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Abstract: Under the backdrop of the “double-carbon” target, the primary grain-producing regions in
China are confronted with the tasks of mitigating pollution and carbon emissions and ensuring food
security. This paper explores the eco-efficiency of cropland utilization and the factors influencing
the primary grain-producing regions in China, utilizing panel data from 13 provinces spanning
the period from 2000 to 2019. The analysis employs three models: the super-efficiency SBM model,
the Malmquist index model, and the random-effect panel Tobit model. The findings suggest the
following: (1) Although the eco-efficiency of cropland utilization in China’s primary grain-producing
regions did not reach the production frontier during the period of 2000–2019, it exhibited a high level
with an overall upward trend. The limiting factor inhibiting the growth of total factor productivity
is lower technical efficiency. (2) There is evident spatial variation in the eco-efficiency of cropland
utilization across China, displaying a dynamic evolution from northeast > western > central > eastern
to northeast > western > eastern > central. Total factor productivity in each province demonstrates
an upward trend, with the east > northeast > west > central ranking. (3) Regarding the influencing
factors, the utilization of agricultural production chemicals exerts a negative influence, while the
proportion of government financial input, labor input, and irrigation index have a positive impact.

Keywords: cropland utilization; eco-efficiency; super-efficient SBM model; influencing factors;
primary grain-producing regions

1. Introduction

The realization of double-carbon targets, as one of the important means of promoting
sustainable development, is accelerating the leading of a comprehensive green low-carbon
transformation of the economy and society. Arable land serves as a foundational resource
in ensuring food security and has significant potential for carbon sequestration [1,2]. In
the context of the “double-carbon” target, the green low-carbon utilization of arable land
is an essential way to achieve sustainable agricultural development and guarantee food
security. However, the sustained, intense use of cropland, coupled with excessive reliance
on agrochemicals, has presented serious challenges to the ecological security of these land
resources. These practices have weakened the soil and vegetation’s capacity to sequester
carbon and have increased carbon inputs in the food production process [3]. Thus, the
imperative for a green low-carbon transformation of China’s cultivated land utilization
has become increasingly apparent. The principal grain-producing regions of China have
abundant cropland resources, with the “China Statistical Yearbook (2019)” indicating that
these areas account for 70% of the nation’s cultivated land while contributing to more than
two-thirds of its grain production. Consequently, safeguarding cultivated land resources
and promoting its green low-carbon utilization directly contribute to national food security
and cultivated land ecological security. This paper aims to comprehensively evaluate the
eco-efficiency of cropland utilization and analyze the factors influencing it within the main
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grain-producing areas. By doing so, this research provides a solid theoretical foundation
and decision-making reference for facilitating the green low-carbon transformation of
cropland utilization in China.

Schaltegger and Stum were the first to coin the term eco-efficiency, which alludes
to the efficiency of ecological resources in meeting human needs [4]. The objective is to
achieve a harmonious equilibrium between the preservation of the environment and the
advancement of economic activities and to maximize economic growth while minimizing
environmental costs. The eco-efficiency of cropland use serves as an indicator to measure
the reasonableness and effectiveness of inputs [5]. Various research methods are em-
ployed to analyze eco-efficiency, including the modeling method, such as the widely used
data envelopment analysis (DEA) model [6], the economic/environmental ratio method
(EERM) [7], the life cycle approach (LCA) [8], the stochastic frontier analysis (SFA) [9], and
the ecological footprint analysis method [10,11]. Initially, research on land eco-efficiency
primarily focused on urban areas [12–14]. However, as China began to prioritize food secu-
rity, cultivated land security, and green development, scholars shifted their focus toward
the utilization of cropland. Currently, scholarly investigations pertaining to the ecological
efficiency of cropland use primarily focus on measuring and evaluating its efficiency in
land utilization [15]. Additionally, it involves analyzing the spatiotemporal patterns [16,17]
and the elements that impact eco-efficiency [18–20]. The scale of research in this field varies,
ranging from the micro-scale of farmers [21] to the provincial scale [22], national scale [23],
regional scale [24,25], and city scale [26]. In terms of geographical focus, the study areas
primarily revolve around the Yangtze River Economic Belt, the Yellow River Basin, and
Northeast China [27–29]. In the realm of eco-efficiency research pertaining to cropland
utilization, scholars have made noteworthy contributions. However, the existing literature
suffers from several deficiencies. Firstly, the majority of studies tend to concentrate on
urban land use eco-efficiency, neglecting the equally important aspect of cropland utiliza-
tion. Secondly, the research conducted on cropland use eco-efficiency primarily focuses
on a national level or specific regions, limiting the overall understanding of the principal
grain-producing regions within China. Finally, current eco-efficiency research primarily
employs static DEA efficiency analysis, disregarding the significance of dynamic total factor
productivity analysis. These shortcomings highlight the need for further investigation and
a more comprehensive approach to the topic.

The possible marginal contribution of this paper lies in three aspects: (1) this paper
takes cropland utilization eco-efficiency as the object of study, which makes up for the
inadequacy of the existing studies that focus excessively on urban land utilization eco-
efficiency; (2) this paper measures cropland utilization eco-efficiency of 13 provinces in
China’s main grain-producing areas, which can reveal more comprehensively the overall
level and inter-provincial differences of China’s main grain-producing areas; (3) this paper
employs the super-efficiency SBM model and Malmquist index model to analyze the
temporal and spatial characteristics of the eco-efficiency of cropland utilization in the
main grain-producing areas from the static and dynamic perspectives, which can more
accurately reflect the trend of the eco-efficiency of cropland utilization and its heterogeneity
compared with the previous studies. The above analysis helps to clarify the spatial and
temporal characteristics and driving factors of the eco-efficiency of cropland utilization in
China’s main grain-producing areas, thus expanding the scope and depth of the study on
eco-efficiency of cropland utilization and providing policy references for the formulation of
policies on the green low-carbon utilization of cropland.
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2. Methods
2.1. Super-Efficient SBM Model

Data envelopment analysis (DEA) is frequently employed in the assessment of eco-
efficiency in land use. Among the various models used within the field, the super-efficient
SBM (Slacks-based measure) model has gained significant popularity. In 2001, Tone intro-
duced the SBM model with non-expected outputs [30]. This model effectively addresses
the issue of input factor “slackness” or “crowding” arising from the conventional DEA in
both radial and angular directions. Nevertheless, the SBM model exhibits a similar limita-
tion to the traditional DEA model in that it lacks the capability to accurately differentiate
between decision-making units that possess an efficiency value of 1. To overcome this
limitation, Tone suggests a potential solution known as the super-efficient SBM model [31],
which allows for the effective differentiation of decision-making units at the forefront. The
subsequent section presents the construction of the model as follows:
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In the above equation, x ≥ xk; yd ≤ yd
k ; yu ≥ yu

k ; λj ≥ 0, i = 1, 2, . . . , m; j = 1, 2, . . . , n,
j ̸= 0; s = 1, 2, . . . , r1; q = 1, 2, . . . , r2

In this model, it is postulated that there exist n decision-making units (DMUs). The
input variables are denoted as m, while the desired outputs are represented by r1. Con-
versely, the undesired outputs are denoted as r2. The elements in the input matrix, desired
output matrix, and non-desired output matrix are represented by x, yd, and yu, respectively.
Additionally, ρ represents the eco-efficiency value.

2.2. Malmquist Exponential Model

The Malmquist model was proposed by Malmquist in 1953 in the process of analyzing
consumption to study the change in consumption in different periods. In 1994, Färe
et al. [32] established the Malmquist exponential model (TFP) based on Malmquist model,
which basically uses the ratio of distance function to calculate the efficiency value between
inputs and outputs. Since then, the Malmquist index (TFP) has been widely used in
the field of production analysis because of its advantage of being able to analyze the
internal change of production efficiency from two perspectives, such as technological
change and technological efficiency change, and at the same time, it is not subject to
the conditions of minimum cost, maximum profit, and price information and has been
widely used in the field of production analysis. In this paper, the Malmquist index is
introduced to dynamically analyze the time evolution characteristics of eco-efficiency, and
the efficiency of technological progress of cropland utilization (Techch) can reflect the
degree of technological progress in the process of cropland production and utilization;
the efficiency of pure technology of cropland utilization (Pech) can reflect the degree
of technological reform in the process of cropland production and utilization; and the
efficiency of scale (Sech) can reflect the level of utility of scale production in the process of
cropland production and utilization. The principle of the formula is that by setting t as the
base period, the change in eco-efficiency in the period of t + 1 can be expressed as follows:
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In this study, the notation (xt, yt) denotes the input and output vectors during period
t, while (xt+1, yt+1) denotes the input and output vectors during period t + 1. The output
distance function in period t with constant returns to scale (CRS) is denoted as Dt

c
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xt, yt).
Under this assumption, it is possible to decompose the total factor productivity index (tfpch)
into two separate indices: the index of technical efficiency change (effch) and the index of
technical progress (techch).
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The index of technical efficiency change (effch) can be decomposed into the index
of pure technical efficiency change (pech) and the index of scale efficiency change (sech),
considering variable returns to scale (VRS).

pech =
Dt+1

v
(
xt+1, yt+1)

Dt+1
v (xt, yt)

(6)

sech =
Dt+1

v
(
xt, yt)

Dt+1
v (xt+1, yt+1)

×
[

Dt+1
c

(
xt+1, yt+1)

Dt
c(xt, yt)

] 1
2

(7)

T f pch = E f f ch × Tech = (Pech × Sech)× Tech (8)

A Malmquist index above 1 signifies enhanced efficiency, and below 1 signifies dimin-
ished efficiency.

2.3. Tobit Model

The Tobit model was first proposed by James Tobit to solve the problem of statistical
analysis in the presence of truncated data. The Tobit model is able to transform truncated
data into a probabilistic model, which can then be used to statistically analyze the truncated
data. In order to select an appropriate model for analyzing the factors that influence eco-
efficiency, the Tobit model proves effective in addressing the impact of eco-efficiency with
non-negative truncation characteristics. However, for panel data, obtaining consistent and
unbiased estimates with a fixed-effect Tobit model is often challenging. Therefore, this
study chooses the random-effect panel Tobit model to examine the factors that influence
eco-efficiency in cropland utilization in the primary grain-producing regions. The model is
shown below as follows:

Yit = λ0 + ∑j λjXj,it + µi + εit (9)

The formula includes various variables: Yit represents the eco-efficiency value of
cropland utilization in province i during year t. The intercept term is denoted as λ0, while
λj represents the coefficient to be estimated. Xj is the influencing factor, µi represents the
individual effect, and εit denotes the random error term.
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3. Selection of Indicators and Data Sources
3.1. Construction of Evaluation Index System for Eco-Efficiency of Cropland Utilization

Drawing upon the connotation of eco-efficiency and considering the carbon diox-
ide emissions associated with cropland utilization, this research constructs a system of
eco-efficiency indicators for the utilization of cropland. According to existing scholarly
research [33–35], it is believed that carbon emissions from agricultural land activities come
from four main sources: (1) carbon emissions directly or indirectly triggered by the inputs
of pesticides, fertilizers, and agricultural films during the process of cropland utilization;
(2) carbon emissions from diesel fuel consumed by the use of agricultural machinery;
(3) loss of organic carbon due to the destruction of the top layer of soil by tilling in the
process of agricultural production; (4) carbon emissions from the consumption of electri-
cal energy in the process of agricultural irrigation. Six input indicators are selected: the
sowing area of grain crops (instead of the plowing area) [36], fertilizer use, pesticide use,
agricultural diesel use, agricultural film use, and the irrigated area of agricultural land.
The regional gross agricultural product and food production are chosen as the desired
output indicators. Additionally, the aggregate quantity of carbon dioxide emissions has
been designated as a non-desired output indicator (Table 1). There is also the focus of this
research on the narrower concept of agriculture, i.e., the plantation industry.

Table 1. Evaluation index system for ecological efficiency in utilizing cultivated land.

Type of Indicator Indicator Elements Indicator Name Indicator Unit

Input indicators

Plowed Area Thousand hectares

Labor Input Ten thousand people

Fertilizer Use Tons

Pesticide Use Tons

Agricultural Diesel Use Tons

Agricultural Film Use Tons

Cropland Irrigated Area Thousand hectares

Output indicators
Expected outputs

Regional Gross Agricultural Product Billions

Grain Production Tons

Non-expected outputs Carbon Emissions Tons

The quantification of carbon emissions resulting from cropland utilization for non-
desired outputs is accomplished through the application of a designated mathematical
equation [33].

E = ∑ Ei = ∑ Ti × δi (10)

In this study, E denotes the carbon emissions resulting from cropland utilization. The
variable Ei denotes the specific carbon emissions associated with each type of carbon source,
while Ti represents the quantity of input from each carbon emission source. δi symbolizes
the carbon emission coefficient linked to each carbon source. Based on a comprehensive
review of research conducted both domestically and internationally, it was found that the
carbon emission coefficient for plowing [37] is 312.6 kg·km−2. Furthermore, the carbon
emission factor for chemical fertilizers [38] is 0.8956 kg·kg−1, and for pesticides [39], it is
4.9341 kg·kg−1. Additionally, the carbon emission coefficients for diesel fuel and agricul-
tural film [40] are 0.5927 kg·kg−1 and 5.18 kg·kg−1, respectively, while the carbon emission
coefficient for agricultural irrigation is 25 kg·Cha−1 [41]. The realization process is shown
in Figure 1.
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Figure 1. Flowchart of the method.

3.2. Construction of the Index System for Factors Influencing the Eco-Efficiency of
Cropland Utilization

The eco-efficiency of cropland utilization is influenced by various elements. This
study draws upon the research conducted by relevant scholars [42–44] and identifies eight
main categories of influential indicators from the realms of resource endowment, economic
and technological development, and agricultural production inputs (refer to Table 2). The
following section provides a detailed description of these influencing factors.

Table 2. Factors impacting the eco-efficiency of cropland utilization in primary grain-producing regions.

Level 1 Indicators Secondary Indicators Description of Variables Impact

Resource Endowment
Labor Input per Unit Area Agricultural Labor Inputs/Sown Area

(persons/ha) Uncharted

Labor Force Quality Rural per Capita Years of Schooling (years) Forward

Economic and technological
development

Disposable Income
per Capita

Per Capita Disposable Income of Rural
Residents (thousand CNY/person) Negative Direction

Machinery Density Total Power of Agricultural Machinery/Area
Sown (kW/ha) Uncharted

Agricultural
Production Inputs

Chemical Input per
Unit Area Agrochemical Inputs/Sown Area (tons/ha) Uncharted

Multiple Cropping Index Grain Crop Planting Area/Cultivated
Land Area (%) Uncharted

Irrigation Index Irrigated Area/Total Sown Area of Crops (%) Uncharted

Government Financial
Input Proportion

Government Expenditure on Agriculture,
Forestry, and Water/Total Expenditure (%) Forward
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3.2.1. Impact Forecast of Resource Endowment

Resource endowment: In this study, two characterization indicators are selected
for resource endowment: labor input per unit area and labor quality. Labor input can
influence farming methods and improve farming efficiency, leading to increased desired
output. However, excessive labor input may result in inefficient operation scale and hinder
technological improvement and efficiency [45]. Therefore, the predicted impact of labor
input on ecological efficiency is unknown. On the other hand, higher levels of education
among the labor force are likely to promote the modernization and greening of agricultural
operations, suggesting a positive impact.

3.2.2. Impact Forecast of Economic and Technological Development

Economic and technological development: This study utilizes per capita disposable
income to measure the level of economic development and machinery density to measure
the level of technological development. Among them, per capita disposable income can
reflect the production stickiness of agricultural output to laborers, and the higher the per
capita income level in agricultural production, the more likely it is for laborers to adopt a
high-yield oil agricultural production mode. Therefore, the predicted impact of per capita
disposable income on ecological efficiency is negative. Green technological innovation can
significantly mitigate carbon emissions associated with cropland utilization [46]. The level
of technological development is measured by agricultural machinery density. On one hand,
higher agricultural machinery density enables more efficient production. On the other
hand, excessively high agricultural machinery density consumes more petroleum-based
fossil resources and subsequently creates pressure on the ecosystem, thus affecting the
unknown prediction.

3.2.3. Impact Forecast of Agricultural Production Inputs

Agricultural production inputs. This study examines three characterization indica-
tors: agricultural chemical inputs per unit area, multiple cropping index, irrigation index,
and government financial input ratio. Agricultural chemical inputs per unit area, which
include pesticides, fertilizers, and agricultural films, can increase desired output to some
extent. However, they can also have negative effects, including leading to elevated carbon
emissions from agriculture and highlighted environmental pollution. Consequently, the
precise estimation of these impacts remains uncertain. The multiple cropping index and
irrigation index have the potential to enhance agricultural output. However, the process of
plowing cultivated land during multiple cropping can lead to the destruction of the soil’s
organic carbon pool, resulting in significant carbon emissions into the air [47]. Additionally,
the irrigation process consumes electricity and indirectly contributes to carbon emissions
by consuming fossil fuels [48]. Consequently, the impact prediction for these indicators
is also uncertain. On the other hand, a higher proportion of government financial input
can encourage producers to adopt green production technology and tools, facilitating the
adoption of ecologically sustainable practices. Thus, the impact of government financial
input is expected to be positive.

3.3. Data Sources
3.3.1. Regional Overviews

China’s main grain-producing areas include 13 provinces, including Heilongjiang,
Henan, Shandong, Anhui, Jilin, Hebei, Jiangsu, Inner Mongolia, Sichuan, Hunan, Hubei,
Liaoning, and Jiangxi (Figure 2), which is located at longitude 97◦12′′~135◦05′′ E and
latitude 24◦29′′~53◦33′′ N. Calculations from the data in the China Statistical Yearbook 2019
show that the grain sown in the area The total area is 88,568 square kilometers, and the
annual grain output of each province reaches 2 million tons, totaling more than 500 million
tons, accounting for about 78.8% of the country’s total grain output, providing a solid
guarantee for China’s food security. Agricultural production in the region is relatively
developed, with significant negative externalities. In terms of farming methods, the region
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mainly adopts modern agricultural farming methods, such as mechanical farming, precision
fertilizer application, and drone plant protection, in order to improve the efficiency of
agricultural production; however, the use of fertilizers, pesticides, and agricultural films
and other agricultural materials in the region exceeds 70% of the nation’s agricultural
material use, and agricultural carbon emissions are significantly higher than those of
other provinces in China. This suggests that agricultural production in the region has a
greater impact on the environment and requires effective management measures to achieve
sustainable development of agricultural production.
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3.3.2. Data Sources

Based on the present state of cropland utilization in China, this research focuses on
measuring and analyzing the eco-efficiency of cultivated land utilization in the primary
grain-producing regions from 2000 to 2019, taking into consideration the availability and
timeliness of data. The data used for analysis include the following variables: area dedicated
to grain crops, the extent of irrigation in cultivated land, the utilization of agricultural
fertilizers, grain output, regional agricultural GDP, and labor inputs [49]. Information on
employees in the primary industry is calculated by multiplying the number of employees
in the primary sector by the agricultural output value divided by the gross output value
of agriculture, forestry, animal husbandry, and fishery. Data on pesticide use, agricultural
diesel, and agricultural plastic film are obtained from the China Rural Statistical Yearbook.
The data on employees in the primary industry are sourced from the statistical yearbooks
of provinces and cities, whereas the data on cropland region are gathered from the China
Statistical Yearbook, bulletins issued by provincial departments of natural resources, and
statistical yearbooks of provinces. For the period of 2011–2013, data on Heilongjiang are
sourced from the “Prospect Database”.
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4. Results
4.1. Static Analysis of the Super-Efficient SBM Model

This section conducts a static analysis of the super-efficient stochastic frontier analysis
(SFA) method to measure the eco-efficiency value of cropland utilization in China’s primary
grain-producing regions from 2000 to 2019. The analysis places emphasis on the indicators
related to input and output. By organizing the measurement results, the efficiency value
of cultivated land use for each year and sub-region is obtained, and the comprehensive
efficiency is decomposed into total efficiency (TE), pure technical efficiency (PTE), and scale
efficiency (SE), as illustrated in Table 3.

Table 3. Mean eco-efficiency in China’s primary grain-producing regions, 2000–2019.

Year Technical Pure Technical Efficiency Scale Efficiency

2000 0.839 0.974 0.862
2001 0.805 0.946 0.851
2002 0.760 0.941 0.807
2003 0.687 0.895 0.768
2004 0.778 0.927 0.839
2005 0.732 0.903 0.811
2006 0.740 0.901 0.822
2007 0.811 0.938 0.864
2008 0.812 0.930 0.873
2009 0.863 0.943 0.916
2010 0.843 0.932 0.904
2011 0.833 0.932 0.894
2012 0.837 0.912 0.917
2013 0.788 0.880 0.896
2014 0.798 0.853 0.935
2015 0.798 0.857 0.932
2016 0.818 0.878 0.932
2017 0.819 0.879 0.932
2018 0.839 0.891 0.942
2019 0.836 0.891 0.939

20-year average 0.801 0.910 0.880

4.1.1. Overall Summary of Ecological Efficiency

Overall, from 2000 to 2019, the average eco-efficiency value of cultivated land utiliza-
tion in China’s primary grain-producing regions was 0.801. The eco-efficiency values for
each year were less than 1, indicating that they were unable to attain the production frontier.
However, the average annual eco-efficiency values exhibited a slight upward trajectory
(Figure 3). This suggests that the eco-efficiency of cropland utilization in China’s primary
grain-producing regions is at a comparatively high level and in a positive development
trend. There is still potential for further enhancement in the coordination between the
economy and the environment.

4.1.2. Overview of the Temporal Evolution of Ecological Efficiency

From a temporal perspective (Figure 3), the eco-efficiency of cropland utilization in
China’s primary grain-producing regions was categorized into three distinct stages during
the study period. The years 2000–2003 experienced a period of decline, characterized by
a significant downward trend in the eco-efficiency of cropland utilization. The decline
might be attributed to the limitations in agricultural production levels and the extensive
mode of agricultural management prevalent during that time. The period from 2003
to 2013 witnessed fluctuations in the utilization of cropland, characterized by a general
upward trajectory. In 2003, China officially introduced the concept of “green agriculture”
at the International Symposium on the Construction of Market Channels for Green Food
and Organic Agriculture in the Asia–Pacific Region, signaling increased attention to the
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sustainable development of agriculture. As green agriculture was in its exploratory stage,
the eco-efficiency of cropland utilization showed fluctuating growth. The period from 2013
to 2019 saw a stable and consistent increase in the eco-efficiency of China’s primary grain-
producing regions. The primary reason for this steady growth can be attributed to the 18th
CPC National Congress prioritizing the construction of eco-civilization and introducing
it as a strategic objective throughout economic and social development. Additionally,
the central government’s No.1 document gradually emphasized the construction of rural
eco-civilization, further promoting the green development of agriculture and the concept of
green land utilization [50]. Against this backdrop, the eco-efficiency of cropland utilization
has demonstrated steady improvement.
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4.1.3. Spatial Distribution of Ecological Efficiency

The spatial distribution of eco-efficiency in the primary grain-producing regions of
China is divided into five intervals on the basis of the eco-efficiency value of the provinces.
These intervals are (0, 0.6], (0.6–0.7], (0.7–0.8], (0.8, 1), and [1, 1.28], representing the low-
efficiency zone, lower-efficiency zone, medium-efficiency zone, higher-efficiency zone, and
high-efficiency zone, respectively. For the convenience of presentation, this paper classifies
them into grades I to V in descending order of magnitude. Due to space limitations, this
paper selects three representative year nodes for analysis (Figure 4).

In terms of provincial characteristics, the quantity of provinces situated within the
level I efficiency zone has shown a steady increase. In 2003, only Jilin belonged to the level
I efficiency zone. By 2013, Liaoning, Heilongjiang, and Sichuan were added, and Jiangsu
was added by 2019. The number of provinces within the level II efficiency zone has been
growing and gradually moving towards the level I efficiency zone. In 2003, it included
Liaoning and Sichuan. By 2019, both provinces had transformed to the level I efficiency
zone. As of 2019, four provinces (Jiangxi, Shandong, Hubei, and Hunan) belonged to
the level II efficiency zone. The quantity of provinces within the level III efficiency zone
tends to decrease as they gradually move toward the higher efficiency zone. In 2003, four
provinces (Inner Mongolia, Heilongjiang, Jiangxi, and Hunan) were in this zone, which
was reduced to two provinces (Shandong and Hunan) by 2013. By 2019, all provinces
apart from Inner Mongolia had achieved a leap towards a higher level of efficiency zone.
The quantity of provinces within the level IV efficiency zone initially increases and then
decreases. In 2003, it included three provinces (Jiangsu, Shandong, and Hubei), which
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increased to include Inner Mongolia, Jiangxi, and Henan by 2013 and decreased to only
two provinces (Inner Mongolia and Henan) by 2019. The quantity of provinces within the
level V efficiency zone tends to stabilize. In 2003, it included three provinces (Hebei, Anhui,
and Henan). In 2013 and 2019, it still included two provinces (Hebei and Anhui).
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Considering the overall regional characteristics and in order to facilitate observation,
this paper divides the main grain-producing regions into the eastern region (Hebei, Jiangsu,
and Shandong), the central region (Anhui, Jiangxi, Henan, Hubei, and Hunan), the western
region (Inner Mongolia and Sichuan), and the northeastern region (Heilongjiang, Jilin, and
Liaoning), in accordance with the criteria of the National Bureau of Statistics (NBS) on
the division of the economic zones. The eco-efficiency of cropland utilization in China’s
primary grain-producing regions in 2003, 2013, and 2019 showed high efficiency at both
ends and lower efficiency in the middle. Cultivated land utilization eco-efficiency levels
III~V are predominantly situated within the eastern and central regions of China, while
levels I~II are primarily concentrated within the regions of northeastern and western.
The ecological efficiency exhibited a shift in characteristics from 2003, with the pattern
of Northeast > West > Central > East, to 2019, where it transformed to the pattern of
Northeast > West > East > Central.

4.2. Dynamic Analysis of the Malmquist Index

The Malmquist index has the capability to effectively depict the dynamic trend of
changes in ecological efficiency. This paper builds upon the previous analysis of eco-
efficiency in cropland utilization in the primary grain-producing regions to examine the
total factor productivity of eco-efficiency from 2000 to 2019 and decompose its components.
The aim is to assess the trends and heterogeneity in eco-efficiency changes.

1. Overall Dynamic Efficiency Analysis

From the perspective of overall efficiency changes (refer to Table 4), the mean value of
whole factor productivity of China’s eco-efficiency in cultivated land utilization from 2000
to 2019 was 1.0525, indicating a growth trend with a rate of 5.25%. Throughout the 10-year
study period, the total factor productivity of eco-efficiency in the primary grain-producing
regions remained above 1. The lowest growth rate was observed during the time period of
2013–2014, with a rate of 0.34%, while the highest growth rate occurred in 2018–2019, with
a rate of 13.75%. These findings indicate a steady increase in eco-efficiency in cultivated
land utilization.

Table 4. Malmquist index and decomposition of cultivated land utilization in China, 2000–2019.

Year Technical Effectiveness
Rate Change

Technological
Progress

Purely Technical Efficiency
Rate of Change

Scale Efficiency
Rate of Change

Total Factor
Productivity

2000–2001 0.9593 1.0671 0.9721 0.9869 1.0237
2001–2002 0.9434 1.1054 0.9939 0.9493 1.0428
2002–2003 0.9048 1.0671 0.9510 0.9514 0.9655
2003–2004 1.1317 1.0000 1.0361 1.0922 1.1316
2004–2005 0.9411 1.0990 0.9743 0.9659 1.0342
2005–2006 1.0117 1.0346 0.9976 1.0142 1.0467
2006–2007 1.0946 0.9417 1.0412 1.0513 1.0308
2007–2008 1.0018 1.1113 0.9921 1.0098 1.1133
2008–2009 1.0633 0.9251 1.0135 1.0491 0.9837
2009–2010 0.9762 1.1161 0.9882 0.9879 1.0895
2010–2011 0.9886 1.1310 1.0005 0.9881 1.1182
2011–2012 1.0040 1.0619 0.9786 1.0259 1.0662
2012–2013 0.9420 1.1432 0.9643 0.9768 1.0768
2013–2014 1.0123 0.9912 0.9693 1.0444 1.0034
2014–2015 1.0003 1.0584 1.0042 0.9961 1.0587
2015–2016 1.0251 0.9975 1.0248 1.0003 1.0226
2016–2017 1.0013 1.0401 1.0015 0.9998 1.0415
2017–2018 1.0247 1.0057 1.0133 1.0112 1.0305
2018–2019 0.9967 1.1413 0.9997 0.9970 1.1375

2000–2019 Average 0.9998 1.0527 0.9953 1.0045 1.0525

Regarding values for the whole factor productivity decomposition, the average tech-
nological progress was found to be 1.0527, with a growth rate of 5.27%. In the past 10 years,
there have been eight periods where the value of technological progress exceeded 1. Fur-
thermore, technological efficiency reached 1.143 in 2018–2019, significantly higher than the
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average value. These results highlight the steady growth of technological progress and
its significant role in improving eco-efficiency in cropland utilization in China. However,
the average value of technological efficiency change was only 0.9998, indicating that the
potential of new technology in cropland utilization in the primary grain-producing regions
has not been fully realized. It is crucial to enhance coordination among various resource
elements to fully unlock the potential of established technology levels.

In terms of technical efficiency change decomposition, the average scale efficiency
rate of change in the technical efficiency decomposition value was 1.0045. Conversely, the
average pure technical efficiency rate of change was 0.9953, consistently lower than the
rate of change in scale efficiency. This finding suggests that the decline in pure technical
efficiency is the main factor contributing to the overall decline in technical efficiency.

2. Regional Analysis of Dynamic Efficiency

Concerning provincial efficiency changes (Table 5), during the period spanning from
2000 to 2019, the average total factor productivity of eco-efficiency of cropland utilization
in the 13 primary grain-producing regions of China was all greater than 1. This indicates
that the eco-efficiency of cropland utilization in China’s main grain-producing regions has
been continuously improving, and the advancement of green cropland utilization has been
consistently progressing well. Among these regions, Heilongjiang had the highest growth
rate at 7.7%, while Anhui had the lowest at 3.75%.

Table 5. Total factor productivity of cultivated land utilization and ranking by region, 2000–2019.

Provinces
Technical
Efficiency
Changes

Technological
Progress

Purely Technical
Efficiency

Rate of Change

Scale Efficiency
Rate of Change

Total Factor
Productivity

Total Factor
Productivity

Ranking

Hebei 0.9980 1.0509 0.9907 1.0074 1.0488 8
Inner Mongolia 0.9853 1.0608 0.9762 1.0093 1.0452 10

Liaoning 1.0096 1.0541 0.9991 1.0105 1.0642 2
Jilin 1.0018 1.0577 1.0014 1.0004 1.0596 3

Helongjiang 1.0121 1.0641 1.0092 1.0028 1.0770 1
Jiangsu 1.0089 1.0499 0.9994 1.0095 1.0592 4
Anhui 0.9929 1.0449 0.9859 1.0071 1.0375 13
Jiangxi 0.9936 1.0529 0.9887 1.0049 1.0462 9

Shandong 1.0058 1.0463 0.9983 1.0075 1.0523 6
Henan 1.0007 1.0434 1.0005 1.0002 1.0441 12
Hubei 1.0002 1.0491 1.0002 1.0000 1.0494 7
Hunan 0.9889 1.0559 0.9889 1.0000 1.0442 11
Sichuan 1.0005 1.0553 1.0009 0.9996 1.0558 5

Eastern China 1.0127 1.1544 0.9884 1.0245 1.1690 1
Western China 0.9928 1.0581 0.9885 1.0044 1.0505 3
Central China 0.9953 1.0492 0.9929 1.0024 1.0442 4
Northeastern 1.0078 1.0586 1.0032 1.0046 1.0669 2

Average Value
by Region 0.9998 1.0527 0.9953 1.0045 1.0525 -

The elevation in cropland eco-efficiency in each province is primarily attributed to
technological progress and changes in technological efficiency, with technological progress
being the dominant factor. However, Hebei, Inner Mongolia, Anhui, Jiangxi, and Hunan
face constraints due to technological efficiency changes. Consequently, these regions
should actively allocate resources to harmonize their utilization, promote the adoption
of advanced technologies, and harness the potential of their technological advancements.
On the other hand, the remaining regions benefit from both technological progress and
changes in technical efficiency, but the latter is much lower than the former. Therefore,
simply investing in technological development is insufficient; the regions must also focus
on transforming technological achievements.
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Considering the overall regional efficiency changes, the average total factor productiv-
ity of eco-efficiency for cropland utilization in Eastern, Central, Western, and Northeastern
China from 2000 to 2019 was 1.169, 1.0442, 1.0505, and 1.0669, respectively. These values
demonstrate a trend of the eastern region > northeastern region > western region > central
region, and the eco-efficiency of cropland utilization across all regions shows an upward
trend. In addition to this, all four regions exhibit a technological progress index that
surpasses a value of 1, implying a relatively deep adoption of new technologies and agri-
cultural production methods. The technology efficiency change index in both the central
and western areas is less than 1, indicating lower resource efficiency during the course of
cropland utilization. This requires a focus on resource coordination and enhancement of
land use management capabilities in cropland utilization, thereby enhancing technology
efficiency change. The pure technical efficiency change rate index in the eastern region
is less than 1, suggesting that the decrease in pure technical efficiency is a major factor
restricting the technology efficiency change index.

5. Analysis of Influencing Factors

In this paper, the ecological efficiency of farmland utilization in major grain-producing
areas was analyzed and evaluated by using the super-efficiency SBM model. To further
investigate the factors that influence the eco-efficiency of land utilization, this research
applies the Tobit model to analyze panel data spanning the years 2000 to 2019. The findings
of the analysis are shown in Table 6.

Table 6. Panel Tobit regression results on factors influencing eco-efficiency of cropland in primary
grain-producing regions.

Variables Coefficient Standard Deviation p-Value 95% Confidence Interval Significance

Labor input per unit 0.006 0.002 0.007 0.002~0.011 ***
Quality of labor force −0.024 0.023 0.287 −0.692~−0.021

Per capita disposable income −0.001 0.002 0.641 −0.005~0.003
Mechanical density 0.007 0.005 0.144 −0.002~0.016

Chemical inputs per unit area −0.038 0.008 0.000 −0.053~−0.023 ***
Multiple-crop index 0.028 0.041 0.49 −0.052~0.108

Irrigation index 0.245 0.123 0.046 0.004~0.486 **
Proportion of government

financial input 0.011 0.003 0.001 0.004~0.170 ***

Constant 0.8677 0.177 0.000 0.523~1.213 ***
Log likelihood = 271.20155 Prob ≥ chibar2 = 0.000

Note: *** and ** denote the significance levels of 1% and 5%, respectively.

The regression analysis confirms that the labor input per unit area, chemical input
per unit area, irrigation index, and government financial input ratio have passed the
significance test, thus warranting further analysis.

1. Impact Analysis of Labor Input per Unit Area

Tt is crucial to strengthen agricultural scientific and technological innovation and
enhance the level of intensive land utilization. This can be achieved by actively promot-
ing the use of new agricultural technologies and abandoning traditional rough farming
methods. Technologies such as modern drip irrigation, soil improvement techniques, and
uncrewed aerial vehicle spraying should be introduced to support the development of
“intensive farming”. The utilization of modern science and technology in agriculture will
accelerate the green low-carbon transformation of the utilization of arable land and improve
its ecological efficiency.

2. Explore Distinct Approaches to Reduce Regional Disparities

This study highlights significant variations in ecological efficiency across various
regions within the primary grain-producing zones. Regions with high ecological efficiency
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should leverage their spillover effects to enhance the ecological efficiency of surrounding
areas. Conversely, areas exhibiting low ecological efficiency values necessitate proactive
exploration of low-carbon and efficient agricultural development models, accompanied by
the formulation of corresponding countermeasures, an increase in policy support, and the
enhancement of regional ecological efficiency.

3. Establishing the Concept of Green Production and Reducing the Utilization of Chemi-
cal Inputs in Agriculture

For one thing, this study provides agricultural producers with multi-level and multi-
faceted training on new agricultural green technologies and ideological education in order
to enhance farmers’ awareness of green production. For another, this increases the input
of green production elements. In diverse geographical areas, according to the actual
conditions of cropland utilization, we should reduce or substitute the usage of agricultural
chemical inputs, including fertilizers, pesticides, and plastic films.

6. Conclusions

On the basis of the panel data of 13 provinces in China’s primary grain-producing
regions spanning the years 2000 to 2019, this study examines the ecological efficiency
of cultivated land utilization using the super-efficiency SBM model and the Malmquist
index model to analyze static and dynamic changes, respectively. Additionally, this study
employs the random-effect panel Tobit model to explore the factors that influence ecological
efficiency. The key discoveries are as follows:

1. Overview of the Trend in Ecological Efficiency Changes

From the perspective of the trend in ecological efficiency values, the cultivation of land
in China’s primary grain-producing regions exhibited a high level of ecological efficiency
from 2000 to 2019. Although the efficiency values did not reach the production frontier,
they displayed an overall upward trend. The eco-efficiency experienced three periods:
decline, fluctuation, and steady increase. Overall, China’s cultivated land utilization eco-
efficiency has shown significant progress, with ample room for further improvement. The
average total factor productivity of ecological efficiency in these areas during the study
period exceeded 1, indicating a positive growth trend. The analysis of the whole factor
productivity decomposition reveals that the limitation on the growth of it can be attributed
to a decline in the value of technology efficiency change. Therefore, attention should be
given to the conversion rate of agricultural scientific and technological achievements and
the unlocking of the potential of emerging technologies.

2. Significant Regional Differences in Ecological Efficiency of Cropland

Regional disparities in the eco-efficiency of cropland utilization are apparent in China.
Considering ecological efficiency, the utilization of cropland in China’s primary grain-
producing regions demonstrates a distinct pattern characterized by high efficiency at the
extremes and comparatively lower efficiency in the central areas. Provinces with high eco-
logical efficiency are generally distributed in the northeast region. The regional differences,
which were characterized by the northeast > west > central > east in 2003, have changed to
the characteristics of the northeast > west > east > central in 2019. Analyzing total factor
productivity, there is substantial variation among provinces, but all of them exhibit a growth
trend, resulting in an overall pattern of East > Northeast > West > Central. Among them,
the western and central regions experience a declining trend in technical efficiency change,
which has become the main factor constraining the growth of ecological efficiency. The
eastern region exhibits a downward trend in the rate of change of pure technical efficiency,
which became the main reason limiting the growth of technological efficiency.

3. Diversity of Influencing Factors on Ecological Efficiency

Regarding the factors influencing eco-efficiency, different degrees of influence are
observed in labor input per unit area, irrigation index, chemical input per unit area, and
government financial input ratio for cultivated land use. In particular, chemical input
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per unit area has a negative effect, while labor input per unit area, irrigation index, and
government financial input have a positive impact on eco-efficiency.
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