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Abstract: This study addresses the crucial role of temperature forecasting, particularly in agricultural
contexts, where daily maximum (Tmax) and minimum (Tmin) temperatures significantly impact crop
growth and irrigation planning. While machine learning (ML) models offer a promising avenue
for temperature forecasts, the challenge lies in efficiently training multiple models and optimizing
their parameters. This research addresses a research gap by proposing advanced ML algorithms
for multi-step-ahead Tmax and Tmin forecasting across various weather stations in Bangladesh. The
study employs Bayesian optimization and the asynchronous successive halving algorithm (ASHA)
to automatically select top-performing ML models by tuning hyperparameters. While both the
Bayesian and ASHA optimizations yield satisfactory results, ASHA requires less computational
time for convergence. Notably, different top-performing models emerge for Tmax and Tmin across
various forecast horizons. The evaluation metrics on the test dataset confirm higher accuracy,
efficiency coefficients, and agreement indices, along with lower error values for both Tmax and Tmin

forecasts at different weather stations. Notably, the forecasting accuracy decreases with longer
horizons, emphasizing the superiority of one-step-ahead predictions. The automated model selection
approach using Bayesian and ASHA optimization algorithms proves promising for enhancing
the precision of multi-step-ahead temperature forecasting, with potential applications in diverse
geographical locations.

Keywords: temperature forecasts; automated machine learning; Bayesian optimization; asynchronous
successive halving algorithm; Bangladesh

1. Introduction

The temperature variable stands out as one of the atmospheric parameters with the
highest accuracy, contributing to enhanced reliability in weather forecasts. Precisely pre-
dicting the air temperature at a specific location and time is a crucial research challenge
with diverse applications, spanning from energy generation to agriculture. Climate sci-
entists anticipate that the escalating air temperatures in the forthcoming decades may
lead to adverse environmental impacts [1]. The demand for temperature forecasts in the
agricultural sector is growing for both maximum (Tmax) and minimum (Tmin) tempera-
tures, as these significantly influence crop growth and potential yield. It is a key research
topic in atmospheric sciences, with potential applications to the agricultural sector [2].
Daily Tmax and Tmin serve as valuable indicators of crop growth and yield, as they can be
used to predict the irrigation water requirements for crops. Consequently, predicting the
daily Tmax is a significant issue, with practical applications in crop science, as it has been
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demonstrated that irrigation water requirements depend greatly on weather conditions.
According to Allen et al. [3] and Ali [4], irrigation water requirements are closely linked to
weather parameters such as temperature, relative humidity, sunshine hours, wind speed,
and rainfall. Among these, temperature stands out as a key factor, influencing not only the
determination of irrigation water requirements but also facilitating plant growth through
the photosynthesis process. Notably, both maximum and minimum temperatures play a
crucial role in shaping irrigation water requirements and crop scheduling, as expounded
by Wang et al. [5] and Haque et al. [6]. The connection between temperature forecasting
and agriculture is profound, as temperature significantly influences various aspects of crop
growth and development [7,8]. Temperature forecasts play a crucial role in agriculture
by providing valuable information for planning and decision making across various agri-
cultural activities. Temperature forecasts offer essential insights into various aspects of
agriculture, including crop growth, pest management, irrigation, harvest timing, climate
change adaptation, and resource management [9]. By incorporating accurate temperature
forecasts into agricultural practices, farmers can make informed decisions, optimize re-
source allocation, enhance productivity, and mitigate risks, ultimately contributing to the
development of sustainable and efficient agricultural systems. Therefore, the present study
aims to provide multi-step-ahead forecasts for both Tmax and Tmin in three distinct climatic
zones of Bangladesh.

The precise prediction of air temperatures has attracted the attention of researchers
in recent years. This is because precise temperature forecasting has a wide range of
applications in fields such as climate science, agriculture, energy management, and urban
planning [10]. Temperature forecasting has been continuously evolving for nearly a century,
since the inception of weather forecasting. According to the literature, there are two
fundamental methods for predicting weather forecasting, including air temperature and
precipitation forecasting: general circulation or physically based simulations and statistical
modeling [11–14]. Physically based models are classic approaches that utilize computer
simulations based on mathematical equations and are often referred to as numerical weather
prediction models [15,16]. However, physically based models are constrained by the need
for significant computing power and a clear understanding of the system being modeled.
On the other hand, statistical models aim to reduce the reliance on physically based models.
They are easier to understand and less computationally complex than their physically
based counterparts. Typically, statistical models are applied to the outputs of numerical
weather prediction models. Most studies have demonstrated that results from statistical
models and physical models are generally consistent. There are two types of statistical
analysis [17]: correlation techniques and regression approaches.

Regression approaches primarily rely on machine learning (ML)-based data-driven
methodologies, which have gained popularity in the prediction and forecasting of air
temperatures [1,18–20]. However, it is observed that in the absence of transient weather
systems, the daily cycle of temperature is more or less well defined. Therefore, a classic
regression model could often be utilized to forecast the air temperature when there is
no cloud cover during the data acquisition process. Nevertheless, accurately predicting
the air temperature using classic regression methods poses a challenge, given the chaotic
nature and nonlinear trends of weather parameters. In such scenarios, ML-based meth-
ods have proven to be viable alternatives to classic regression models. In recent years,
various soft computing approaches have been applied to address temperature predic-
tion challenges in diverse areas. Many of these approaches have harnessed the power
of neural computing techniques, known for their speed and accuracy [10]. Specifically,
ML-based approaches to air temperature prediction involve the application of various meth-
ods, including Artificial Neural Network (ANN) [21], genetic algorithm-tuned ANN [22],
Honey Badger Algorithm-tuned ANN [23], Gene Expression Programming [23], Support
Vector Regression [14,17,21,24,25], Multi-Layer Perceptron [1,14], Multi-Variate Adaptive
Regression Spline [26], Extreme Learning Machine [26,27], M5 Prime [28], Random For-
est [17,26,29,30], Lasso Regression [29], Regression Tree [17], Long Short-Term Memory
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Network (LSTM) [1,31], GRU-LSTM [32], Convolutional Neural Network (CNN) [29],
CNN-LSTM [1,33,34], Simple Recurrent Neural Network with Convolutional Filters [35],
and Stochastic Adversarial Video Prediction [35]. Cifuentes et al. [18] provided a detailed
review of air temperature forecasting approaches using ML techniques. These forecasting
methods have consistently demonstrated improved prediction results.

Implementing new techniques in temperature forecasting is crucial for reducing mod-
eling errors and mitigating model parameter uncertainties [36]. However, achieving higher
forecast accuracy with a desired model remains a complex scientific challenge. In this
article, we are not referring to the relationship between NWP and ML models; rather, we
propose a new approach based on ML-based modeling to address the inherent limitations
of NWPs, such as the need for well-defined prior knowledge and extensive computational
capacity. In contrast, ML techniques excel at identifying hidden patterns in the dataset with-
out requiring prior knowledge. Thus, these approaches may serve as suitable alternatives
to NWPs in weather forecasting. Previous studies on temperature forecasting employed
various ML approaches and optimization algorithm-tuned ML models, including the deep
learning approaches. These studies compared a few modeling approaches and proposed
the best predictive model based on the comparison results. However, this approach is lim-
ited by the need to select appropriate candidate models for comparison and to identify the
top-performing model. In other words, traditional ML-based approaches to temperature
forecasting involve manual model selection, which can be time-consuming and subjective.
To address these limitations, it is often beneficial to compare multiple approaches while
optimizing their tunable hyperparameters using optimization algorithms to identify the
most suitable prediction or forecast model for a given dataset. This process of automatic
model selection involves automatically choosing the most appropriate regression model
for a given dataset. The objective is to find the model that best fits the data and provides
the most accurate predictions. To this end, the present study proposes an automated model
selection technique to enhance forecasting accuracy and streamline the modeling process.
Bayesian optimization [37] and the asynchronous successive halving algorithm (ASHA) [38]
were employed to search for the top-performing model by tuning hyperparameters.

The selection of significant input variables is a critical step in ML-based modeling
applications. It involves the identification and selection of the most relevant and informa-
tive features from the available dataset [39,40]. This process is fundamental in ML-based
forecasting models, as it plays a vital role in improving predictive performance, reduc-
ing overfitting, enhancing computational efficiency, and improving the interpretability
of ML-based models. It enables models to leverage the most relevant and informative
features, leading to more accurate, efficient, and interpretable predictions in various appli-
cations and domains. Previous studies have utilized both linear methods [41] and nonlinear
techniques [40], including Minimum Redundancy Maximum Relevance (MRMR) [42]
approaches, to identify the most significant input variables for forecast models. One
promising approach to identifying the most influential input variables is the utilization of
F-tests. F-tests are a common approach to assessing the importance of individual features
in predicting a continuous target variable. In this approach, each feature is evaluated
independently based on its relationship with the target variable, using the F-statistic and
associated p-value. It is important to note that while univariate feature ranking provides
insights into an individual feature’s importance, it does not capture potential interactions or
dependencies between features. Therefore, it is essential to complement this analysis with
other feature selection or dimensionality reduction techniques to consider the combined
effects of multiple features and capture complex relationships in the regression model.
Another approach to significant input variable selection is the use of MRMR, a popular
technique for selecting a subset of features that are both informative and minimally re-
dundant. MRMR aims to maximize the relevance of features to the target variable while
minimizing the redundancy between the selected features. Neighborhood Component
Analysis (NCA) is another feature selection technique that aims to find an optimal subset
of features for a given classification or regression task. NCA is a distance-based feature se-
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lection method that learns a linear transformation of the original feature space to maximize
the discriminability of the data points. In the present study, a combination of all variables
that were selected by the individual variable selection approaches was used to include
all possible contributing variables affecting the outputs. In this proposed approach, the
common variables that were determined by all approaches were used only once.

Traditional machine learning (ML) approaches for temperature prediction typically
entail manual model selection, a process that is known to be time-consuming and subjec-
tive. Addressing these challenges, it proves advantageous to compare multiple approaches
and optimize their tunable hyperparameters through optimization algorithms. This helps
identify the most suitable prediction or forecast model for a given dataset. This research
introduces an innovative approach to automated model selection by employing Bayesian
optimization and the asynchronous successive halving algorithm, providing a systematic
and efficient method for choosing the most suitable models in predicting daily minimum
and maximum temperatures. The incorporation of the ASHA algorithm contributes to
enhancing the efficiency of the model selection process, particularly in scenarios where com-
putational resources are limited or asynchronous evaluations are necessary. The research
addresses the challenge of model selection in a robust and adaptive manner through opti-
mizing model hyperparameters, providing a valuable contribution to the broader field of
machine learning and climate science. Finally, by emphasizing the application of advanced
optimization techniques in the field of temperature prediction, the study contributes to
a broader understanding of automated model selection strategies in environmental fore-
casting, potentially paving the way for similar methodologies in related domains. To the
best of the authors’ knowledge, there have been no prior attempts to predict and forecast
temperatures using optimization algorithms such as Bayesian optimization and ASHA for
automatic model selection. This underscores the novel contribution of the current study.

The agricultural sector stands to benefit significantly from the evolution of machine
learning (ML) models, especially with a focus on enhancing computational efficiency. The
advancement of ML models, particularly in the context of agriculture, has led to a growing
interest in developing less computationally expensive models to their enhance scalability
and accessibility [37]. Bayesian optimization emerges as a promising approach in this re-
gard, offering a systematic method for optimizing the hyperparameters of ML models with
a reduced computational burden. Utilizing Bayesian optimization empowers researchers to
refine temperature models with increased effectiveness, thereby facilitating advancements
in precision agriculture and the accuracy of climate-related predictions. On the other hand,
the ASHA optimization algorithm further complements this effort by parallelizing the
model training process, thereby expediting the optimization procedure [38]. This strategy
offers an effective means of optimizing hyperparameters, streamlining the training process,
and making models more accessible in the context of agriculture. In agricultural appli-
cations, where the need for real-time decision making is crucial, the implementation of
less computationally intensive ML models can significantly improve efficiency [43]. The
incorporation of Bayesian and ASHA optimization techniques contributes to the sustainable
evolution of precision agriculture and climate-related predictions.

This study aims to train several regression models using Bayesian and ASHA opti-
mizations on a given training dataset and identify the best-performing model on a test
dataset. The objective is to investigate the effectiveness of the Bayesian and ASHA opti-
mization algorithms in forecasting daily Tmax and Tmin values and to provide a comparison
of these two optimization algorithm-tuned models. By automating the model selection
process, we aim to overcome the limitations of manual selection, such as subjectivity and
suboptimal choices. Our proposed approach automates and eliminates manual steps that
are required to go from a dataset to a predictive model. We present a novel approach
that automates the model selection process for temperature forecasting, offering a more
objective and efficient alternative to manual selection. Therefore, the contributions of this
study encompass (a) building multiple regression models for a given training dataset of
Tmax and Tmin by optimizing their hyperparameters using Bayesian and ASHA optimiza-



Agriculture 2024, 14, 278 5 of 30

tion algorithms, (b) performing a comparative analysis of models tuned by Bayesian and
ASHA optimization algorithms, and (c) identifying the top-performing models for multiple
forecast horizons at three weather stations.

2. Materials and Methods
2.1. Study Area and the Data

Daily Tmax and Tmin data were collected from three meteorological stations, namely,
Barishal, Gazipur, and Ishurdi stations. The selection of these stations was based on
their representation of three distinct climatic regions in Bangladesh: (1) Gazipur station
represents the central region of Bangladesh, situated at approximately 24.00◦ N latitude
and 90.43◦ E longitude, with an elevation of 14 m above mean sea level; (2) Ishurdi station
represents the northern climatic regions of Bangladesh, located at around 24.04◦ N latitude
and 90.07◦ E longitude, with an elevation of 18 m above mean sea level; and (3) Barishal
station represents the southern part of Bangladesh, positioned at approximately 22.60◦ N
latitude and 90.36◦ E longitude, with an elevation of 1.0 m above mean sea level. The study
area, including the locations of these three weather stations, is depicted in Figure 1.
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This study utilizes medium-term daily temperature data obtained from the Bangladesh
Meteorological Department (BMD) across three weather stations to provide multi-step-
ahead temperature forecasts. The maximum and minimum temperatures of the day were
measured using Zeal P1000 maximum and minimum thermometers from G. H. Zeal Ltd.,
London, UK. The thermometers have an accuracy of ±0.2 ◦C and a range and resolution
of −50 to +70 ◦C with 0.1 ◦C increments, and they were positioned at a measurement
height of 2 m. The geographical distribution of meteorological stations is illustrated in
Figure 1, depicting a reasonable coverage of three distinct regions across the country.
Notably, Bangladesh’s topography is predominantly flat, with some elevated regions
in the northeast and southeast. Consequently, it is reasonable to infer that the selected
meteorological stations comprehensively represent the climatic conditions of the three
regions of the country [44].
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The temperature distribution in Bangladesh is significantly influenced by various local
conditions. The country’s proximity to the equator contributes to a predominantly tropical
climate, characterized by high temperatures throughout the year. The Bay of Bengal,
bordering the southern coastline, acts as a key influencer, moderating temperatures along
the coastal regions compared to the inland areas. The flat topography, interspersed with
some upland regions, further contributes to temperature variations. Seasonal monsoons,
driven by distinct wind patterns, play a crucial role in shaping temperature dynamics
and precipitation patterns, thus exerting a notable impact on the overall temperature
distribution across different geographical regions of Bangladesh [5,6].

Gazipur station exhibits a tropical wet and dry or savanna climate (classification:
Aw). The district records an annual average temperature of 28.95 ◦C, marking a 1.21%
increase compared to the national averages in Bangladesh. Gazipur usually receives around
71.24 mm of precipitation annually. Ishurdi station also features a tropical wet and dry
or savanna climate (classification: Aw). The district maintains an annual temperature
of 29.52 ◦C, which is 1.78% higher than the national averages in Bangladesh. Ishurdi
typically receives around 98.38 mm of precipitation annually. Barisal station experiences
a tropical climate, characterized by significantly less rainfall in winter compared to the
summer months. According to Köppen and Geiger [45], this location falls under the Aw
classification. Statistical analysis reveals an average temperature of approximately 25.6 ◦C,
with an annual rainfall of around 2005 mm. The temperate characteristics of Barisal poses
challenges in clearly categorizing distinct seasons in the region.

The acquired temperature forecast results remain unaffected by local atmospheric
conditions. While the mentioned local factors are implicitly embedded in the data collected
from weather stations, it is crucial to note that the modeling outcomes presented in this
research solely derive from historical temperature data from BMD.

A diurnal cycle, also known as a diel cycle, manifests as a recurring pattern every
24 h due to the complete rotation of the Earth around its axis. The Earth’s rotation gives
rise to temperature variations on the surface during both day and night, contributing to
seasonal weather changes. The primary determinant of the diurnal cycle is the influx of
solar radiation [46]. The atmospheric seasonal cycle is influenced by the Earth’s axial tilt.
The Earth’s seasonal cycle arises from its 23◦ axial tilt, causing varying solar radiation
at different latitudes throughout the year. Equinoxes align the sun with the equator,
the June solstice with the Tropic of Cancer, and the December solstice with the Tropic
of Capricorn, creating hemispheric temperature disparities in summer and winter. The
Annual Temperature Cycle (ATC) encompasses seasonal temperature changes that are
influenced by fluctuations in solar radiation reaching the Earth’s surface throughout the
year [47]. Typically, evaluating the ATC relies on sparse and unevenly distributed air
temperature observations or numerical model simulations. This study utilized temperature
data collected by the Bangladesh Meteorological Department (BMD) at specific intervals,
encompassing daily maximum and minimum values. The data were sourced from three
designated weather stations for analysis.

In this study, the daily Tmax and Tmin data were collected from three weather stations,
located in distinct climatic regions of Bangladesh. Ensuring the quality of the temperature
datasets is essential to enhance the reliability of temperature forecasts using ML algo-
rithms [48]. While a comprehensive quality assurance process was not conducted for this
specific dataset, the accuracy and completeness of the recorded temperature data were sys-
tematically assessed using range/limit tests. Range testing is a fundamental quality control
method that involves verifying that every observation falls within a specified range [48].
Only values within the predefined limits are considered valid [49,50], while readings out-
side the specified range are appropriately marked as invalid. The valid readings within
the allowable range were used to simulate future temperature fluctuations in the selected
weather stations, with a particular focus on generating multi-step forward temperature
forecasts for both Tmax and Tmin.
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A small portion of the collected data, amounting to less than 2% of the total data
from all weather stations, contained missing values. To address this issue, the ‘moving
median’ imputation technique was employed. This technique utilizes a moving median
with a predetermined window length to fill in the missing values. After applying the
imputation method, the weather stations Barishal, Gazipur, and Ishurdi had 2677 readings
(from 1 January 2015 to 30 April 2022), 6695 readings (from 1 January 2004 to 30 April 2022),
and 2041 readings (from 1 June 2015 to 31 December 2020) of daily Tmax and Tmin values.

Table 1 presents the descriptive statistics for daily Tmax and Tmin at the three weather
stations. It can be seen from Table 1 that the data exhibited left (negative) skewness, suggest-
ing that the distribution had an extended left tail compared to the right tail. Additionally,
kurtosis values included both positive and negative values, indicating that the datasets had
both ‘heavy-tailed’ (positive kurtosis) and ‘light-tailed’ (negative kurtosis) distributions.

Table 1. Descriptive statistics of the daily maximum and minimum temperatures at the three stations
(Barishal, Gazipur, and Ishurdi stations), Bangladesh.

Variables Mean Median Mode Standard Deviation Skewness Kurtosis

Barishal station
Minimum temperature, ◦C 21.567 23.60 26.00 5.324 −0.730 −0.779
Maximum temperature, ◦C 30.420 31.20 32.00 3.907 −0.584 −0.030

Gazipur station
Minimum temperature, ◦C 21.201 23.00 26.00 5.628 −0.624 −0.859
Maximum temperature, ◦C 30.975 32.00 34.00 3.947 −1.062 1.849

Ishurdi station
Minimum temperature, ◦C 21.374 23.50 27.00 5.984 −0.735 −0.761
Maximum temperature, ◦C 31.463 32.60 34.00 4.163 −0.827 0.284

The Gaussian distribution, commonly known as a normal distribution, is characterized
by a bell-shaped curve. It is often assumed that measurements will adhere to a normal
distribution, featuring an equal number of measurements above and below the mean. How-
ever, in real-world scenarios, data may not precisely conform to the Gaussian distribution
and could exhibit slight deviations. In practice, achieving exact conformity to a Gaussian
distribution is rare. Ideally, if a distribution is truly normal, the mean, median, and mode
values would be identical—an occurrence seldom observed in real-world situations. In
instances where the values of the mean, median, and mode differ, the distribution is consid-
ered skewed and deviates from the Gaussian norm [51]. The presented data in Table 1 reveal
that the mean, median, and mode values of the temperature measurements exhibit slight
differences. These numerical variations suggest that the data do not perfectly adhere to a
Gaussian distribution and show indications of being slightly skewed. The specific numeric
values can be found in Table 1 for reference. Skewness quantifies the asymmetry that is
present in data relative to their sample mean. Negative skewness indicates that the data are
more dispersed to the left of the mean, while positive skewness suggests greater dispersion
to the right. A perfectly symmetric distribution, such as the normal distribution, has a
skewness of zero. Kurtosis serves as a metric for gauging the susceptibility of a distribution
to outliers. The normal distribution exhibits a kurtosis of 3. Distributions with kurtosis
values exceeding 3 are more prone to outliers than the normal distribution, while those
with values below 3 are less susceptible. Some definitions of kurtosis involve subtracting
3 from the calculated value, resulting in a kurtosis of 0 for the normal distribution. This
study adopts this later definition (subtracting 3 from the calculated value) to compute the
kurtosis value.
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2.2. Data Preprocessing for the Lagged Input and Output Variables

Time-lagged information was gathered from the collected time series of the daily Tmax
and Tmin values. The outputs from the models were the day-ahead Tmax and Tmin values.
Therefore, the inputs to the models (five models for five-days-ahead forecasts) were

T(d, d − 1, d − 2, d − 3, . . . , d − n ) (1)

The outputs were
T(d + 1, d + 2, d + 3, . . . , d + n ) (2)

Due to time-lagging of input variables and the target, the observed daily Tmax and Tmin
records were reduced at each weather station. At Barishal station, a total of 2642 historical
records remained (from 1 January 2015 to 26 March 2022) after removing 35 records due
to time-lagging (5-time lag forward and 30-time lag backward) from the entire time series
of 2677 readings (from 1 January 2015 to 30 April 2022). At Gazipur station, a total of
6660 historical records remained (from 1 January 2004 to 26 March 2022) after removing
35 records due to time-lagging (5-time lag forward and 30-time lag backward) from the
entire time series of 6695 readings (from 1 January 2004 to 30 April 2022). At Ishurdi station,
a total of 2006 historical records remained (from 1 June 2015 to 26 November 2020) after
removing 35 records due to time-lagging (5-time lag forward and 30-time lag backward)
from the entire time series of 2041 readings (from 1 June 2015 to 31 December 2020). Each
station’s remaining dataset was divided into two sets: 80% for model training and 20% for
model testing. While there is no established rule for data splitting during model learning
and testing [52], it is recommended that testing data comprise between 10% and 40% of the
total dataset size [53].

2.3. Input Variable Selection

The first step in developing forecast models using ML-based approaches is the selection
of the most significant input variables [39,40]. For the purpose of choosing input variables
in hydrology and water resource modeling [39], both linear methods [41] and nonlinear
techniques [40] have been employed. However, because hydrology and water resource
modeling issues are frequently nonlinear in nature [54], linear methods based on Partial
Autocorrelation Function (PACF) and Autocorrelation Function (ACF) are often less suitable
techniques. For modeling of hydrological and water resources as well as other fields of
science and engineering applications, nonlinear approaches that utilize mutual information
(MI) [55] typically outperform linear techniques [35,40,56].

Since the only data used in this effort are the daily Tmax and Tmin values at three
weather stations (Barishal, Gazipur, and Ishurdi), the time-lagged versions of the acquired
temperature data (from each station) were used as potential inputs. To extract the time-
lagged information from the Tmax and Tmin time series and choose which lags to include as
prospective inputs, the PACF was employed. The PACF is a technique that is commonly
used in time series analysis to identify the most influential lagged features for predicting a
target variable [57]. The PACF measures the correlation between a time series variable and
its lagged values, while accounting for the influence of intermediate lags. By applying PACF,
one can identify the lagged features that have the most significant impact on the target
variable. These lagged features capture the historical patterns and dependencies that can be
exploited for accurate time series forecasting. Figure 2 displays the PACF plots for the data
from three weather stations, revealing that the current and past 30-time lags are essential
for forecasting temperatures for the next five days (Td+1, Td+2, Td+3, Td+4, and Td+5). The
PACF provided an initial guess of the candidates for input variables. However, this initial
selection of input variables may include unnecessary or redundant features, which could
hinder the training of ML-based forecasting models. Therefore, it is important to determine
the most significant input variables to ensure proper training and computational efficiency.
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Next, this study used the F-statistic [58,59] to identify the most influential input
variables. The F-test is a statistical test that assesses how much the variability in the target
variable is explained by a specific feature compared to the variability that is not explained
by that feature. It examines the importance of each predictor individually using an F-test,
testing the hypothesis that the response values that are grouped by predictor variable
values are drawn from populations with the same mean against the alternative hypothesis
that the population means are not all the same. A small p-value of the F-test indicates the
importance of the corresponding predictor. The F-statistic is calculated by dividing the
mean square regression (MSR), representing explained variability, by the mean square error
(MSE), representing unexplained variability. Univariate feature ranking with F-tests helps
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identify the most influential features for a regression task, emphasizing the most relevant
variables and potentially enhancing interpretability and model performance [58,59].

The variable importance is also determined using the MRMR technique [60,61]. The
MRMR algorithm aims to find a balance between selecting informative features while
avoiding redundant ones. MRMR considers both relevance and redundancy when identi-
fying a subset of features that collectively offer maximum information while minimizing
duplication. There are variations and extensions of MRMR, such as weighted MRMR
or incremental MRMR, which provide additional flexibility and adaptability to different
scenarios. Overall, MRMR is a valuable feature selection technique that enhances the
interpretability, generalization, and efficiency of machine learning models by focusing on
the most relevant and nonredundant features. The MRMR algorithm [61] identifies a best-
possible set of characteristics that are maximally and mutually different and are useful for
representing the response variable. The approach maximizes a feature set’s relevance to the
response variable while minimizing its redundancy. Using pairwise mutual information of
attributes and mutual information of an attribute and the response, the technique measures
the degree of duplication as well as the relevance of variables.

The MRMR technique seeks to identify an ideal set S of features that maximizes Vs,
the relevance of S pertaining to a response variable y, and minimizes Ws, the redundancy
of S, where Vs and Ws are defined with mutual information (MI) I:

Vs =
1
|S|∑x∈S I(x, y), (3)

Ws =
1

|S|2 ∑x,z∈S I(x, z). (4)

where |S| denotes the quantity of attributes in S. The amount of uncertainty in one variable
that can be lowered by understanding the other variable is measured by the MI between
two variables.

The MI (I) of the discrete random variables X and Z can be represented by [60]

I(X, Z) = ∑i,j P(X = xi, Z = zi)log
P(X = xi, Z = zi)

P(X = xi)P(Z = zi)
. (5)

If X and Z are independent, then I equals 0. If X and Z are the same random variable,
then I equals the entropy of X.

It is necessary to take into account all 2|Ω| combinations in order to find the optimum
set S, where Ω is the set of all features. The MRMR approach utilizes an alternative
approach. In this approach, the MRMR approach scores attributes by employing the
forward addition technique, which necessitates O(|Ω|·|S|) computations, by utilizing the
MI quotient (MIQ) value.

MIQx =
Vx

Wx
(6)

where Vx and Wx are the relevance and redundancy of a feature, respectively:

Vx = I(x, y) (7)

Wx =
1
|S|∑z∈S I(x, z). (8)

The MRMR function uses a heuristic technique to quantify the significance of a char-
acteristic and then generates a score. A high score value denotes the significance of the
associated predictor. A degree of trust in feature selection is also indicated by a decline
in the feature significance score. The score value of the second most essential attribute,
for instance, is significantly lower than the score value of x if the algorithm is confident
in choosing it. The results can be used to identify an ideal set S for a particular collection
of features.
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The features were ranked using the MRMR algorithm according to the following steps:
Step 1: Select the feature with the largest relevance, max

x∈Ω
Vx. Add the selected feature

to an empty set S.
Step 2: Find the features with nonzero relevance and zero redundancy in the comple-

ment of S, Sc.

• If Sc does not include a feature with nonzero relevance and zero redundancy, go to
step 4.

• Otherwise, select the feature with the largest relevance, max
x∈Sc ,Wx=0

Vx. Add the selected

feature to the set S.

Step 3: Repeat Step 2 until the redundancy is not zero for all features in Sc.
Step 4: Select the feature that has the largest MIQ value with nonzero relevance and

nonzero redundancy in Sc, and add the selected feature to the set S.

max
x∈Sc

MIQx = max
x∈Sc

I(x, y)
1
|S|∑z∈S I(x, z)

. (9)

Step 5: Repeat Step 4 until the relevance is zero for all features in Sc.
Step 6: Add the features with zero relevance to S in random order.
Feature selection using Neighborhood Component Analysis (NCA) [62] focuses on

learning a transformation matrix that preserves the discriminative information in the data
while reducing the dimensionality. By considering the local neighborhood relationships
between data points, NCA can identify the most informative features for the task at hand.
It is important to note that NCA assumes linearity in the data and may not capture complex
nonlinear relationships. Therefore, it is advisable to combine NCA with nonlinear dimen-
sionality reduction techniques or explore other feature selection methods for capturing
nonlinear feature interactions if needed. The NCA feature selection for regression can be
mathematically represented as follows [62]:

Given n observations S = {(xi, yi), i = 1, 2, . . . , n}, where the response values yi ∈ R
are continuous, the aim is to predict the response y given the training set S.

Consider a randomized regression model that:

• Randomly picks a point (Ref(x)) from S as the ‘reference point’ for x;
• Sets the response value at x equal to the response value of the reference point Ref(x).

Again, the probability P
(
Ref(x) = xj

∣∣S) that point xj is picked from S as the reference
point for x is

P
(
Ref(x) = xj

∣∣S) = k
(
dw

(
x, xj

))
∑n

j=1 k
(
dw

(
x, xj

)) (10)

Now consider the leave-one-out application of this randomized regression model, that
is, predicting the response for xi using the data in S−1 and the training set S excluding the
point (xi, yi). The probability that point xj is picked as the reference point for xi is

Pij = P(Ref(xi) = xj|S−1) =
k
(
dw

(
xi, xj

))
∑n

j=1,j ̸=i k
(
dw

(
xi, xj

)) (11)

Let ŷi be the response value that the randomized regression model predicts and yi
be the actual response for xi. And let l = R2 → R be a loss function that measures the
disagreement between ŷi and yi. Then, the average value of l(yi, ŷi) is

li = E(l(yi, ŷi)|S−i) =
n

∑
j=1,j ̸=i

Pijl
(
yi, yj

)
. (12)
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After adding the regularization term, the objective function for minimization is

f (w) =
1
n

n

∑
i=1

li + λ
p

∑
r=1

w2
r . (13)

The default loss function l
(
yi, yj

)
for NCA for regression is mean absolute deviation.

In this study, a combination of variable selection methods (F-tests, MRMR, and NCA)
was used to select the most significant input variables from an initial pool of 30 candi-
date inputs determined by PACF. To include all possible contributing variables affecting
the outputs, all variables selected by the individual variable selection approaches were
considered, while the common variables determined by all approaches were used only
once. Doing so eliminates the possibility of excluding any variables which might have
been deemed important to forecast the output. Using this combinatory variable selection
scheme, the possible number of candidate variables of the inputs for one-, two-, three-,
four-, and five-days-ahead forecast of Tmax at Barishal station were 26, 27, 26, 22, and
25, respectively. The number of candidate variables of the inputs for one-, two-, three-,
four-, and five-days-ahead forecast of Tmin at Barishal station were 21, 22, 24, 24, and 23,
respectively. Similarly, the possible number of candidate input variables for one-, two-,
three-, four-, and five-days-ahead forecast of Tmax at Gazipur station were 25, 26, 25, 24, and
25, respectively. The number of candidate input variables for one-, two-, three-, four-, and
five-days-ahead forecast of Tmin at Gazipur station were 26, 25, 26, 25, and 25, respectively.
Likewise, the possible number of candidate variables of the inputs for one-, two-, three-,
four-, and five-days-ahead forecast of Tmax at Ishurdi station were 23, 23, 26, 26, and 26, re-
spectively. The number of candidate variables of the inputs for one-, two-, three-, four-, and
five-days-ahead forecast of Tmin at Ishurdi station were 24, 28, 21, 23, and 21, respectively.

2.4. Model Development

The accuracy and robustness of any forecasting model largely depend on the right
selection of models and their forecasting accuracy. Forecasting models are developed
using training and testing of the state-of-the-art machine learning algorithms, the optimal
parameters of which were decided here based on parameters tuning using the Bayesian and
ASHA optimization algorithms. Training several models and finding their optimal parame-
ter sets through hyperparameter tuning can often be a challenging and time-consuming
task. This task was made easier and faster by developing and comparing multiple models
automatically through tuning their hyperparameters using optimization algorithms. In
this approach, instead of training each model with different sets of hyperparameters, we
selected a few different models and tuned their default hyperparameters using Bayesian
and ASHA optimizations. These optimization algorithms search for an optimal set of
hyperparameters for a particular model by minimizing the objective function of the model
(minimization of the mean squared error (MSE)). The optimization algorithms deliberately
selected new hyperparameters in each iteration, produced an optimal set of hyperparam-
eters for a given training dataset, and identified the model that performed best on a test
dataset. With the Bayesian and ASHA optimization algorithms, the function randomly
selected several models with various hyperparameter values and trained them on a small
subset of the training data. If the log (1 + valLoss) value for a particular model was found
promising, where valLoss is the cross-validation MSE, the model was promoted and trained
on a larger amount of the training data. This process was repeated, and successful models
were trained on progressively larger amounts of data. To reiterate, our proposed approach
executed the following three steps simultaneously in the model development process:

1. Data exploration and preprocessing: Identify variables with low predictive power
that should be eliminated.

2. Feature extraction and selection: Extract features automatically and—among a large
feature set—identify those with high predictive power.
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3. Model selection and tuning: Automatically tune model hyperparameters and identify
the best-performing model.

The flow diagram of the entire model building process can be illustrated as Figure 3.
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2.5. Hyperparameter Optimization

The majority of ML algorithms require a careful selection of hyperparameters [63]. The
choice of hyperparameter settings significantly impacts the performance of ML models [64],
and unconscious hyperparameter selection can result in low-performing models. Many
studies employed trial-and-error selection of hyperparameters [64,65], grid search, and/or
random search [66], while some employed heuristic optimization algorithms like particle
swarm optimization and genetic algorithms [66]. Nevertheless, a precise and effective
automated hyperparameter optimization method is highly desirable [64] and is essential for
ensuring a fair comparison across ML alternatives. Furthermore, when evaluating various
ML models, fair assessments can only be made if they are equally optimized (or receive the
same level of attention) for the specific task at hand.

Bayesian optimization and asynchronous successive halving algorithm (ASHA) are
advanced optimization techniques that are employed to automate and enhance the ef-
ficiency of model selection processes. In Bayesian optimization, a probabilistic model
is iteratively updated to capture the relationship between model hyperparameters and
performance, guiding the search toward promising regions of the parameter space. This
process allows for intelligent and resource-efficient exploration, especially in scenarios with
limited computational resources. On the other hand, ASHA introduces an asynchronous
approach to hyperparameter optimization, enabling parallel evaluations and efficient re-
source utilization. By continually pruning underperforming models, ASHA converges to
optimal hyperparameter configurations. ASHA is particularly beneficial in scenarios with
limited computational resources or asynchronous evaluations. It employs a successive
halving strategy to efficiently allocate resources to promising configurations, eliminating
less favorable ones. Both Bayesian optimization and ASHA contribute significantly to
automating the selection of suitable models, particularly in the context of temperature fore-
casting, where manual selection can be time-consuming and subjective. The combination
of these algorithms in this study represents a novel and valuable contribution to the field,
showcasing their effectiveness in optimizing hyperparameters and improving the overall
accuracy of temperature prediction models.

A state-of-the-art approach for both global and local hyperparameter optimization is
known as Bayesian optimization (BO) [37]. BO has been shown to outperform alternative
methods like grid search and random search on various challenging optimization bench-
marks [66]. In the quest for discovering the best hyperparameters, BO often surpasses
the abilities of domain experts [67]. BO is versatile and applicable to a wide range of
problem scenarios, accommodating both integer and real-valued hyperparameters. BO
relies on the selection of a prior function and an acquisition function. The acquisition
function, typically employing Expected Improvement (EI), works in conjunction with a
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Gaussian process prior [37]. The choice of covariance function, particularly the use of the
Matern52 kernel, is crucial In determining the effectiveness of Gaussian processes [37].
With respect to x in a bounded domain, the BO algorithm process seeks to minimize a scalar
objective function, f (x). Depending on whether the function is stochastic or deterministic,
it may yield different results when evaluated at the same point x. The variable x can have
continuous real values, integers, or categorical components, referring to a discrete set of
names. The key components in the minimization process include [68]:

• A Gaussian process model of f (x ).
• A Bayesian update procedure for modifying the Gaussian process model at each new

evaluation of f (x).
• An acquisition function a(x) (based on the Gaussian process model of f ) that is

maximized to determine the next point x for evaluation.

The ASHA [38] optimization algorithm is an upgraded variant of the successive
halving algorithm (SHA) [69,70]. ASHA is a user-friendly hyperparameter optimization
technique that leverages aggressive early stopping and is particularly suited for tackling
large-scale hyperparameter optimization problems [38]. It has demonstrated superior
performance on a workload employing 500 workers, exhibits linear scalability with the
number of workers in distributed environments, and is well-suited for tasks involving
substantial parallelism [38]. An advantage of ASHA is that the user does not need to
specify in advance how many configurations they want to evaluate, because it operates
asynchronously. However, it still requires the same inputs as SHA. A comprehensive
explanation of ASHA can be found in the original work by Li et al. [38] and is not repeated
in this effort.

To the best of the authors’ knowledge, this is the first instance of the Bayesian and
ASHA optimization algorithms being employed to tune the hyperparameters of multiple
ML algorithms to automatically select the best model for forecasting multi-step-ahead daily
Tmax and Tmin. In this study, forecasting models were developed by fine-tuning hyperpa-
rameters of seven widely utilized ML algorithms, aiming to identify the optimal model for
forecasting daily Tmax and Tmin. Table 2 outlines the candidate ML algorithms and their
adjustable hyperparameters. The hyperparameters were tuned using both the Bayesian and
ASHA optimization algorithms, and a comparison was performed with respect to training
time and accuracy. The best model was selected based on its ability to yield the lowest
training and test errors, employing either the Bayesian or ASHA optimization algorithms.

Table 2. Machine learning algorithms and their tunable hyperparameters.

Machine Learning Algorithm Hyperparameters

Ensemble Regression (ER) Model

Method (least-squares boosting, bootstrap aggregation), number of
ensemble learning cycles, learning rate for shrinkage, minimum
number of leaf node observations, maximal number of decision
splits, number of predictors to select at random for each split

Gaussian Process Regression (GPR) Model Sigma, basis function, kernel function, kernel scale, kernel
parameters, standardization

Kernel Regression (KR) Model Epsilon, kernel scale, Lambda, learner, number of dimensions of
expanded space

Linear Regression (LR) Model for High-Dimensional Data Lambda, learner, regularization

Artificial Neural Network (ANN) Model Activations, Lambda, layer sizes, standardization, layer bias
initializer, layer weight initializer

Support Vector Machine (SVM) Regression Model Box constraint, Epsilon, kernel scale, kernel function, polynomial
order, standardization

Binary Decision Regression Tree (BDRT) Minimum number of leaf node observations, maximal number of
decision splits
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Forecasting models were developed for one-, two-, three-, four-, and five-days-ahead
forecasting of daily Tmax and Tmin using data from three weather stations. Consequently, a
total of 30 forecasting models were chosen by applying Bayesian and ASHA optimization
techniques. Each training dataset, consisting of input–output pairs, was divided into a
training set, containing 80% of the data, and a test set, containing the remaining 20%.
To enhance computational efficiency, both algorithm runs were executed in the parallel
computing environment of MATLAB (MATLAB, 2021a).

2.6. Statistical Indices for Performance Evaluation

The following statistical indices were used to evaluate the performances of the de-
veloped temperature forecast models. The accuracy index is an evaluation metric that
compares the proportion of accurate forecasts made by a model to all forecasts made. The
higher the accuracy score is, the better the model performance will be. The ideal value
of accuracy is 1.0. The correlation coefficient, R, denotes the strength of linear regression
between the observed and forecasted values; however, for this linear relationship, the
highest possible value (ideal) of R = 1.0 can be obtained despite the fact that the slope and
ordinate intercept are different from 1.0 and 0, respectively [53]. Therefore, other indices
need to be used to justify the model performance. A normalized/dimensionless measure
of residual variance, Nash–Sutcliffe Efficiency Coefficient (NS) metric, is calculated by
dividing residual variance by variance of observed dataset. NS ≤ 0.4, 0.40 < NS ≤ 0.50,
0.50 < NS ≤ 0.65, 0.65 < NS ≤ 0.75, and 0.75 < NS ≤ 1.00 are categories that are labeled as
unsatisfactory, acceptable, satisfactory, good, and exceptionally good, respectively [71,72].
Willmott’s Index of Agreement (IOA) [73] is able to detect additive and proportional differ-
ences in the observed and model-forecasted means and variances. The IOA usually ranges
from −1 to +1, with higher values indicating greater model performance. Nevertheless,
the IOA is often overly sensitive to extreme values due to the squared differences [74].
The Kling Gupta Efficiency (KGE) [75,76], which combines the three components of model
errors (i.e., correlation, bias, and ratio of variances or coefficients of variation) in a more
balanced way, has been widely used for evaluating the prediction ability of models in
recent years.

Generally, the RMSE criterion measures the error of the model. A lower value of RMSE
indicates a higher forecasting power of the model. However, the value of RMSE largely
depends on the magnitude of the data, and therefore, a lower value of RMSE does not
necessarily mean a better forecasting performance. To overcome this issue, the NRMSE
criterion was used to eliminate the dimensionality effect of the data. Model performance is
said to be excellent when NRMSE is less than 0.1, good when NRMSE is between 0.1 and 0.2,
fair when NRMSE is between 0.2 and 0.3, and poor when NRMSE is greater than 0.3 [77,78].
The Mean Absolute Percentage Relative Error (MAPRE) is the most common measure used
to evaluate a model’s prediction performance, probably because the variable’s units are
scaled to percentage units, which makes it easier to understand. It works best if there are
no extremes to the data (and no zeros). It is often used as a loss function in regression
analysis and model evaluation. Median Absolute Deviation (MAD) is a resistant measure
of variability, as it relies on the median as the estimate of the center of the distribution
and on the absolute difference rather than the squared difference. Because the MAD is
the median deviation of scores from the overall median, not all observations are equally
weighted in this measure of dispersion. The clear advantage of MAD is the avoidance
of influence by outliers. However, it has its own problems: if the distribution is actually
normal, there is a loss of efficiency, in that it does not make as much use of the information
as what is available in the data [79]. The MBE criterion provides an estimation of whether
the developed model systematically under- or over-predicts the actual values. The MBE is
usually not used as a measure of the model error, as high individual errors in prediction can
also produce a low MBE. MBE is primarily used to estimate the average bias in the model
and to decide if any steps need to be taken to correct the model bias [80]. The Percentage
Bias (PBIAS) measures the average tendency of the simulated values to be larger or smaller
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than their observed ones. The optimal value of PBIAS is 0.0, with low-magnitude values
indicating accurate model simulation. Positive values indicate overestimation bias, whereas
negative values indicate model underestimation bias.

Accuracy [81]:

Acc = 1 − abs
(

mean
Ti,P − Ti,S

Ti,S

)
(14)

Correlation coefficient (R) [82]:

R =
∑n

i=1

(
TA

i − TA
)(

TA
i − TP

)
√

∑n
i=1

(
TA

i − TA
)2

√
∑n

i=1

(
TP

i − TP
)2

(15)

Nash–Sutcliffe Efficiency Coefficient (NS) [83]:

NS = 1 − ∑n
i=1

(
TA

i − TP
i
)2

∑n
i=1

(
TA

i − TA
)2 (16)

Willmott’s Index of Agreement (IOA) [73]:

d = 1 − ∑n
i=1

(
TA

i − TP
i
)2

∑n
i=1

(∣∣∣TP
i − TA

∣∣∣∣∣∣TA
i − TA

∣∣∣)2 (17)

Kling–Gupta Efficiency (KGE) [75,76]:

KGE = 1 − ED = 1 −
√
(R − 1)2 + (∝ −1)2 + (β − 1)2 (18)

∝=

√
1
n ∑n

i=1
(
Ti,P − TP

)2√
1
n ∑n

i=1
(
Ti,S − TS

)2
(19)

β =
1
n ∑n

i=1 Ti,P
1
n ∑n

i=1 Ti,S
(20)

Root mean squared error (RMSE) [74]:

RMSE =

√
1
n ∑n

i=1
(
TA

i − TP
i
)2

TA
(21)

Normalized RMSE [84]:

NRMSE =
RMSE

TA
(22)

Mean Absolute Percentage Relative Error (MAPRE) (MAPE, n.d.):

MAPRE =
1
n

n

∑
i=1

∣∣∣∣Ti,S − Ti,P

Ti,S

∣∣∣∣× 100 (23)

Median Absolute Deviation (MAD) [85]:

MAD
(
TA

i , TP
i
)
= median

(∣∣TA
1 − TP

1

∣∣, ∣∣TA
2 − TP

2

∣∣, . . . ,
∣∣TA

n − TP
n
∣∣)

f or i = 1, 2, . . . , n
(24)
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Mean Bias Error (MBE) [86]:

MBE =
1
n

n

∑
i=1

(Ti,P − Ti,S) (25)

Percentage Bias (PBIAS) [87,88]:

PBIAS =
∑n

i−1(Ti,P − Ti,S)

∑n
i=1 Ti,S

× 100 (26)

where TA
i and TP

i are the observed and forecasted T (Tmax & Tmin) for the ith data point in
the daily maximum and minimum temperature dataset, respectively; TA and TP are the
means of the observed and forecasted T (Tmax & Tmin), respectively; and n represents the
total number of entries in the dataset.

3. Results and Discussion

A range of statistical performance evaluation indices, as discussed in the previous
section, were employed to assess the performance of the various forecasting models. In the
subsequent paragraphs, the performances of the identified top-performing models on the
test dataset (selected based on their performance on both the training and test datasets) for
the five forecasting horizons at the three stations are presented.

Table 3 provides a comparison of the best models that were selected by the Bayesian
and ASHA optimization algorithms, considering log(1 + valLoss) values and training time
for multi-step-ahead Tmax forecasting. As can be observed from the log(1 + valLoss) value
presented in Table 3, the Bayesian optimization algorithm generally outperformed the
ASHA algorithm in selecting the best model. However, in terms of training time, the ASHA
algorithm demonstrated faster convergence in finding the optimal model parameters com-
pared to the Bayesian algorithm. However, while the ASHA algorithm showed competitive
performance in terms of training time, the Bayesian algorithm also achieved convergence
within acceptable time limits. Therefore, in cases where training time is not a critical factor,
the Bayesian optimization can be used to find optimal model parameters for selecting the
best models for a specific task. On the other hand, when training time is a more important
consideration than model accuracy, the ASHA optimization algorithm is advisable. Notably,
there were instances where the ASHA algorithm outperformed the Bayesian algorithm in
both log(1 + valLoss) and training time, such as for the one-step-ahead Tmax forecast at
Barishal station and four-step-ahead Tmax forecast at Ishurdi station. In cases where the
Bayesian algorithm showed superior performance based on log(1 + valLoss) values, the
differences were not substantial, while there was a significant difference in training times
between the two algorithms.

Table 4 presents the training and test performance results of the Bayesian and ASHA
algorithm-tuned forecast models for maximum temperatures (Tmax) at the weather stations.
At this stage, the final models were selected based on the RMSE criterion: the best models
were those producing the lowest difference between the training and test RMSE values. This
ensures that the selected best models were neither over-trained nor under-trained. The data
in Table 4 reveal that the ASHA algorithm-tuned best models produced the lowest difference
between the training and test RMSE values in most instances (forecasting horizons and
weather stations) for forecasting Tmax values. Although the Bayesian algorithm required a
longer time to converge to optimal solutions for selecting the best models, it excelled in
three specific instances: the one-day- and five-days-ahead Tmax forecast at Barishal station,
and the three-days-ahead Tmax forecast at Gazipur station (as indicated in Table 4). A
complete list of the selected top-performing models can be found in Table 7.
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Table 3. Comparison of the Bayesian and ASHA optimization algorithm-tuned best models for
forecasting maximum temperatures (Tmax) at the weather stations. Boldface indicates models with
lowest log (1 + valLoss) values.

Forecast
Horizon

Weather
Station

Bayesian Optimization ASHA Optimization

Model Error (log (1 + valLoss))
(◦C)

Training Time
(s) Model Error (log (1 + valLoss))

(◦C)
Training Time

(s)

One
Barishal GPR 1.533 7609 GPR 1.529 525
Gazipur Ensemble 1.565 13,480 Ensemble 1.568 1249
Ishurdi Ensemble 1.415 4015 GPR 1.552 56

Two
Barishal GPR 1.733 6547 GPR 1.803 408
Gazipur GPR 1.777 12,787 Ensemble 1.782 1865
Ishurdi GPR 1.605 4774 GPR 1.648 99

Three
Barishal GPR 1.854 6803 GPR 1.904 225
Gazipur Ensemble 1.864 15,197 Ensemble 1.875 805
Ishurdi GPR 1.681 4458 Ensemble 1.730 47

Four
Barishal GPR 1.913 1277 GPR 1.919 139
Gazipur GPR 1.899 19,626 GPR 1.920 1242
Ishurdi GPR 1.729 4023 GPR 1.709 136

Five
Barishal GPR 1.946 7056 GPR 1.949 474
Gazipur GPR 1.936 6553 GPR 1.957 1512
Ishurdi GPR 1.727 4022 GPR 1.845 169

valLoss is the cross-validation MSE, GPR is the Gaussian Process Regression model, and Ensemble is the Ensemble
Regression model (Ensemble of Regression Trees).

Table 4. Comparison of the training and testing performance of the Bayesian and ASHA optimization-
tuned best models to forecast maximum temperatures (Tmax) at the weather stations. Boldface
indicates lowest difference between the training and test RMSE values.

Weather
Station

Forecasting
Horizon

Bayesian Optimization ASHA Optimization

Model Train RMSE
(◦C)

Test RMSE
(◦C) Model Train RMSE

(◦C)
Test RMSE

(◦C)

Barishal

One GPR 1.6121 1.9047 GPR 0.0007 1.8889
Two GPR 0.0006 2.3676 GPR 0.0150 2.3149

Three GPR 0.0515 2.5895 GPR 0.4022 2.6621
Four GPR 0.0006 2.7271 GPR 0.0006 2.6808
Five GPR 0.0021 2.8052 GPR 0.0006 2.7171

Gazipur

One Ensemble 1.3922 1.9439 Ensemble 1.8540 1.9448
Two GPR 0.0007 2.2239 Ensemble 1.3929 2.2227

Three Ensemble 1.7047 2.3472 Ensemble 1.6146 2.3694
Four GPR 0.0006 2.4826 GPR 2.1699 2.4381
Five GPR 0.0007 2.4981 GPR 0.0012 2.4543

Ishurdi

One Ensemble 0.9925 5.3209 GPR 0.0011 2.1540
Two GPR 0.0008 1.9553 GPR 0.0006 1.9039

Three GPR 0.1543 2.1110 Ensemble 1.6768 2.1259
Four GPR 0.0006 2.1952 GPR 0.0006 2.1799
Five GPR 0.0011 2.2693 GPR 0.0273 2.2214

GPR is the Gaussian Process Regression model, and Ensemble is the Ensemble Regression model (Ensemble of
Regression Trees).

Table 5 provides a comparative performance evaluation of the Bayesian and ASHA
algorithm-tuned best models for forecasting Tmin at the weather stations, based on log
(1 + valLoss) values and training time requirements.



Agriculture 2024, 14, 278 19 of 30

Table 5. Comparison of the Bayesian and ASHA optimization algorithm-tuned best models for
forecasting minimum temperatures (Tmin) at the weather stations. Boldface indicates models with
lowest log (1 + valLoss) values.

Forecast
Horizon

Weather
Station

Bayesian Optimization ASHA Optimization

Model Error (log (1 + valLoss))
(◦C)

Training Time
(s) Model Error (log (1 + valLoss))

(◦C)
Training Time

(s)

One
Barishal GPR 1.024 6234 GPR 1.040 368
Gazipur Ensemble 1.367 11,467 GPR 1.385 978
Ishurdi Ensemble 1.440 4476 LR 1.4505 91

Two
Barishal GPR 1.262 7501 GPR 1.236 395
Gazipur GPR 1.576 12,662 GPR 1.582 1728
Ishurdi GPR 1.650 4297 Ensemble 1.732 95

Three
Barishal GPR 1.309 7376 GPR 1.409 418
Gazipur GPR 1.675 16,816 GPR 1.712 1121
Ishurdi GPR 1.724 3824 Ensemble 1.893 41

Four
Barishal GPR 1.342 8320 GPR 1.511 388
Gazipur GPR 1.729 17,931 GPR 1.745 1176
Ishurdi GPR 1.815 4494 Ensemble 1.957 48

Five
Barishal GPR 1.361 6991 GPR 1.428 315
Gazipur GPR 1.780 27,554 GPR 1.824 1021
Ishurdi GPR 1.876 4056 GPR 2.031 22

valLoss is the cross-validation MSE, GPR is the Gaussian Process Regression model, Ensemble is the Ensemble
Regression model (Ensemble of Regression Trees), and LR is the linear regression model for high-dimensional data.

The results in Table 5 reveal that, in terms of log (1 + valLoss) values, the Bayesian
algorithm-tuned best models outperformed the ASHA algorithm-tuned models in all
instances except for the two-days-ahead forecast at the Gazipur station, where the ASHA
algorithm-tuned GPR model was found to be the top-performing best model. Moreover,
the ASHA algorithm-tuned models exhibited faster convergence to optimal solutions for
parameter values in comparison to the Bayesian algorithm-tuned models in all instances.
Additionally, the differences between the training errors (log (1 + valLoss)) produced by
the Bayesian and ASHA algorithms for selecting the best models were relatively small for
all instances. In summary, when computational time is not a limiting factor, the Bayesian
algorithm is a suitable choice for searching for the best models (Table 5). However, it is
essential to carefully evaluate the differences between the training and test errors of the
best models that are produced by the Bayesian and ASHA algorithms before making a
definitive decision on model selection.

The comparison of the training and testing performance between the Bayesian and
ASHA optimization-tuned best models for forecasting Tmin at the weather stations, as
assessed by the RMSE criterion, is presented in Table 6. It is evident from Table 6 that
both the Bayesian and ASHA algorithms exhibited similar performance in selecting the
top-performing best models across all forecasting horizons and at all weather stations. The
Bayesian algorithm outperformed in seven instances, while the ASHA algorithm provided
top-performing forecast models in eight instances based on the lowest differences between
the training and test RMSE values (Table 6). Overall, the selected top-performing best
models demonstrated acceptable results according to the RMSE criterion. However, further
validation of the forecasting performance of the selected models is required by computing
other performance evaluation indices on the test dataset. A comprehensive performance
evaluation of the selected top-performing models based on several statistical indices can be
found in Table 8 and Table 9 and Figures 3 and 4.
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Table 6. Comparison of the training and testing performance of the Bayesian and ASHA optimization-
tuned best models to forecast minimum temperatures (Tmin) at the weather stations. Boldface
indicates lowest difference between the training and test RMSE values.

Weather
Station

Forecasting
Horizon

Bayesian Optimization ASHA Optimization

Model Train RMSE
(◦C)

Test RMSE
(◦C) Model Train RMSE

(◦C)
Test RMSE

(◦C)

Barishal

One GPR 1.3076 1.3847 GPR 0.0222 1.4450
Two GPR 0.0019 1.9051 GPR 0.0027 1.8921

Three GPR 0.1117 2.0781 GPR 0.0015 2.0474
Four GPR 0.0020 2.1936 GPR 1.8208 2.1215
Five GPR 0.0758 2.3109 GPR 0.0014 2.2469

Gazipur

One Ensemble 1.7095 1.6419 GPR 0.0034 1.7077
Two GPR 1.3417 1.9519 GPR 0.0016 1.9545

Three GPR 0.9798 2.1314 GPR 0.0806 2.1278
Four GPR 0.0018 2.2215 GPR 0.0021 2.2187
Five GPR 0.0021 2.2384 GPR 0.0025 2.2151

Ishurdi

One Ensemble 1.4851 1.6217 Linear R 1.7632 1.6510
Two GPR 0.0018 1.8667 Ensemble 1.5328 1.8879

Three GPR 0.0510 2.0699 Ensemble 1.2474 2.0755
Four GPR 0.0015 2.2289 Ensemble 2.0323 2.2240
Five GPR 0.0015 2.2337 GPR 1.1369 2.2228

GPR is the Gaussian Process Regression model, and Ensemble is the Ensemble Regression model (Ensemble of
Regression Trees).
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tures (Tmax) under various forecast horizons at the weather stations.

The complete list of the selected best models for different weather stations under five
forecasting horizons, based on log (1 + valLoss), RMSE, training time, and differences
between the training and test RMSE (as presented in Tables 3–6), is provided in Table 7.
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Table 7. Selected best models at different weather stations under the five forecasting horizons.

Forecast Horizon
Weather Stations

Barishal Gazipur Ishurdi

Tmax
One Bayesian-GPR ASHA-Ensemble ASHA-GPR
Two ASHA-GPR ASHA-Ensemble ASHA-GPR

Three ASHA-GPR Bayesian-Ensemble ASHA-Ensemble
Four ASHA-GPR ASHA-GPR ASHA-GPR
Five Bayesian-GPR ASHA-GPR ASHA-GPR

Tmin
One Bayesian-GPR Bayesian-Ensemble Bayesian-Ensemble
Two ASHA-GPR Bayesian-GPR ASHA-Ensemble

Three Bayesian-GPR Bayesian-GPR ASHA -Ensemble
Four ASHA-GPR ASHA-GPR ASHA -Ensemble
Five Bayesian-GPR ASHA-GPR Bayesian-Ensemble

Bayesian-GPR is the Bayesian optimization algorithm-tuned Gaussian Process Regression model, ASHA-GPR is
the asynchronous successive halving algorithm-tuned Gaussian Process Regression model, Bayesian-Ensemble is
the Bayesian optimization algorithm-tuned Ensemble Regression model (Ensemble of Regression Trees), ASHA-
Ensemble is the asynchronous successive halving algorithm-tuned Ensemble Regression model (Ensemble of
Regression Trees).

Following the selection of the best-performing models, they were utilized to forecast
multi-step-ahead Tmax and Tmin values on the test dataset at the respective weather stations.
To evaluate the forecasting performance, various statistical performance indices were
computed and are presented in Tables 8 and 9. Additionally, the results are visualized in
Figures 3 and 4.

Table 8. Performance of the best models on test dataset to forecast maximum temperatures (Tmax)
under various forecast horizons at the weather stations.

Forecast
Horizon

Performance Indicators

RMSE (◦C) NRMSE MAPRE (%) MAD (◦C) MBE (◦C) PBIAS (%)

Barishal
One 1.905 0.064 5.091 0.702 0.006 0.021
Two 2.315 0.078 6.361 0.899 0.090 0.303

Three 2.662 0.089 7.318 1.029 −0.030 −0.102
Four 2.681 0.090 7.512 1.030 0.231 0.774
Five 2.805 0.094 7.954 1.070 0.208 0.696

Gazipur
One 1.945 0.062 4.737 0.634 −0.072 −0.230
Two 2.223 0.071 5.752 0.811 −0.152 −0.490

Three 2.347 0.075 6.116 0.865 −0.179 −0.575
Four 2.438 0.078 6.397 0.859 −0.101 −0.326
Five 2.454 0.079 6.468 0.897 −0.104 −0.336

Ishurdi
One 2.154 0.069 5.379 0.817 −0.173 −0.726
Two 1.904 0.061 4.728 0.693 −0.079 −0.333

Three 2.126 0.068 5.246 0.783 −0.180 −0.756
Four 2.180 0.070 5.398 0.833 −0.105 −0.441
Five 2.221 0.071 5.426 0.820 −0.141 −0.591

RMSE is the root mean squared error, NRMSE is the normalized RMSE, MAPRE is the Mean Absolute Per-
centage Relative Error, MAD is the Median Absolute Deviation, MBE is the Mean Bias Error, and PBIAS is the
Percentage Bias.
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Table 9. Performance of the best models on test dataset to forecast minimum temperatures (Tmin)
under various forecast horizons at the weather stations.

Forecast
Horizon

Performance Indicators

RMSE (◦C) NRMSE MAPRE (%) MAD (◦C) MBE (◦C) PBIAS (%)

Barishal
One 1.385 0.068 5.168 0.383 −0.046 −0.223
Two 1.892 0.092 7.953 0.688 0.016 0.076

Three 2.078 0.101 8.857 0.834 −0.052 −0.255
Four 2.122 0.103 9.206 0.915 −0.102 −0.498
Five 2.311 0.112 10.006 0.971 −0.049 −0.240

Gazipur
One 1.642 0.078 7.081 0.505 −0.018 −0.084
Two 1.952 0.093 8.688 0.643 −0.080 −0.379

Three 2.131 0.101 9.725 0.727 −0.044 −0.209
Four 2.219 0.106 10.128 0.831 −0.035 −0.166
Five 2.215 0.105 10.221 0.876 −0.018 −0.086

Ishurdi
One 1.622 0.074 5.905 0.520 −0.014 −0.082
Two 1.888 0.086 7.169 0.661 −0.036 −0.218

Three 2.076 0.095 7.835 0.699 −0.068 −0.411
Four 2.224 0.102 8.234 0.667 −0.048 −0.288
Five 2.234 0.102 8.398 0.736 −0.095 −0.572

RMSE is the root mean squared error, NRMSE is the normalized RMSE, MAPRE is the Mean Absolute Per-
centage Relative Error, MAD is the Median Absolute Deviation, MBE is the Mean Bias Error, and PBIAS is the
Percentage Bias.

Table 8 presents a comprehensive overview of the performance of the best models
in forecasting Tmax under five different forecast horizons at the weather stations. It can
be observed from Table 8 that the selected models consistently produced lower values of
various performance metrics such as RMSE, NRMSE, MAPRE, MAD, MBE, and PBIAS.
This indicates that the models have demonstrated improved accuracy in forecasting Tmax.
It is also inferred from the results presented in Table 8 that the forecasting performance
slightly decreased with an increase in the forecast horizon. This observation aligns with
prior findings reported in studies by Rahman et al. [42] and Barzegar et al. [89], which
indicated that ML-based forecast models tend to exhibit reduced accuracy as the forecast
horizon extends further into the future. The RMSE values were pretty small for all selected
models across the weather stations. Small RMSE values generally indicate that the models’
predictions are closely aligned with the actual observations, suggesting a high level of
accuracy in the forecasts. The NRMSE values were consistently less than 0.1 for all instances.
An NRMSE below 0.1 is considered excellent performance in forecasting, as it indicates that
the forecasted values are very close to the actual values [77,78]. The MAPRE values are also
within acceptable ranges. For Barishal, Gzipur, and Ishurdi stations, the MAPRE values
were below 8% (ranging from 5.091% to 7.954% for different forecast horizons), 7% (ranging
from 4.737% to 6.468% for different forecast horizons), and 6% (ranging from 4.728% to
5.426% for different forecast horizons), respectively, depending on the forecast horizons.
Since a MAPRE value below 10% is deemed acceptable for ML-based forecast models [90],
these results suggest that the selected models are producing forecasts that meet or exceed
acceptable standards. In summary, these performance indices demonstrate that the selected
best forecast models are capable of producing accurate and reliable forecasts for Tmax values
at the weather stations, as evidenced by their small RMSE and NRMSE values, as well as
MAPRE values that are well within the acceptable range.

The MAD values are also reported as being acceptable for all models. These values
ranged from 0.634 ◦C for a one-day-ahead forecast at Gazipur station to 1.070 ◦C for a
five-days-ahead forecast at Barishal station. The lower the MAD is, the closer the forecasts
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are to the actual values, indicating accurate model forecasts. Additionally, the models
produced smaller values of MBE and PBIAS, which were pretty close to the optimal
value of 0.0. MBE quantifies the average bias (overestimation or underestimation) in the
forecasts, while PBIAS provides a measure of the Percentage Bias. The models produced
low-magnitude values of both MBE and PBIAS, indicating that they are making reasonably
accurate forecasts. Some models show negative MBE and PBIAS values, indicating a slight
underestimation bias, particularly for Gazipur and Ishurdi stations and for three-days-
ahead forecasts at Barishal station. On the other hand, positive MBE and PBIAS values
are observed for one-day-, two-days-, four-days-, and five-days-ahead Tmax forecasts at
the Barishal station, suggesting a slight overestimation bias (Table 8). These biases are
of smaller magnitude, indicating that the models tend to slightly under-predict or over-
predict temperature values, but the deviations from the actual values are not substantial.
In summary, the forecast models are delivering forecasts with acceptable levels of accuracy,
as indicated by the MAD, MBE, and PBIAS values. While some models exhibit slight
underestimation or overestimation biases, these biases are relatively small, and the forecasts
are still considered accurate. These results provide confidence in the performance of the
selected forecast models.

Table 9 presents a comprehensive assessment of the performance of the top-performing
models for forecasting Tmin values under the five forecast horizons at the weather stations.
It can be seen from Table 9 that the overall forecasting performances of the models are
acceptable, although the models showed slightly poor performance with respect to the
computed RMSE, NRMSE, and MAPRE values when compared to the forecasting of Tmax
(Table 8). Nevertheless, the models produced lower RMSE values (Table 9). The computed
NRMSE criterion suggests that the model performances were excellent (NRMSE < 0.1)
to good (NRMSE values slightly higher than 0.1, i.e., NRMSE > 0.1 and NRMSE < 0.2)
according to the ranges reported in Heinemann et al. [77] and Li et al. [78]. On the other
hand, the models produced lower MAD, MBE, and PBIS values compared to those for
the models developed for forecasting Tmax (Tables 8 and 9). It is noted that the computed
MBE and PBIAS values were pretty close to the ideal value of 0.0. According to the
MBE criterion, the models produced very small amounts of underestimated biases, as
indicated by the negative MBE values for all forecasting horizons and at all weather
stations (Table 9). Similarly, the PBIAS criterion also suggests that mostly underestimated
biases existed, except for the model developed to forecast Tmin for two-step-ahead at the
Barishal weather station.

The findings are reported in the form of bar diagrams, especially to demonstrate the
model performance based on some other statistical performance indices. Figures 4 and 5
illustrate the models’ performance with respect to accuracy, R, NS, IOA, and KGE criteria.
These performance indices are referred to as benefit indices, because higher values of these
indices indicate improved model performance. Figure 4 shows the performance of the
best models on the test dataset when forecasting Tmax across different forecast horizons
at the respective weather stations. This visual representation allows for a quick and easy
assessment of how well the models are performing and how their performance varies with
different lead times (forecast horizons).

Figure 4 reveals important insights into the performance of the best models for fore-
casting Tmax under different forecast horizons at the weather stations. It is perceived from
Figure 4 that the best models consistently demonstrate excellent performance with regard to
the accuracy and IOA criteria, where accuracy values are close to 1, and IOA values exceed
0.8 for all forecast horizons. This indicates that the models produce forecasts that closely
align with observed data and show a strong agreement with the reference measurements.
Notably, the accuracy criterion does not exhibit a decreasing trend with an increase in the
forecast horizon. In other words, the models maintain high accuracy regardless of the lead
time. This is a positive finding, suggesting that the models are reliable for both short-term
and longer-term forecasts. However, the R, NS, IOA, and KGE values indicate that the
model performance is indeed influenced by the forecast horizon. These indices suggest that
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the forecasting performance tends to decrease as the forecast horizon increases, which is
consistent with prior research [42,89]. R values are higher than 0.8 for the first and second
forecast horizons (one- and two-step-ahead forecasts) at all weather stations. However, a
decrease in R values is observed as the forecast horizon extends, with the lowest R value
(0.771) occurring at the fifth forecast horizon for the Ishurdi station. In general, model
performances were relatively poor with respect to the NS and KGE criteria (Figure 4). The
findings of this research is in good agreement with the findings presented in Müller and
Piché [91], who stated that ML-based models often showed contrasting performance with
respect to different performance evaluation indices. These findings collectively suggest
that the models are especially well suited for shorter-term forecasts, but they still provide
valuable forecasts for longer lead times, albeit with slightly reduced performance.
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In order to forecast Tmin at the weather stations over a range of forecast horizons, the
best models were tested against the test dataset. The findings are presented in Figure 5,
which shows the performance of the best models for forecasting Tmin under various forecast
horizons at the weather stations. Figure 5 suggests that the selected top models performed
exceptionally well for all forecast horizons and at all the weather stations. This is partic-
ularly evident from the accuracy and IOA values, which consistently exceed 0.95. Such
high accuracy and IOA values indicate excellent model performance, suggesting that the
models generate forecasts that closely match the observed data. Similar to the Tmax forecast,
the accuracy of the models remains high across different forecast horizons, with accuracy
values close to 1. This indicates that the models maintain their high forecasting accuracy
regardless of the lead time. Contrary to accuracy, other performance evaluation indices,
including NS, IOA, and KGE, display a diminishing trend as the prediction horizon is
extended. This is in line with the common observation that the forecasting performance
tends to decrease as the forecast horizon increases, which aligns with the results observed
for Tmax forecasting. It is important to note that the R values appear to be consistent across
all weather stations. These values are high, exceeding 0.90, indicating a strong correlation
between the model forecasts and the observed data. In general, the best models appeared
to perform better across all forecast horizons based on the R (>0.90), NS (>0.81), and KGE
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(>0.87) criterion values. Overall, the findings from Figure 5 suggest that the selected models
perform remarkably well in forecasting Tmin over various forecast horizons and at different
weather stations. The models exhibit high accuracy, strong correlations, and consistent
performance across forecast horizons, even though other indices show a slight decrease
with an increasing forecast lead time.

In a comparative context, the results for Tmin forecasting seem to outperform those for
Tmax forecasting. This improvement in Tmin forecasting performance might be attributed to
the quality and volume of the collected data. High-quality and abundant data often lead to
more accurate forecasts.

While direct comparisons among the results presented in this research are hindered by
the diverse study conditions and modeling approaches employed, an indirect evaluation
was conducted by contrasting the computed performance indices in this study with those
in previous research. For one-day-ahead minimum temperature forecasts, R2 values of
0.939, 0.911, and 0.901 were achieved across the Barishal, Gazipur, and Ishurdi stations,
respectively. Conversely, for one-day-ahead maximum temperature forecasts, R2 values
of 0.819, 0.764, and 0.633 were obtained for the same stations. These results surpass the
outcomes of previous studies utilizing CNN (~0.5), LSTM (~0.6), and CNN-LSTM (~0.7)
for one-day-ahead temperature forecasts [33].

Moreover, our findings compare favorably or even outperform those of Ebtehaz et al. [27],
who utilized IORELM for 10 h ahead temperature forecasts (R = 0.95, NSE = 0.89, RMSE = 3.74,
MAE = 1.92). Our best models yielded RMSE values of approximately 2.0 ◦C and 1.5 ◦C for
one-day-ahead maximum and minimum temperature forecasts, respectively. The detailed
statistical performance indices for the proposed best models are provided in Figures 4 and 5,
as well as in Tables 8 and 9.

Furthermore, our research outcomes stand up well against those of Fister et al. [29],
focusing on the temperature dataset of the Paris region. Our proposed best model exhibited
superior performance compared to Lasso Regression, Decision Tree, Adaboost, RF, and
CNN in terms of MSE values. Alomar et al. [17] identified the SVR model as the top
performer for daily temperature forecasting, achieving an RMSE value of 3.592 ◦C, which is
higher than the RMSE values produced by our proposed best models for both minimum and
maximum temperature forecasts across the three weather stations (refer to Tables 8 and 9).

In terms of the RMSE criterion, our proposed best models demonstrated comparable
or superior performance (RMSE ~ 2 ◦C for both minimum and maximum temperatures)
compared to the ANN (RMSE ~ 3 ◦C), GEP (RMSE ~ 3 ◦C), and HBA-ANN (RMSE ~ 2 ◦C)
models that were developed for the coldest and warmest regions globally [23]. Based on
this comprehensive comparison, it can be argued that our proposed best models exhibit
acceptable and sometimes superior performance compared to recently proposed machine
and deep learning models for temperature forecasting. However, it is important to note
that direct comparisons are challenging due to variations in data and study locations.

The research on automated model selection using Bayesian optimization and the
asynchronous successive halving algorithm for predicting daily minimum and maximum
temperatures holds crucial implications for the agricultural domain. Accurate tempera-
ture predictions are fundamental to agricultural planning, impacting crop growth, yield
estimation, and resource allocation. The application of Bayesian optimization ensures a
thorough exploration of model parameters, enhancing the precision of temperature fore-
casts, which is crucial for optimal crop management. The incorporation of the asynchronous
successive halving algorithm contributes to computational efficiency in finding the optimal
hyperparameters for the selected best models. As a result, this research has the potential
to significantly improve agricultural productivity, resource utilization, and resilience to
climate variability, ultimately benefiting farmers and stakeholders across the agricultural
supply chain.



Agriculture 2024, 14, 278 26 of 30

4. Conclusions

Accurate and reliable forecasting of daily maximum (Tmax) and minimum (Tmin) tem-
peratures can be effectively utilized in the development of a sustainable and efficient
agricultural water management strategy. However, due to nonlinear interactions between
temperatures and other explanatory variables, as well as their multi-scale behavior that
changes over time, producing reliable temperature (Tmax and Tmin) forecasts is often chal-
lenging. The prerequisites for creating accurate ML-based forecast models include selecting
only the most influential input variables from a list of prospective input variables and
optimizing model parameters. To address these challenges, this study proposes an in-
novative approach for selecting the most influential input variables and determining the
best predictive models for forecasting daily Tmax and Tmin values. These methods were
combined with Bayesian and ASHA hyperparameter tuning to perform automated model
parameter estimation. Notably, this study is the first to utilize the Bayesian and ASHA
algorithms for automating the model selection process to provide accurate Tmax and Tmin
forecasts at different weather stations in Bangladesh. Furthermore, the study provides a
comparison of the best models that are tuned with Bayesian and ASHA algorithms. The
selected best models were explored for one-, two-, three-, four-, and five-days-ahead Tmax
and Tmin forecasting. The top-performing models for different forecasting horizons (1-day-,
2-days-, 3-days-, 4-days-, and 5-days-ahead) at the three weather stations were identified.
The results demonstrate the suitability of these models in forecasting multi-step-ahead
(5-days-ahead) daily Tmax and Tmin values, as indicated by the computed performance
evaluation indices. The findings of this research demonstrated the ability and practical
applicability of the proposed models in forecasting days-ahead Tmax and Tmin values at the
weather stations.

The primary objective of this research is to propose an ML-based methodology that is
capable of accurately approximating daily temperature fluctuations and providing multi-
step-ahead temperature forecasts. Importantly, the proposed methodology can be applied
to other regions with diverse data ranges. Given the varying time intervals in the data from
the three weather stations, the ML-based modeling approaches were developed separately
for each station. The duration of data collection was determined based on the availability
of data from the selected weather stations within the study area. Despite the absence of
data for specific time intervals at some weather stations, the available dataset, spanning
approximately a reasonable duration, remains sufficient and valuable for addressing the
research objectives. Therefore, we believe that our findings are relevant and contribute
significantly to the advancement of the field. Indeed, utilizing similar interval data for
all stations and developing a model for one station, then validating its generalization
capability at other stations, would be an interesting topic for future research. This approach
could provide insights into the transferability and robustness of the proposed ML-based
methodology across different weather stations and regions.

The research paper presented a novel approach for automated model selection using
Bayesian and ASHA algorithms. The findings contribute to the field of climate science and
weather forecasting, providing valuable insights into improving temperature prediction
models through automation and optimization techniques. The proposed methodology
can be further extended and applied to other domains requiring accurate and efficient
model selection.

In this research, a limited set of ML algorithms was employed for selecting the best
model, with the assistance of Bayesian and ASHA optimization algorithms. To broaden the
scope of future studies, a more comprehensive array of ML algorithms could be explored for
hyperparameter tuning using optimization algorithms. Additionally, the inclusion of a few
deep learning algorithms in the pool of prospective models could be considered, enabling
a more thorough exploration of the best-performing model through parameter tuning.
The use of the Bayesian and ASHA optimization algorithms to fine-tune hyperparameters
across multiple ML algorithms facilitates the automatic selection of the most effective
forecasting model. It is noteworthy that alternative optimization algorithms, such as the
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genetic algorithm (GA) or particle swarm optimization (PSO), could also be investigated in
future studies.

However, it is essential to mention that while incorporating a diverse set of ML and
optimization algorithms could enhance the depth of the study, it comes with the trade-off
of increased complexity and time consumption in hyperparameter tuning across multiple
ML models. This potential intricacy may pose challenges in achieving optimum results
within the set parameters.
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