer (Dell
inc, Round Rock, TX 78682, USA) with a ninth-generation Intel Core i7-9750H processor
(Intel, 2200 Mission College Blvd, Santa Clara, CA, USA), an NVIDIA GeForce RTX 2060
Laptop GPU (Nvidia, 2788 San Tomas Expy, Santa Clara, CA, USA), and 16 GB RAM
operating at 2666 MHz. The computer ran on a 64-bit Windows 10 operating system
(Microsoft Inc., Redmond, WA 98052, Seattle, WA, USA). In order to execute the algorithm,
one must have a minimum of an Intel Core i7 processor, 16 GB of RAM, and an NVIDIA
RTX 1050 Ti card. If one intends to run the algorithm in real time, a Jetson Nano or Xavier
computer that enables the execution of computer vision algorithms is needed. Lastly, a
camera with a good resolution is required to ensure that the image is sharp and easily
detectable by the model.

During the training process, we employed a graphics processing unit (GPU) and
used a batch size of 10 images. To optimize accuracy, we experimented with different
learning rates, including 0.001 and 0.0001, and ran the algorithm with varying epochs,
namely 80, 200, 250, 300, and 500. We also used a learning momentum of 0.937 and a
weight decay of 0.005. We used the COCO (Common Objects in Context) dataset to learn
distinctive and standard features as a foundation during the transfer learning process.
For data augmentation, we employed techniques such as 90° rotations (clockwise, counter-
clockwise, upside down); cropping (ranging from 0% minimum zoom to 20% maximum
zoom); blur (up to 2.5 pixels); and noise (up to 5% of pixels). We trained the YOLOv5s model
on the “Maturity Peppers in Greenhouse by Objected Detection Image Dataset”, available
on the Roboflow platform, which was curated by Luis David Viveros Escamilla in 2023.
During the inference process, we set a minimum detection confidence threshold of 85%
to ensure that detections with confidence levels below this were disregarded. For a more
detailed understanding of our implementation, readers can refer to the original repository
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of this YOLOv5 model implementation on GitHub (https://github.com/ultralytics/yolov5
#pretrained-checkpoints, accessed on 20 March 2022).

3.5. Counting Algorithm

A perception system for sweet peppers in greenhouse agriculture is crucial for estimat-
ing harvests. Manual counting, known for its high error rates and time-consuming nature,
poses significant challenges. Our study employed the YOLOv5 deep learning model for
object detection, combined with the DeepSORT tracking algorithm. This integration within
YOLOv5 aimed to improve efficiency and reduce production costs when counting sweet
peppers in greenhouse environments. The YOLOv5 deep learning model was trained
using an enriched dataset of labeled sweet peppers and the PyTorch library. This trained
model detected sweet peppers and their corresponding categories, transmitting the neural
network’s weights to the DeepSORT algorithm as shown in Algorithm 1. A deep learn-
ing strategy for counting sweet peppers was validated with two simulated environments
that were created using Da Vinci Resolve 18.5.1 software to implement the DeepSORT
algorithm. Two videos were generated using authentic images captured within the sweet
pepper greenhouse at CAETEC. In the video creation process, we utilized 70 photos for
each video, with each image possessing a resolution of 640 × 640 pixels, as depicted in
Figure 14. These photos were strategically arranged horizontally, creating the visual effect
of a robot navigating through the sweet pepper lanes in the greenhouse, as depicted in
Figure 15. The initial video sequence, lasting 1 min at a frame rate of five frames per second,
was composed of 300 frames and had a total duration of 1.53 min. The subsequent video,
also lasting 1 min at five frames per second, comprised 300 frames and extended over
2.17 min. In total, the two videos incorporated 70 images, providing a comprehensive
representation of the sweet pepper greenhouse scenario. For more detailed information,
please refer to the following GitHub repository (Luis David Viveros Escamilla, 2023a): https:
//github.com/luisviveros/green_sweet_pepper_detection_using_yoloV5_deepsort.git (ac-
cessed on 9 January 2024).

Figure 14. Simulation environment video creation.

https://github.com/ultralytics/yolov5#pretrained-checkpoints
https://github.com/ultralytics/yolov5#pretrained-checkpoints
https://github.com/luisviveros/green_sweet_pepper_detection_using_yoloV5_deepsort.git
https://github.com/luisviveros/green_sweet_pepper_detection_using_yoloV5_deepsort.git
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Figure 15. Equipment setup.

Algorithm 1: Algorithm for Inspection and Counting Utilizing Distance-Based
Filtering

Step 1: Specify DeepSORT configurations as cfg
Step 2: Start DeepSORT (DeepSORT algorithm, cfg)
Step 3: Set up the device (GPU)
Step 4: Detect Multi Backend (v5 model, device = GPU, dnn = opt.dnn)
video_path = simulation_environments_video_file
detections = model (video_path, increase = opt. increase, visual = visualize)
#Detect processes
for i, detection in enumerate (detections): #Perception per image

#Find detections
confidences, classes, boxes = find (detection)
#Transfer the detection to DeepSORT
deep_sort_outputs = deep-sort update (boxes.cpu (), confidences.cpu (),

classes.cpu (), img)
#For visualization, make bounding boxes.
size_filter = (max_height, max_width)
if leng(deep_sort_outputs) > 0:

for j, (output, confidence) in enumerate (zip (deep_sort_outputs,
confidences)):

category = int(classes) #Integer class
y_coord, x_coord= find_y_x (output)

#Apply size filter
if y_coord * x_coord > size_filter:

# Classify and process based on class
if category == 0: #class 0 is immature
elif category == 1: #class 1 is early-mid
elif category == 2: #class 2 is mid-late
elif category == 3: #class 3 is mature

#Stream Results
#Save Results (image with detections)

4. Results and Discussions

During the experiment, the original image had a resolution of 1280 × 720 pixels. To im-
prove the speed of processing, the input for the algorithm was preprocessed and adjusted
to 640 × 640 pixels. For training the detection model, 1863 images were chosen featuring
common sweet pepper varieties such as green, red, yellow, and orange. These images



Agriculture 2024, 14, 331 18 of 31

were divided into 70% for the training dataset, 20% for the validation dataset, and 10%
for the test dataset. The detection model was configured to have four output categories:
mature, immature, early-mid, and mid-late. In order to evaluate the performance, stability,
and reliability of the trained model, 186 images of sweet peppers were chosen for model
evaluation. The objective was to detect, classify, and annotate all sweet pepper fruits and
peduncles in the images with category scores and bounding boxes. For the tracking model,
two videos were used for training and testing, with MOTA (Multiple-Object Tracking
Algorithm) metrics employed to evaluate the results, offering insight into the effectiveness
of our detection and tracking methods.

4.1. Best Fit Epoch Performance Comparison

Our experiment collected a dataset of 1863 images featuring different sweet pepper
varieties, such as green, red, yellow, and orange. To evaluate the performance, stability,
and reliability of our trained model, we set aside 186 images of sweet peppers for model
evaluation. We aimed to detect, classify, and annotate all sweet pepper fruits in the images,
assigning appropriate category scores and bounding boxes as necessary. We trained the
YOLOv5 model with different numbers of epochs, namely 80, 200, 250, 300, and 500, to
achieve the best precision. We also used early stopping techniques to prevent overfitting,
which allowed us to stop the training process at any point to avoid wasting time. After each
epoch, we generated a file containing the synaptic weight values up to that point, enabling
us to access the synaptic values of the model at any given time. Additionally, we recorded
the training and validation loss values for each epoch using a tensorboard. The following
text summarizes the results of an experiment. Figure 16 shows the convergence of mAP
curve images, where the best mAP value was achieved after 250 epochs, followed by
200 epochs. Figures 17–19 refer to different components of the loss function used during
training. These components helped the model learn to detect and classify objects within
an image. Figure 17 depicts the accuracy of the predicted bounding box coordinates (x,
y, w, h) compared to the ground-truth bounding box coordinates. This metric is typically
calculated using a loss function like the Mean Squared Error (MSE) or a variant. The plot
shows that the best accuracy value was achieved after 250 epochs, followed by 200 epochs.
Figure 18 depicts how well the model detected objects within the image. It compares the
predicted objectness score (obj) with the ground-truth label (0 or 1), indicating whether
an object was present in a particular grid cell or anchor box. The cross-entropy loss or a
variant is commonly used to compute this part of the loss. The plot shows that the best
accuracy value was achieved after 250 epochs, followed by 500 epochs. Finally, Figure 19 is
related to how well the model classified detected objects into specific classes. It compares
the predicted class probabilities (cls) with the ground-truth class labels encoded via one-hot
encoding. Similar to object detection loss, the cross-entropy loss or its variations are often
used to compute this part of the loss. The plot shows that the best accuracy value was
achieved after 250 epochs, followed by 200 epochs.
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Figure 16. Mean average precision (mAP@0.5).

Figure 17. Bounding box coordinates loss.
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Figure 18. Object detection loss.

Figure 19. Classification loss.
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4.2. Maturity Recognition Results

The following observations can be made from the graphs presented in Figures 20 and 21.
In Figure 20a, the confidence increases as the F1 level reaches 1. The best F1 score was
0.77, with a confidence level of 0.538. The overall shape of the curve suggests that the
model was able to achieve good F1 scores (above 0.5) for objects with medium confidence
scores (around 0.5). In Figure 20b, the precision increases almost linearly as the confidence
level reaches 1. The best precision occurred at a confidence level of 0.973, indicating a
relatively high number of correct positive values in all categories. In Figure 21a, the recall
values provide valuable insights into the prediction performance. It can be observed that
the recall values gradually decreased as the confidence level increased. This trend was
due to the increased impact of the false-negative detection of sweet peppers on prediction
accuracy. Furthermore, the PR curve shows that various thresholds impacted different
classes, and the Mid-Late class displayed inconsistent behavior due to the lower number of
annotations. The individual F1 scores for the mature, immature, early-mid, and mid-late
categories were 0.82, 0.76, 0.69, and 0.68, respectively, with a confidence level of 0.538.
At the same confidence level, the collective F1 score for all models rapidly increased,
reaching its peak at 0.77. Nevertheless, once the confidence level surpassed 0.8, the F1 score
gradually declined. As shown in Figure 21b, the most accurate predictions occurred within
the confidence range of 0.5 to 0.8. Due to the larger number of annotations for the sweet
pepper category, its F1 score rapidly increased. Using the optimal sweet pepper detection
model, the subsequent prediction was generated and evaluated across various images,
illustrated in batches in Figure 22.

Figure 23 shows this section’s confusion matrix chart. The chart displays how well
the model performed in recognizing different stages of maturity. The model’s ability to
recall items at the early-mid, immature, mature, and mid-late stages was 69%, 79%, 86%,
and 71%, respectively. However, there were still some areas for improvement in the model’s
recognition capabilities. For instance, around 7% of mid-late-stage sweet peppers were
incorrectly identified as early-mid-stage, and 2% were misclassified as immature. Similarly,
roughly 1% of mature-stage sweet peppers were mistakenly labeled as immature, and about
2% were categorized as mid-late-stage. Additionally, approximately 5% of early-mid-stage
peppers were incorrectly identified as mature-stage. The confusion matrix helped us to
identify areas where the model could have performed better. It was observed that less than
2% of all detections were incorrect. The last column in the matrix shows where the model
falsely detected small, unlabeled sweet peppers in the dataset. The results indicate that
the best weights were obtained at epoch 250 with a 0.803 mAP 0.5. The training results are
presented in Table 4.

As per the details given in Table 4, it can be observed that the early-mid class had
a better prediction accuracy than the other classes. This was because the early-mid class
had more training samples, and their color features were distinct. However, the immature
class had a lower prediction accuracy because most surveyed areas in the greenhouse
environment had green leaves. The mid-late class had the lowest prediction accuracy due
to the limited number of samples. To evaluate the model’s performance, we considered the
best precision, recall, and F1 scores in relation to the confidence level plots and PR curves.
Figures 16–19 provide a clear picture of the same.

Table 4. Best mAP@0.5 and mAP@0.95 performance parameter results.

Class P R mAP@0.5 mAP@0.95

All 0.807 0.736 0.803 0.575
Early-Mid 0.845 0.682 0.8 0.584
Immature 0.796 0.732 0.816 0.563

Mature 0.818 0.812 0.831 0.547
Mid-Late 0.771 0.72 0.765 0.606
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Figure 20. YOLOv5 performance parameters: (a) F1 curve, (b) P curve.
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Figure 21. YOLOv5 performance parameters: (a) R curve, (b) P–R curve.
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Figure 22. Validation results.

Figure 23. Confusion matrix.
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4.3. DeepSORT Results

After training the model, we used the DeepSORT algorithm to track the sweet peppers
that we identified and determine their positions. Object detection algorithms such as
YOLOv5 use mean average precision (mAP) to evaluate their object detection performance.
However, since our main goal was to monitor the movement of vehicles within a frame, it
was important to verify our findings using an object tracking algorithm. We used MOTA
(Multiple-Object Tracking Algorithm) metrics to assess the performance of our detection
and tracking methods. We first needed to define False IDs (IDS), False Positives (FP),
False Negatives (FN), and GT. Detailed explanations of these definitions can be found in
Table 5. We used Equation 10 to calculate the MOTA, where FNt represents the absence
of a match with the real object in the ground-truth data. This could occur when the sweet
pepper was too distant from the camera or due to bad weather or lighting. FPt refers
to instances where the algorithm detected something, but there was no real object in the
ground-truth data. We had one case of an FPt, where the algorithm mistook a reflection of
a mid-late sweet pepper for an immature pepper. False IDs occurred when the algorithm
mistakenly switched the identification of tracked fruits. Lastly, GTt denotes all real ground-
truth objects.

MOTA = 1 − ∑t FNt + FPt + IDSt

∑t GTt
(10)

Table 5. Definition and description of IDS, GT, FP, and FN.

Definition Description

False IDs (IDS) The algorithm mistakenly switches the identification of tracked fruits
GT Counts all real ground-truth objects

False Positive (FP) Fruit is absent, but the algorithm tracks fruit
False Negative (FN) Fruit is present, but the algorithm does not track fruit

Figure 24 illustrates samples of sweet pepper detection and tracking in a greenhouse
environment using YOLOv5 with an object tracking algorithm. Each video contained
around 70 images of 640 × 640 size from the greenhouse of CAETEC. According to Table 6,
the performance of YOLOv5 with DeepSORT was very good, presenting high accuracy in
both simulation environments with an accuracy difference between the two of only 0.01.
The algorithm often altered vehicle IDs, causing inaccuracies in tracking that impacted
the overall performance. This occurred because, in some images, the occlusion by leaves
prevented the complete detection of the bell pepper, creating a misleading impression.
Additionally, variations in lighting conditions could also impact the accuracy of detection.
Sometimes, the image was too bright or too dim, leading to distortion in the color of
the fruit and the incorrect detection of the bell pepper as mature when it was actually in
an intermediate stage of ripeness. However, these issues had a minimal impact on the
DeepSORT algorithm, as its primary goal was to count the peppers, regardless of potential
inaccuracies in determining their maturity level. What mattered most to the algorithm was
successful detection and subsequent tracking. On a different note, one of the parameters
that could directly influence the algorithm was the presence of false negatives (FNs) and
false positives (FPs). As shown in Table 6, we had a deficient number of FPs, indicating
a high level of accuracy. This was achieved by configuring the IOU to be as precise as
possible, preventing overdetection. FPs had a more pronounced impact on our results,
affecting our precision. This was mainly due to situations where leaves obscured the sweet
peppers, making it challenging for the algorithm to detect them, as only a small portion was
visible. This situation could also affect the accuracy of counting. Comparatively, a human
harvester may encounter similar challenges, as the human eye is not infallible and may
only sometimes identify 100% of the fruits due to the same visual obstructions.
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Table 6. Performance comparison of the two simulation environments.

Model Virtual
Enviroment FP FN IDS MOTA

YOLOv5 +
DeepSORT

Video
Simulation 1 0 15 2 0.88

YOLOv5 +
DeepSORT

Video
Simulation 2 1 7 8 0.87

Figure 24. DeepSORT validation results.

Our study comprised a comprehensive dataset of 1863 images featuring sweet peppers.
We divided this dataset into three subsets, training, validation, and evaluation, which were
essential in achieving our success. We trained our model at different intervals (80, 200,
250, 300, and 500 epochs) and utilized early stopping techniques to prevent overfitting. It
was discovered that having a balanced dataset was critical for precise detection. If one
category had more images than another, it could reduce the model’s accuracy. Therefore, it
was important to have a balanced dataset from the beginning of the project. During the
training process, we closely monitored various aspects of the loss function to ensure that
the model’s bounding box location prediction, object detection, and classification ability
improved as training progressed. Our results showed that the model achieved its highest
accuracy at epoch 250, followed closely by epoch 200. We also evaluated the model’s
accuracy at different confidence levels and found that the best precision was achieved at
a confidence level of 0.973. This means that the model correctly identified many positive
cases across all categories. However, we found that the recall values gradually decreased
as the confidence level increased, mainly because false-negative detections significantly
impacted the accuracy, particularly with sweet peppers.

We calculated the F1 scores for different classes and collective F1 scores at various
confidence levels. The highest collective F1 score of 0.77 was observed within the confi-
dence range of 0.5 to 0.8, indicating that this range produced the most accurate predictions.
Despite the model’s overall high accuracy, we faced some challenges. One of them was the
misclassification of different maturity stages for sweet peppers. For example, the model
sometimes could not distinguish mid-late-stage sweet peppers from early-mid-stage or im-
mature ones. It also occasionally misidentified mature-stage sweet peppers as immature or
mid-late-stage sweet peppers. Our findings highlighted the significance of the confidence
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level in recognizing objects, and we found that the most accurate predictions were made
within the confidence range of 0.5 to 0.8.

We found that beyond a confidence level of 0.8, the F1 score gradually decreased. Our
study involved using the DeepSORT algorithm to track sweet peppers in a greenhouse,
and we obtained high accuracy results with minimal differences between different simu-
lation conditions. However, we identified some challenges related to leaves obstructing
the peppers and changes in lighting conditions, which affected the detection accuracy.
Nevertheless, the DeepSORT algorithm was effective in counting peppers, even when
inaccuracies in determining their maturity level occurred. Our research successfully devel-
oped and evaluated a system for detecting and tracking sweet peppers in a greenhouse.
The YOLOv5 model and the DeepSORT algorithm performed well, showing high precision
and accuracy in recognizing and tracking sweet peppers. Despite some challenges, our
study provides valuable insights for creating automated systems to monitor and harvest
crops in the agriculture industry:

1. Importance of Dataset Balance:
Our study underscored the critical significance of maintaining a balanced dataset
from the project’s inception. Ensuring an even distribution of images across different
categories is essential for preventing accuracy reduction in the model.

2. Optimal Training Epochs: Through meticulous training with various numbers of
epochs, we identified the optimal points for model performance, emphasizing the
significance of balancing training time to prevent overfitting and achieve stability.

3. Challenges in Maturity Stage Classification: Our study revealed challenges in accu-
rately classifying sweet peppers’ maturity stages. Misclassifications, such as confusing
mid-late-stage sweet peppers with early-mid or immature ones, provided insights
into areas for further refinement.

4. Impact of Confidence Levels on Recall: As confidence levels increased, recall values
gradually decreased, particularly with sweet peppers. Understanding this impact is
crucial for optimizing model performance, especially in scenarios where minimizing
false negatives is paramount.

5. F1 Score Optimization: The collective F1 score peaked at 0.77, within the confidence
range of 0.5 to 0.8. This indicates the importance of selecting an appropriate confidence
threshold for achieving the most accurate predictions.

6. Applicability of DeepSORT Algorithm: The successful application of the DeepSORT
algorithm for tracking sweet peppers in a greenhouse environment showcased its
robustness and effectiveness, even in the face of challenges such as occlusions and
changing lighting conditions.

7. Consideration of Environmental Factors: Our research highlighted the impact of
environmental factors on detection accuracy, such as leaves obstructing peppers and
variations in lighting conditions. Understanding and accounting for these factors are
crucial for developing resilient, automated systems.

Two articles on the state of the art share some similarities to our work but have
substantial differences. Dassaef et al. [15] used a Mask R-CNN to detect the fruit and the
peduncle of sweet peppers in greenhouse environments, achieving an mAP of 72.64%,
while we used YOLOv5 for detecting the maturity level of sweet peppers, obtaining an
mAP of 80%. In addition, we used DeepSORT for counting the number of sweet peppers
per lane in a greenhouse. On the other hand, Zhang et al. [24] used Orange YOLO to detect
oranges in trees and employed Orange Sort, a modified version of SORT for counting.
Nevertheless, our application is specific to sweet peppers and has the capacity to measure
the level of maturity.

Some of the challenges that affect the performance of this method include meeting the
minimum computer and camera system specifications mentioned in Section 3, ensuring
adequate lighting conditions, and generating a robust dataset. Additionally, for different
greenhouses, it is necessary to generate a specific dataset and adapt the system to the new
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conditions of the scenario. It is recommended to provide good lighting conditions and a
dataset that considers all the specific conditions of the application.

5. Conclusions

In our study, we developed a robust system that can detect and track sweet pep-
pers in greenhouse environments. We utilized the YOLOv5 model for object detection
and the DeepSORT algorithm for tracking, which provided us with promising results in
recognizing sweet pepper maturity levels and counting fruits efficiently. Our research
made noteworthy contributions to the field of agricultural automation. We created a
comprehensive dataset of 1863 images that encompassed different varieties and maturity
stages of sweet peppers, which was pivotal to the success of our study. We split this
dataset into training, validation, and evaluation subsets, which allowed us to optimize the
performance of our model. We found that a balanced dataset is essential for accurate de-
tection, and imbalanced datasets can lead to reduced model accuracy. During the training
process, we discovered that our model’s ability to predict bounding box locations, detect
objects, and classify them accurately improved over time, with the most significant gains
occurring around epoch 250. We also emphasized the significance of confidence levels
in object recognition. While we achieved high precision at a confidence level of 0.973,
higher confidence levels led to a gradual decrease in recall, primarily due to false-negative
detections. The most accurate predictions were consistently within the confidence range of
0.5 to 0.8. In addition to object detection, we successfully applied the DeepSORT algorithm
for tracking sweet peppers. This approach demonstrated high accuracy, with minimal vari-
ations between different simulation conditions. Despite challenges related to occlusions
and changing lighting conditions, the DeepSORT algorithm effectively counted peppers,
even when inaccuracies in determining their maturity level occurred. Our research offers
valuable insights into the development of automated systems for crop monitoring and
harvesting in agricultural settings. The combination of YOLOv5 and DeepSORT presents
a promising solution for enhancing the efficiency and accuracy of farming processes,
particularly in the context of sweet pepper production. The dataset that was created to
recognize sweet peppers could only identify them in certain scenarios. Although it could
recognize them in the majority of scenarios, it may not be able to identify them in all
cases. The cases where this could be more difficult occur in greenhouses with high or low
light levels or in situations where the leaves are on top of the fruit and cover it almost
completely. The best way to overcome this limitation is to gradually enrich the dataset by
adding more images for different situations when the algorithm does not detect the fruit.
This will make the algorithm more robust and versatile. Additionally, it is important to
expand the dataset to include other fruits in greenhouses in order to improve the dataset’s
ability to detect fruits beyond sweet peppers.

In conclusion, our study advances the state of the art in sweet pepper maturity
recognition and fruit counting, providing a foundation for developing more sophisticated
automation systems in greenhouse agriculture. The results and insights obtained from
this research hold the potential to revolutionize crop management and contribute to more
sustainable and productive farming practices.

In future work, due to the results obtained, there are several promising avenues for
future research and development. These include the following:

1. Expanding the dataset with more diverse environmental conditions and sweet pepper
varieties to further improve model robustness.

2. Fine-tuning the YOLOv5 model with larger datasets and experimenting with different
architectural variations related to object detection such as Mask R-CNN in order
to boost accuracy.

3. Extending the system’s capabilities to recognize and count multiple fruit and vegetable
species, providing a more comprehensive solution for greenhouse agriculture.

4. Adapting the system for real-time application, enabling instantaneous decision making
during the harvesting process and thus optimizing resource allocation and efficiency.
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5. Exploring the integration of robotic arms or autonomous vehicles for the automated
harvesting of ripe sweet peppers, taking the system from a monitoring solution to a
fully automated harvesting system.

6. Investigating the implementation of edge computing solutions to minimize the de-
pendency on cloud-based processing and ensure low data analysis and decision-
making latency.

7. Creating predictive models that use data from monitoring sweet pepper crops to
estimate the best times for harvest and crop yield, helping with resource planning
and sustainability.

8. Designing user-friendly interfaces for greenhouse operators to configure and cus-
tomize the system, promoting ease of use and adaptability across various green-
house setups.
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