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Abstract: This study aimed to assess the susceptibility of three strawberry cultivars (“Festival”,
“Fortuna”, and “Rubygem”) to drought stress induced by varying polyethylene glycol (PEG) con-
centrations in the culture medium. Plantlets were cultivated on a solid medium supplemented with
1 mg/L BAP, and PEG concentrations (0, 2, 4, and 6 mg/L) were introduced to simulate drought
stress. Morphological changes were observed, and morphometric analysis was conducted. Addi-
tionally, artificial neural network (ANN) analysis and machine learning approaches were integrated
into this study. The results showed significant effects of PEG concentrations on plant height and
multiplication coefficients, highlighting genotype-specific responses. This study employed various
machine learning models, with random forest consistently demonstrating superior performance.
Our findings revealed the random forest model outperformed others with a remarkable global di-
agnostic accuracy of 91.164%, indicating its superior capability in detecting and predicting water
stress effects in strawberries. Specifically, the RF model excelled in predicting root length and the
number of roots for “Festival” and “Fortuna” cultivars, demonstrating its reliability across different
genetic backgrounds. Meanwhile, for the “Rubygem” cultivar, the multi-layer perceptron (MLP)
and Gaussian process (GP) models showed particular strengths in predicting proliferation and plant
height, respectively. These findings highlight the potential of ML models, particularly RF, to enhance
agricultural breeding and cultivation strategies through accurate phenotypic predictions, suggesting a
promising direction for future research to improve these predictions further. This research contributes
to understanding strawberry responses to drought stress and emphasizes the potential of machine
learning in predicting plant characteristics.
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1. Introduction

Strawberries belong to the category of berry fruits and are characterized by their
widespread cultivation across various ecosystems worldwide. They are cultivated in many
parts of the world because they can be consumed in a variety of ways, their method of
production is appropriate for family businesses, and they provide good income. As they
can be produced at different planting times and are grown for both table and industrial
production, they demonstrate various characteristics within the species. With these charac-
teristics as goals, breeding programs are conducted in many different world regions [1].
According to Sarıdaş et al. [1], one of the most essential objectives of breeding programs
for the cultivation of strawberries is to improve both the yield and quality of the fruits
produced by the plants. As the problem of drought spreads across the globe, it is be-
coming increasingly urgent to identify varieties of strawberries suitable for cultivation in
regions with restricted access to irrigation. The evolution of breeding objectives reflects a
comprehensive shift towards embracing a holistic approach to agriculture, incorporating
not only traditional goals such as increased yield and reduced production costs but also
prioritizing product quality, environmental sustainability, and resilience to climate change.
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Historically, breeders’ primary focus was maximizing yield and minimizing production ex-
penses. However, recent trends have shifted this focus towards enhancing product quality
as a critical objective [2,3]. This shift underscores a growing recognition of the interplay
between agricultural practices and broader societal needs, including health, nutrition, and
environmental stewardship. Integrating product quality into breeding programs intro-
duces a new layer of complexity, necessitating identifying and combining multiple traits
within new cultivars [4]. For berry crops, traits that contribute to consumer health and
sensory appeal are increasingly vital. These include substances that impart aroma, flavor,
and taste, which are influenced by genetic factors and environmental conditions [5]. The
challenge extends to understanding the environmental stimuli and signaling mechanisms
that promote the accumulation of beneficial bioactive compounds, aligning with consumer
demand for health-promoting foods. In response to climate change, breeding programs
also incorporate traits that enhance resilience to abiotic stress factors such as drought and
high temperatures, alongside resistance to pests and diseases that are expanding their
geographic reach [6,7]. This focus on resilience is crucial in the face of projections indicating
potential declines in food availability, quality, and nutritional value due to global climate
shifts [8,9]. Breeders aim to ensure yield stability and adaptability to diverse environments
and cultivation systems by developing cultivars with improved tolerance to biotic and
abiotic stresses. The transition of strawberry cultivation from open fields to controlled or
protected environments, prompted by regulatory changes such as the Montreal Protocol’s
ban on certain soil disinfectants, exemplifies the adaptation within agriculture to meet
changing production and market demands. This adaptation underscores the need for breed-
ers to offer diverse cultivars suited to various cultivation systems, ensuring that production
can meet the growing market demand without compromising quality. As the agricultural
sector continues to evolve, the role of breeders becomes increasingly multifaceted. They are
tasked with enhancing crops’ economic viability and ensuring that agricultural practices
contribute positively to human health, nutrition, and environmental sustainability. This
comprehensive approach to breeding is essential for addressing the complex challenges of
the 21st century, necessitating a balance between productivity, quality, and resilience in the
face of changing global conditions [10].

Water scarcity has emerged as a global issue, affecting every region [11]. The 21st
century has witnessed a significant rise in the frequency and severity of various natural
disasters, including fires and floods. Global warming, which results from the environmental
impact that human activities have had on the planet since the industrial revolution, is the
most significant contributor to the increase in the frequency of such natural disasters. The
evaporation of water is increased by global warming, which ultimately contributes to the
severity of droughts. It is reasonable to predict that by the end of the twenty-first century,
heat waves will become more frequent and intense [12]. Because of the temperature rise,
there is a possibility that some significant changes in atmospheric conditions will occur,
including sweltering summers and periods of drought [13]. These climate changes affect
trophic interactions, species distribution, and ecosystem function. It is anticipated that
future stresses such as drought and elevated temperatures will worsen due to the rapid
growth of the human population. Temperatures that are too high and a lack of available
water are two significant interrelated stresses that affect growth and productivity and
ultimately affect the safety of food supplies [14]. In this context, it is vital to determine the
molecular physiological mechanisms and signaling pathways responsible for increased
drought tolerance to be better prepared for future drought stress effects.

Strain caused by drought is rapidly becoming a more widespread issue worldwide.
The quantity and quality of produce obtained from aquaculture are affected when there is
a high concentration of agricultural land and greenhouse cultivation in dry and semi-dry
regions worldwide [15]. The strawberry is a species that is overly sensitive to the effects
of drought stress; under these conditions, it quickly loses its turgor, and the yield and
plant growth both suffer due to the restriction of photosynthesis. Strawberries can tolerate
various levels of water stress depending on factors such as the plant’s development stage,
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duration of the stress, growing system, growing environment, and variety. In one study,
strawberries grown in a greenhouse were compared with those grown outside. It was found
that strawberries grown without soil are more susceptible to water stress than soil-grown
strawberries [16]. The most significant effect of water stress on strawberry varieties is a
reduction in fruit size and yield; however, the exact nature and magnitude of this reduction
vary from variety to variety [16].

Genotypic differences in drought tolerance have been analyzed in various crop species,
including strawberries [17–25]. However, there is still a lack of information regarding
the morphophysiological changes in various in vitro cultured strawberry cultivars when
subjected to limited water availability [20]. Simulating osmotic stress in vitro using osmotic
agents like high-molecular-weight polyethylene glycol (PEG) is a widely adopted method
for researching plant responses to water stress. PEG is advantageous because it is highly
soluble, does not penetrate cells, and creates a negative osmotic potential without inducing
toxicity. This approach allows for a controlled examination of water stress mechanisms,
offering insights into plant resilience and adaptation strategies under drought conditions,
thus facilitating targeted improvements in crop management and breeding programs for
enhanced drought tolerance [26].

In computer science, machine learning is commonly recognized as an example of
artificial intelligence. Using datasets for training enables computers to absorb knowl-
edge [27]. Machine learning (ML) entails building strong mathematical models using
datasets containing various independent variables or components and dependent variables
or responses [28]. Machine learning algorithms have the potential to be effective and pre-
dictive decision-making tools for in vitro plant micropropagation processes because of their
ability to forecast and define complex processes involving numerous components [29,30].
However, compared with their widespread application in other scientific fields, the ap-
plication of ML techniques in the context of plant and agricultural sciences is somewhat
limited [31]. Artificial neural networks (ANNs) are a class of nonlinear computing methods
used for various tasks such as clustering data, generating predictions, and classifying
complex systems [32].

Recently, diverse machine learning models have proven effective in accurately forecast-
ing and refining plant tissue culture procedures. These models have been applied in various
investigations, including in vitro mutagenesis, micropropagation, regeneration studies,
plant system biology, in vitro organogenesis, stress physiology, and salt stress [28–42]. Only
a few studies have used machine learning models to examine drought stress responses. In
a representative study, Jafari and Shahsavar [32] used artificial neural networks to simulate
and forecast the effects of melatonin on the morphological responses of citrus plants under
drought stress. Recent studies demonstrate innovative approaches to drought stress de-
tection and analysis in agriculture. Gupta et al. [33] developed an automation model for
water stress detection in wheat using pre-processing and canopy segmentation methods,
with the random forest algorithm achieving high accuracy. Das Choudhury et al. [34]
introduced HyperStressPropagateNet, a deep neural network for analyzing drought stress
propagation in plants through hyperspectral imagery, showing a strong correlation with
soil water content. Tahmasebi et al. [35] applied a meta-analysis and machine learning to
identify drought-responsive genes in Populus, revealing significant transcriptional varia-
tions and potential markers for breeding programs. These contributions highlight the role
of advanced computational methods in enhancing our understanding of plant responses to
drought stress.

The primary objective of this study was to evaluate the susceptibility to drought of
three different strawberry cultivars grown in vitro. The introduction of varying concentra-
tions of PEG into the culture medium caused morphological changes in the plants, which
were then subjected to morphometric analysis for quantification. This study aimed to
integrate artificial neural network (ANN) analysis and machine learning approaches to
enhance the research scope. Computational techniques were used to model and predict the
effects of various culture media components on micropropagation quality. In this study, we
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used three machine learning (ML) algorithms—Gaussian process (GP), random forest (RF),
and support vector machine (SVM).

2. Materials and Methods
2.1. Plant Material and Surface Sterilization

In this study, the strawberry cultivars “Rubygem”, “Fortuna”, and “Festival” served
as the source of the plant material. Shoot tips were given a 10 min rinse under running
tap water. The tips of the shoots were then soaked for 15 min in a solution consisting of
15 percent sodium hypochlorite and 1–2 drops of Tween 20. Subsequently, the sterilant
materials were removed by three separate washes in distilled sterile water.

2.2. Establishment of In Vitro Drought Stress

The effects of drought were investigated using shoot tips collected from different
strawberry cultivars. MS media containing 0%, 2%, 4%, and 6% PEG 6000 were prepared to
achieve this goal, and the plants were then transferred to these media. Plant micropropaga-
tion was facilitated by the addition of 1 mg/L BAP to the MS nutrient medium [43]. The
plants were examined weekly for four weeks, and three subcultures were established. The
duration of the subculture was four weeks. The plants’ responses to drought on their terms
were investigated in each subculture period. To accomplish this goal, measurements of the
shoot length (in centimeters) and the proliferation rate (number of proliferated shoots from
the starting explant) were taken during every subculture period that occurred during the
culture period.

After completing the third subculture and rooting experiment, strawberry plants were
transplanted into a rooting medium. In the rooting experiment, preparations were made
to use media containing PEG 6000 to maintain drought stress. Each media had 30 g/L of
sucrose, 5.7–5.8 pH, 4.4 g/L of MS [43], and 1 mg/L of IBA (indole butyric acid) added
to it. The pH of the medium was adjusted to be between 5.7 and 5.8. The medium was
supplemented with PEG at various concentrations, ranging from 0% to 6%, to maintain
drought stress. After adding PEG, 8 g/L agar was added. The medium was heated to
121 ◦C and subjected to 1.05 atmospheres of pressure during sterilization. After the setting
process, the plants were transferred to the rooting medium. Plants were grown in a chamber
room at 25 ± 2 ◦C with 16 h of light and 8 h of darkness. After a six-week cultivation
period for in vitro rooting, the ability of plants to form new roots was evaluated. Several
parameters, including root number, average root length (cm), rooting rate (percent), and
plant height (cm), were investigated.

2.3. Statistical Analysis

Micropropagation and rooting experiments of “Rubygem”, “Fortuna”, and “Festival”
strawberry cultivars under in vitro drought stress conditions were established in a factorial
order random plot trial design. There were three replicates for each cultivar and ten
plants in each replicate. An analysis of variance (ANOVA) was conducted with the data
obtained. Following the analysis of variance, the software programs in which the changes
had a significant impact were subjected to the LSD test. Subsequently, the percentage
change relative to the control (PEG 0) was determined for each parameter across the PEG
treatments, allowing for a comparative analysis of drought stress impact. The JMP program
was used to carry out statistical analyses.

2.4. Modeling Procedure

In this study, we used three machine learning (ML) algorithms—Gaussian process
(GP), random forest (RF), and support vector machine (SVM)—as well as two well-known
artificial neural network (ANN)-based multilayer perceptrons (MLPs) to model and predict
the micropropagation and rooting efficiency of various strawberry genotypes through PEG.
We divided the dataset into training and testing subsets using a 10-fold cross-validation
method to thoroughly evaluate the predictive performances of MLP and ML models.
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Three different genotypes were included in the input variables, with an additional
2 mm/L of PEG functioning as an input variable. Conversely, plant height, root num-
ber, root length, and multiplication rate comprised the target (output) variables. R-
programming was used to implement coding with the help of the Caret and Kernlab
packages. Several metrics were used to assess and compare the accuracy and precision of
MLP and ML models. These metrics included the coefficient of determination (R2), which
shows the degree of relationship between the model and dependent variable; root mean
square error (RMSE), which shows how closely the regression line matches the observed
data points; and mean absolute error (MAE), which calculates the average error between
the predicted and observed values.

2.4.1. Support Vector Machines

Support vector machines (SVMs), developed by Vapnik [44], refer to a family of
artificial intelligence models that include supervised and unsupervised learning methods.
These models are well-suited for regression analysis, clustering, and classification [45]. In
this section, we focus on their application in regression tasks. Support vector regression
(SVR), introduced here, utilizes the SVM framework for regression purposes. Unlike
traditional artificial intelligence algorithms, SVM techniques, particularly SVR, demonstrate
efficiency even with relatively small datasets, making them well-suited for regression
analysis. This efficiency is crucial, especially when dealing with limited training data.
Furthermore, SVMs, and SVR in particular, address common issues associated with other
algorithms, such as overfitting, low convergence rates, and entrapment in local minima.
Equation (1) declares the SVM algorithm in the context of regression, aiding in determining
the optimal separator plane for regression tasks:

f (x) = wφ(x) + b (1)

2.4.2. Random Forest

The RF ensemble learning technique, which is essentially an ensemble of unpruned
trees, was invented by Breiman [46]. Regression and classification tasks have both shown
success with RF, which is well known for its superior efficiency and ease of design. The
prominent characteristics of the RF model supported by previous research include its
ability to avoid overfitting, proficient handling of noise, and efficient management of many
features [47].

Two random sources were injected into each tree inside the RF model for classification
accuracy during construction to minimize the correlation between distinct trees while
maintaining their unique strengths. Each tree was first trained by randomly selecting a
replacement (bootstrap replica) of the training set. The algorithm then considered a small
variable subset randomly chosen from the complete variable set to find the optimal split
at each node. Additionally, every tree was completely mature, producing low bias and
significant variance in tree outputs [45,47]. Regression models were solved using the mean
squared error (MSE) metric, which was used to determine the distance between nodes and
the best branching choices within the forest. Equation (2) clarifies the fundamental idea:

y =
n

∑
i=1

(ai − a∗i )k(x, xi) + b (2)

2.4.3. Gaussian Process

To better understand the spread of random variables, the Gaussian process (GP)
model for supervised learning expands the Gaussian probability distribution. This makes
the GP model more appropriate for solving the classification and regression issues. By
calculating the likelihood that the input samples fall into particular classes, it performs
the role of a nonparametric regressor for datasets. The ability of this model to work well
with tiny datasets is one of its main advantages: it offers consistency, accuracy, and ease of
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computing [48]. The derivation method for each input (x) and its matching output (y) is
outlined in Equation (3):

yi = f (xi) + ε (3)

2.4.4. Multilayer Perceptron

One well-known artificial neural network (ANN) is the multilayer perceptron (MLP).
It is arranged in layers with an input layer, an output layer, and one or more hidden
layers. Using a supervised training technique, the MLP was trained using input and output
variables from the training set. The training cycle is repeated until the reduction in Equation
(4) is accomplished:

E =
1
K

K

∑
k=1

(ysk − ŷk)
2 (4)

K = number of samples;
y = observed value of data point k.
To calculate the predicted value ŷ in the multilayer perceptron (MLP), which has a

hidden layer with p neurons and k output variables, the following equation was applied:

ŷ = f

[
p

∑
j=1

wji.g(
k

∑
i=1

wjixi + wj0) + wo

]
(5)

xi represents the ith output variable, wj corresponds to the weighted input data
entering the jth hidden neuron, f is the activation function applied to the output neuron,
wji signifies the weight associated with the direct connection from input neuron i to hidden
neuron j, wj0 represents the bias specific to the jth neuron, w0 represents the bias linked to ŷ
the output neuron, and g is the activation function utilized for the hidden neuron.

3. Results

Three different genotypes of strawberries (“Festival”, “Fortuna”, and “Rubygem”)
were cultured on their shoot tips on a solid medium supplemented with 1 mg/L BAP.
Different concentrations of polyethylene glycol (PEG) (0, 2, 4, and 6 mg/L) were added to
these media to simulate drought stress. The resultant plantlets were meticulously measured
for each plant’s height in centimeters after cultivation. Table 1 presents the tabulated results,
which summarize the observed differences in plant heights.

Table 1. Plant height (cm).

PEG-free PEG 2 mg/L PEG 4 mg/L PEG 6 mg/L Cultivar
Average

“Festival” 4.26 3.60 3.06 2.35 3.32 AB
“Fortuna” 4.70 3.72 3.23 2.46 3.53 A

“Rubygem” 4.03 3.37 2.46 2.39 3.18 B
PEG average 4.33 A 3.57 B 3.09 C 2.40 D
Variation in
percentage 0.00 −17.10 −28.58 −44.58

LSDCultivar: 0.382 *, LSDPEG:0.285 ***, LSDCultivar*PEG: N.S. *: p < 0.05, ***: p < 0.001, capital letters indicate
statistical differences between strawberry varieties and different PEG concentrations, as determined by the LSD
analysis.

According to Table 1, it is noteworthy that the cultivar “Fortuna” reached its maximum
plant height (4.70 cm) when grown in a PEG-free (0 mg/L) medium. In contrast, the cultivar
“Festival” grown in a growth medium containing 6 mg/L PEG showed the shortest plant
height of all the genotypes under investigation, measuring 2.35 cm. These findings highlight
the critical effects of PEG concentrations on the growth traits of the strawberry cultivars
under investigation and provide insight into the complex reactions of various genotypes to
changing osmotic conditions. The analysis indicated a progressive decline in plant height
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with increasing PEG concentrations, showcasing a decrease of 17.10% at 2 mg/L PEG,
deepening to 28.58% at 4 mg/L PEG, and reaching a substantial reduction of 44.58% at
6 mg/L PEG. This trend underscores the adverse effects of escalating drought stress on the
vertical growth of strawberry plants.

The cultivars “Fortuna” and “Festival” showed the best proliferation coefficients, with
rates of 5.20 when grown in a growth medium free of PEG. In comparison, the “Fortuna”
and “Rubygem” cultivars, when cultivated in a growth medium containing 6 mg/L PEG,
had the lowest multiplication coefficient, 2.80. These findings highlight how PEG con-
centrations significantly affect the dynamics of strawberry cultivar multiplication. The
multiplication rate experienced significant reductions under drought conditions, decreasing
by 17.56% at 2 mg/L PEG, further declining to 34.15% at 4 mg/L PEG, and exhibiting the
most pronounced drop of 44.88% at 6 mg/L PEG. These findings highlight the detrimental
impact of drought stress on the plant’s reproductive capacity and overall vitality (Table 2).

Table 2. Proliferation rate of strawberry cultivars.

PEG-free PEG 2 mg/L PEG 4 mg/L PEG 6 mg/L Cultivar
Average

“Festival” 5.20 4.25 3.35 2.85 3.91
“Fortuna” 5.20 4.20 3.60 2.80 3.95

“Rubygem” 4.90 4.20 3.20 2.80 3.77
PEG average 5.10 A 4.22 B 3.38 C 2.82 D
Variation in
percentage 0.00 −17.56 −34.15 −44.88

LSDCultivar: N.S, LSDPEG: 0.479 ***, LSDCultivar*PEG: N.S., ***: p < 0.001, capital letters indicate statistical differences
between strawberry varieties and different PEG concentrations, as determined by the LSD analysis.

The root numbers at various PEG concentrations of PEG in Table 3 indicate unique
patterns among the strawberry varieties under investigation. “Fortuna” and “Rubygem”
had the most significant root number 5.20) in the 6 mg/L PEG, followed by “Festival” (5.05)
and “Fortuna” (3.70).

Table 3. Number of roots.

PEG-free PEG 2 mg/L PEG 4 mg/L PEG 6 mg/L Cultivar
Average

“Festival” 4.50 4.75 3.80 5.05 4.52
“Fortuna” 4.80 4.70 3.90 5.20 4.65

“Rubygem” 4.50 4.70 3.90 5.20 4.57
PEG average 4.60 A 4.71 A 3.86 B 5.15 A
Variation in
percentage 0.00 3.28 −15.85 12.02

LSDCultivar: N.S, LSDPEG:0.58 ***, LSDCultivar*PEG: N.S., ***: p < 0.001, capital letters indicate statistical differences
between strawberry varieties and different PEG concentrations, as determined by the LSD analysis.

However, all cultivars showed a discernible increase in the root count at the maximum
PEG concentration (6 mg/L). At 4.65, “Fortuna” showed the most significant average
root numbers, closely followed by “Rubygem” at 4.57, while “Festival” was at 4.52. The
response of root production to drought stress was more variable. At 2 mg/L PEG, a
slight increase of 3.28% was observed, suggesting a potential initial compensatory root
proliferation response to mild drought. However, at 4 mg/L PEG, a decrease of 15.85% was
noted, with a subsequent increase of 12.02% at 6 mg/L PEG, indicating complex adaptive
responses in root system architecture under varying levels of water availability.

According to Table 4, root rates at various concentrations of polyethylene glycol (PEG),
considering transformation rates within parentheses, offer valuable information on the
response characteristics of strawberry cultivars under investigation.
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Table 4. Rooting rate of strawberry cultivars.

PEG-free PEG 2 mg/L PEG 4 mg/L PEG 6 mg/L Cultivar
Average

“Festival” 80 (72.00) 65 (58.50) 90 (81.00) 85 (76.50) 80 (72.00)
“Fortuna” 80 (72.00) 60 (54.00) 90 (81.00) 70 (63.00) 75 (67.00)

“Rubygem” 80 (72.00) 70 (63.00) 70 (63.00) 80 (72.00) 75 (67.00)
PEG average 80 (72.00) 65 (58.50) 83 (75.00) 78 (70.50)
Variation in
percentage 0.00 −18.75 6.25 0.00

LSDCultivar: N.S, LSDPEG: N.S, LSDCultivar*PEG: N.S.

Regarding transformation rates inside parentheses, the “Festival” cultivar, at 90 (81.00),
had the highest root rate, noted in the presence of 4 mg/L PEG. On the other hand, at
2 mg/L PEG, the “Fortuna” cultivar showed the lowest root rate, measuring 60 (54.00).

To predict in vitro plant characteristics, such as plant height, proliferation, root number,
and root length, four different machine learning (ML) and artificial neural network (ANN)
models were used: multilayer perceptron (MLP), support vector machine (SVM), Gaussian
process (GP), and random forest (RF). The root mean square error (RMSE), coefficient of
determination (R2), and mean absolute error (MAE) metrics were used to evaluate the
validity of the model Equations (6)–(8). The R2 values range from 0 to 1, where 1 denotes an
ideal prediction and 0 denotes no capacity for explanation. Model precision is represented
by the RMSE values, which generally range from zero to positive infinity. Lower values
indicate better performance. Similarly, MAE represents the predicted accuracy and ranges
from zero to positive infinity, where lower values denote higher accuracy.

R2 = 1 − ∑n
i=1 (Yi − Ŷi)

2

∑n
i=1 (Yi −

∼
Y)2

(6)

RMSE =

√(
∑n

i=1 (Yi − Ŷi)2
)

n
(7)

MAE =
1
n

n

∑
i=1

|Yi − Ŷi

∣∣∣∣∣ (8)

A higher agreement between the expected and actual values is shown by an R2 value
closer to 1 and RMSE and MAE values closer to 0.

Table 5 presents the models’ R2, MAE, and RMSE values for plant height, proliferation,
number of roots, and root length for all strawberry cultivars. The results reveal the relatively
close R2 values of all models for plant height, except the MLP model; these values were 0.66
(RF, GP) and 0.64 (SVM), while MLP showed the lowest R2 at 0.52. RMSE and MAE values
varied with the model and exhibited the order RF (0.55) < GP (0.56) < SVM (0.57) < MLP
(0.72) for plant height. MAE also showed the same order as RMSE, with RF having the
lowest MAE and MLP having the highest. The R2, MAE, and RMSE values for proliferation
in all tested and recorded models were in the order RF (0.78; 0.75; 0.57) > GP (0.60; 0.61;
0.75) > SVM (0.59; 0.59; 0.76) > MLP (0.55; 0.71; 0.91). It can be deduced from these results
that the RF model was the best among the tested models for proliferation owing to its
highest R2 (0.78) and relatively lowest RMSE (0.57) scores. The R2, MAE, and RMSE values
for the number of roots in all tested and recorded models were in the order RF (0.84; 0.64;
0.86) > SVM (0.72; 0.90; 1.16)> MLP (0.68; 0.95; 1.27) > GP (0.61; 0.96; 1.24). The RF model
performed the best in terms of predicting the number of roots. The same thing happened
with R2, MAE, and RMSE values for root length; all tested and recorded models performed
in the order RF (0.89; 0.46; 0.63) > MLP (0.84; 0.59; 0.85) > GP (0.73; 0.82; 1.07) > SVM
(0.70; 0.77; 107). The RF model outperformed the other models in terms of root length.
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The overall performance of the models based on all variables (plant height, proliferation,
number of roots, and root length) can be ranked in the order RF > GP > SVM > MLP.

Table 5. Validation of machine learning model algorithms for three strawberry cultivars.

Plant Height Proliferation Number of Roots Root Length

MLP
RMSE 0.72 0.91 1.27 0.85

R2 0.52 0.55 0.68 0.84
MAE 0.55 0.71 0.95 0.59

SVM
RMSE 0.57 0.76 1.16 1.07

R2 0.64 0.59 0.72 0.70
MAE 0.44 0.59 0.90 0.77

RF
RMSE 0.55 0.57 0.86 0.63

R2 0.66 0.78 0.84 0.89
MAE 0.41 0.44 0.64 0.46

GP
RMSE 0.56 0.75 1.24 1.07

R2 0.66 0.60 0.61 0.73
MAE 0.44 0.61 0.96 0.82

We also conducted ML prediction per each cultivar. Table 6 presents the models’ RMSE,
R2, and MAE values for plant height, proliferation, number of roots, and root length of the
“Rubygem” cultivar. R2 values for plant height scored 0.87 for GP, 0.85 for MLP, and 0.78 for
RF, while SVM showed the lowest R2 at 0.70. The RMSE and MAE values varied by model
and exhibited the order GP (0.11) < RF (0.13) = SVM (0.13) = MLP (0.13) for plant height. MAE
also showed the same order as RMSE, with GP having the lowest MAE. In terms of RMSE,
R2, and MAE values for proliferation, all tested and recorded models performed in the order
MLP (0.16; 0.90; 0.14) > GP (0.16; 0.82; 0.12) > RF (0.16; 0.81; 0.13) > SVM (0.15; 0.66; 0.13). It
can be deduced from these results that the MLP model was the best among the tested models
in terms of predicting proliferation owing to its highest R2 (0.90). The RMSE, R2, and MAE
values for the number of roots in all tested and recorded models were in the order MLP (0.26;
0.57; 0.23) > SVM (0.28; 0.57; 0.24) > GP (0.26; 0.54; 0.23) > RF (0.26; 0.51; 0.23). For the number
of roots, MLP also showed the highest R2. The same thing happened with RMSE, R2, and
MAE values for root length; all tested and recorded models performed in the order RF (0.89;
0.46; 0.63) > MLP (0.84; 0.59; 0.85) > GP (0.73; 0.82; 1.07) > SVM (0.70; 0.77; 107). The RF model
outperformed the other models in terms of root length. The overall performance of the models
based on all variables (plant height, proliferation, number of roots, and root length) for the
“Rubygem” cultivar can be ranked in the order MLP > GP > RF > SVM.

Table 6. Validation of machine learning model algorithms for “Rubygem” cultivar.

Plant Height Proliferation Number of Roots Root Length

MLP
RMSE 0.13 0.16 0.26 0.21

R2 0.85 0.90 0.57 0.45
MAE 0.11 0.14 0.23 0.18

SVM
RMSE 0.13 0.15 0.28 1.07

R2 0.70 0.66 0.57 0.44
MAE 0.11 0.13 0.24 0.77

RF
RMSE 0.13 0.16 0.26 0.23

R2 0.78 0.81 0.51 0.58
MAE 0.11 0.13 0.23 0.21

GP
RMSE 0.13 0.16 0.26 0.22

R2 0.87 0.82 0.54 0.34
MAE 0.10 0.12 0.23 0.18

MLP: multilayer perceptron; SVM: support vector machine; RF: random forest; GP: Gaussian process; R2:
coefficient of determination; MAE: mean absolute error; RMSE: root mean square error.
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The actual and predicted values of “Rubygem” are compared in Figure 1. The samples
are shown on the horizontal axis, whereas the model’s predicted findings are on the vertical
axis.
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Table 7 also presents the models’ RMSE, R2, and MAE values for plant height, prolifer-
ation, number of roots, and root length for the “Festival” cultivar. The R2 values for plant
height scored 0.88 for RF, 0.86 for SVM, and 0.84 for RF, while GP showed the lowest R2

at 0.78. The RMSE and MAE values varied by model and exhibited the order GP (0.10) =
SVM (0.10) < RF (0.11) < MLP (0.12) for plant height. MAE also showed an order of GP =
SVM < RF < MLP, with GP having the lowest MAE. In terms of the RMSE, R2, and MAE
values for proliferation, all tested and recorded models performed in the order MLP (0.11;
0.87; 0.10) > RF (0.14; 0.82; 0.12) > GP (0.15; 0.76; 0.12) > SVM (0.16; 0.67; 0.14). It can be
deduced from these results that the MLP model was the best among the tested models in
terms of its prediction of proliferation owing to its highest R2 (0.87). In terms of the RMSE,
R2, and MAE values for the number of roots, all tested and recorded models performed in
the order RF (0.11; 0.86; 0.09) > MLP (0.25; 0.63; 0.23)> SVM (0.23; 0.54; 0.21) > GP (0.28;
0.43; 0.25). For the number of roots in the “Festival” genotype, RF showed the highest R2.
The same thing happened with the RMSE, R2, and MAE values for root length; all tested
and recorded models performed in the order RF (0.10; 0.92; 0.63) > MLP (0.24; 0.52; 0.16) >
GP (0.20; 0.47; 0.18) > SVM (0.22; 0.47; 0.19). The RF model outperformed the other models
in terms of predicting root length. The overall performance of the models based on all
variables (plant height, proliferation, number of roots, and root length) in the “Festival”
cultivar can be ranked in the order RF > MLP > GP > SVM. The actual and predicted values
of the “Festival” cultivar are shown in Figure 2.
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Table 7. Validation of machine learning model algorithms for “Festival” cultivar.

Plant Height Proliferation Number of
Roots Root Length

MLP
RMSE 0.12 0.11 0.25 0.24

R2 0.84 0.87 0.63 0.52
MAE 0.11 0.10 0.23 0.16

SVM
RMSE 0.10 0.16 0.23 0.22

R2 0.86 0.67 0.54 0.47
MAE 0.08 0.14 0.21 0.19

RF
RMSE 0.11 0.14 0.11 0.10

R2 0.88 0.82 0.86 0.92
MAE 0.09 0.12 0.09 0.08

GP
RMSE 0.10 0.15 0.28 0.20

R2 0.78 0.76 0.43 0.47
MAE 0.0.08 0.12 0.25 0.18

MLP: multilayer perceptron; SVM: support vector machine; RF: random forest; GP: Gaussian process; R2:
coefficient of determination; MAE: mean absolute error; RMSE: root mean square error.
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Figure 2. Predicted vs. actual value of “Festival” cultivar.

For the “Fortuna” cultivar, in terms of predicting plant height, the random forest (RF)
model proved to be the most effective, with the lowest root mean square error (RMSE) of
0.12 and the highest R2 value of 0.86. Conversely, the multilayer perceptron (MLP) model
demonstrated a superior predictive ability for the proliferation metric, achieving the highest
R2 value of 0.80. Notably, the random forest model also exhibited the highest R2 value,
at 0.84, for predicting the number of roots. Additionally, for root length, the RF model
outperformed the others, with the highest R2 value of 0.89 and the lowest RMSE (0.11s)
and mean absolute error (MAE) of 0.09. Overall, the random forest model consistently
outperformed the other models across multiple metrics, highlighting its ability to capture
complex relationships within genotypic data. While the MLP model demonstrated strength
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in predicting proliferation, the support vector machine (SVM) and Gaussian process (GP)
models showed competitive but slightly inferior performance across the evaluated variables
(see Table 8). The actual and predicted values of the “Fortuna” cultivar are shown in
Figure 3.

Table 8. Validation of machine learning model algorithms for “Fortuna” cultivar.

Plant Height Proliferation Number of
Roots Root Length

MLP
RMSE 0.12 0.16 0.27 0.22

R2 0.85 0.80 0.59 0.49
MAE 0.10 0.14 0.23 0.19

SVM
RMSE 0.11 0.16 0.26 0.22

R2 0.80 0.66 0.50 0.47
MAE 0.09 0.14 0.23 0.19

RF
RMSE 0.12 0.16 0.13 0.11

R2 0.86 0.79 0.84 0.89
MAE 0.11 0.14 0.12 0.09

GP
RMSE 0.12 0.16 0.27 0.21

R2 0.74 0.74 0.44 0.45
MAE 0.10 0.14 0.24 0.18

MLP: multilayer perceptron; SVM: support vector machine; RF: random forest; GP: Gaussian process; R2:
coefficient of determination; MAE: mean absolute error; RMSE: root mean square error.
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4. Discussion

Our experimental results reveal significant insights into the responses of three straw-
berry genotypes (“Festival”, “Fortuna”, and “Rubygem”) to varying concentrations of
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polyethylene glycol (PEG) simulating drought stress. In comparing our findings with stud-
ies by Hussein et al. [49], Mozafari et al. [50], Şener et al. [51], Josefi et al. [52], and Zahedi
et al. [53], we can draw valuable comparisons to elucidate the implications of our results.
The results indicate that PEG concentrations influence plant height, with the “Fortuna”
cultivar reaching its maximum height in a PEG-free medium, while “Festival” showed
the shortest height at 6 mg/L PEG. This is consistent with a study by Hussein et al. [49],
where drought stress significantly reduced shoot length. Furthermore, the multiplication
coefficients were highest in PEG-free conditions for “Fortuna” and “Festival,” aligning with
the observed robustness of these cultivars under normal conditions. Hussein et al. [49]
investigated the impact of drought and salt stress on F. ananasa cultivars “Fortuna” and
“Festival” by culturing apical meristems on MS medium without hormones, followed by
exposure to 1.0 mg/L benzyl adenine with polyethylene glycol (PEG) concentrations of 0.0,
0.5, 1.0, 1.5, and 2%, and sodium chloride (NaCl) levels of 0.0, 500, 750, and 1000 mg/L.
Drought stress significantly reduced chlorophyll content to 0.57 mg/g, shoot length to
1.50 cm, root length to 1.60 cm, and leaves per explant to 1.33. Salt stress at 1000 mg/L NaCl
decreased chlorophyll content to 10.13 mg/g, shoot length to 2.10 cm, shoot dry biomass
to 1.22 mg, root length to 2.13 cm, and root dry biomass to 0.96 mg. Stress conditions
elevated proline to 3.95 µg/g, catalase to 4.75 µg/g, and peroxidase levels remained at
20.42 µg/g. These findings underscore the potential for in vitro selection of drought and
salinity-tolerant strawberry plants. This mirrors the findings of Zahedi et al. [53], highlight-
ing genotypic variations in drought tolerance. Zahedi et al. [53] examined the response
of the “Camarosa” and “Gaviota” strawberry cultivars to varying levels of drought stress
simulated by irrigation at 100, 75, 50, and 25% field capacity; significant differences in
physiological and biochemical responses were observed. Drought stress decreased total
chlorophyll, carotenoid, relative water, and phenolic content across both cultivars. How-
ever, “Gaviota” exhibited higher proline and hydrogen peroxide levels, indicating greater
oxidative stress, whereas “Camarosa” demonstrated superior drought tolerance through
increased soluble carbohydrates and antioxidant activities, highlighting the potential for
genotypic selection in breeding drought-resistant strawberries.

Our study demonstrates unique patterns in root numbers, with “Rubygem” exhibiting
the highest count in 6 mg/L PEG. The increase in root count at the maximum PEG concen-
tration for all cultivars is reminiscent of the findings of Zahedi et al. [53], in whose study
the accumulation of osmolytes and enhanced antioxidant enzyme activities were observed
under severe drought stress. The decrease in root length at 6 mg/L PEG corresponds to
Şener et al. [51], in whose study nano-silicon dioxide application mitigated reduced vegeta-
tive growth under drought stress. Our data on root rates at different PEG concentrations
align with a study by Josefi et al. [52], emphasizing the influence of jasmonic acid (JA)
on morphophysiological and biochemical characteristics under PEG-induced water stress.
The higher root rate for “Festival” at 4 mg/L PEG indicates its enhanced response to JA
application, while the lowest rate for “Fortuna” at 2 mg/L PEG suggests varied responses
among cultivars.

Hussein et al. [49] and Mozafari et al. [50] both emphasize the negative impacts of
drought stress on various parameters, highlighting the importance of mitigating strate-
gies. The application of iron nano-particles and salicylic acid, as discussed by Mozafari
et al. [50], resonates with our findings on the influence of PEG on strawberry growth
traits. Additionally, Şener et al. [51] and Josefi et al. [52] provide evidence of the positive
effects of nano-silicon dioxide and jasmonic acid in enhancing drought stress tolerance.
Zahedi et al. [53] compare two strawberry cultivars under different drought conditions,
supporting our emphasis on genotypic variations. The “Camarosa” cultivar’s higher tol-
erance, reflected in its physiological responses, suggests potential breeding strategies to
develop drought-tolerant strawberries. Our results contribute to the growing knowledge
of strawberry responses to drought stress. The variations observed among genotypes and
the potential mitigating effects of external factors underscore the importance of tailored
approaches in strawberry cultivation under stress conditions. Future research should
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continue exploring the underlying mechanisms and developing practical applications to
enhance strawberry resilience in changing environmental conditions.

Our study employed multilayer perceptron (MLP), support vector machine (SVM),
Gaussian process (GP), and random forest (RF) models. A similar variety of models has
been used in the literature, including support vector regression (SVR), XGBoost, and MLP.

The selection between MLP, SVM, GP, and RF hinges on the specific data characteristics
and application requirements. MLP excels in approximating complex functions across
diverse applications, but it may overfit and needs careful hyperparameter tuning. SVM
performs well in high-dimensional spaces and with nonlinear data, yet it is sensitive to
kernel and regularization choices. GP offers flexibility and precise uncertainty estimates
for smaller datasets but struggles with scalability. RF is robust against overfitting and suits
large, high-dimensional datasets, though it may lag in real-time prediction and presents
interpretative challenges. The optimal model choice necessitates a balanced consideration
of these strengths and limitations, tailored to the task at hand [54].

RF consistently demonstrated superior performance in multiple studies, aligning with
our findings. For instance, Kirtis et al. [39] highlighted RF’s high performance in predicting
in vitro plant characteristics, especially in shoot count and length. The evaluation metrics
in our study included root mean square error (RMSE), coefficient of determination (R2),
and mean absolute error (MAE). These metrics have also been used in the literature, with
R2 being a crucial indicator of predictive accuracy. The literature consistently emphasizes
the importance of lower RMSE and MAE values, similar to our interpretation.

In the study by Kirtis et al. [39], the RF model excelled in predicting shoot count and
length for desi chickpeas, while XGBoost outperformed in shoot count. Similarly, our study
found RF to be the best model across all variables (plant height, proliferation, number of
roots, and root length). This demonstrates a consistent RF efficacy pattern across different
plant species and characteristics. Aasim et al. [38] and Rezaei et al. [41] applied ML models
to optimize plant tissue culture protocols. Aasim et al. [54] utilized MLP to predict shoot re-
generation in common beans, while Rezaei et al. [55] employed a genetic algorithm (GA) in
conjunction with ML models to optimize phytohormone concentrations in petunia callogen-
esis. Our study, while not explicitly focusing on optimization, corroborates the potential of
ML in achieving efficient tissue culture protocols. Sadat-Hosseini et al. [56] compared three
ML approaches—multilayer perceptron neural network (MLPNN), k-nearest neighbors
(KNN), and gene expression programming (GEP)—in predicting the in vitro proliferation
of Persian walnuts. Our study did not explore these specific techniques, but the comparison
underscores the diversity of ML methods available for plant-related predictions.

Despite the promising results, it is crucial to acknowledge challenges such as model
interpretability, overfitting, and the need for large datasets. Future research could focus on
addressing these challenges and exploring emerging ML techniques. Our study aligns with
the existing literature, emphasizing the efficacy of RF models in predicting various plant
characteristics. The comparison provides a comprehensive overview of ML applications
in plant tissue culture, offering insights for future research and potential optimizations in
diverse plant species and traits.

5. Conclusions

The present study provides valuable insights into the responses of three strawberry
genotypes to varying PEG concentrations simulating drought stress. PEG significantly
influenced plant height, multiplication coefficients, root numbers, and root rates, indi-
cating genotype-specific reactions. Comparison with the existing literature supported
our findings, highlighting the importance of mitigating strategies for drought stress. The
application of machine learning models, especially random forest, which demonstrated
consistent efficacy in predicting plant characteristics with an accuracy of 91.164%, was
pivotal in accurately predicting the impact of drought stress on strawberry plants. Our
analysis reveals significant variations in the performance of machine learning (ML) models
across different strawberry cultivars, with the random forest (RF) model consistently show-
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casing superior accuracy in predicting key phenotypic traits such as root length and the
number of roots, especially in the “Festival” and “Fortuna” cultivars. This demonstrates the
model’s robustness and adaptability to various genetic backgrounds. For the “Rubygem”
cultivar, the study found the multilayer perceptron (MLP) model to be highly effective in
predicting proliferation, while the Gaussian process (GP) model was particularly accurate
in estimating plant height. However, challenges such as model interpretability and the need
for larger datasets should be addressed in future research. These results underline the con-
siderable potential of employing ML models, notably the RF model, for precise phenotypic
predictions in strawberries. Such advancements hold promise for the agricultural sector,
potentially transforming breeding and cultivation strategies through enhanced efficiency
and accuracy. This study not only delineates the comparative strengths and limitations of
each model within the realm of agricultural forecasting but also paves the way for future
research aimed at refining these predictive models for greater precision and utility in agri-
cultural applications. This study contributes to the growing knowledge of plant responses
to stress conditions and suggests potential breeding strategies for developing drought-
tolerant strawberries. Future research should focus on elucidating underlying mechanisms
and practical applications to enhance strawberry resilience in changing environmental
conditions.
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