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Abstract: Weed responses in disturbance-prone agroecosystems are linked to specific plant traits that
enable their persistence. Understanding how weeds adapt to thrive in these systems in response
to herbicide application is important for farmers to improve weed management for enhanced crop
productivity. In this study, we investigated the functional traits and types of weed species able to
persist within fields of glyphosate-tolerant maize in the Oliver Tambo District of the Eastern Cape
Province, South Africa. This was accomplished by exploring the abundance patterns, composition,
and richness of specific weed traits and functional types. Frequency measures (%) were used to
identify indicator species. A data set comprising 42 indicator weed species and 11 predefined
disturbance traits from 28 fields of glyphosate-tolerant maize was considered for functional analysis.
Clusters were identified according to the grouping of weed species based on their trait scores, which
revealed ten plant functional types (PFTs). Disturbances associated with post-emergence (after
ploughing, sowing, and herbicide application) act as filters that select for weed species with traits
such as life span, life form, growth form, photosynthetic pathway, carbon storage, and nitrogen-
fixing ability to colonise fields. Trait richness did not differ significantly across maize fields. Our
results highlighted the functional types and traits that are favourable to weed resistance and survival,
and these need to be considered when developing different herbicide application protocols. By
understanding which traits are favourable for weed survival post-emergence, farmers can apply
targeted weed management to safeguard maize productivity. In addition, successful control of weeds
will contribute to landscape-targeted herbicide applications that are less harmful to the environment.

Keywords: agricultural disturbance; functional traits; herbicides; maize; plant functional types; weeds

1. Introduction

Weeds and their associated traits have been the subject of research because of their
impact in both the agriculture and horticultural industries [1,2]. Weeds occur across many
areas and landscapes, often with variable densities, usually grow fast, and reproduce
relatively quickly [2]. Weed research has focussed on the origins of weedy species and
the evolution of certain characteristics and traits, to a point where they adapt and become
tolerant or even resistant to various means of control and management [1].

Weed resistance to herbicides can arise when there is selection for different genotypes
or when selection pressure forces mutation processes that might result in a beneficial
characteristic that allows biotypes to survive [3,4]. Mutations due to herbicide resistance
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depend on the genetic background and environmental conditions. The detrimental effects
of herbicide resistance mutations on plant fitness may arise as a direct impact on fitness-
related traits, with changes in other life history traits that ultimately may lead to fitness costs
under ecological conditions [4]. Traits are morphological, phenological or physiological
features that impact the fitness of individual species. The specific plant functional traits
of a weed, therefore, assist us to understand their responses to ecosystem dynamics [5–9].
Traits are morphological, phenological, or physiological features that impact the fitness of
individual species. However, principles of functional trait ecology have not been widely
applied to inform agricultural research and management [10]. Functional traits are known
to be affected by agricultural activities that act as filters to select for specific adaptive traits
that allow weeds to persist in a community [11–13]. As a result, plant functional traits
may be used to group species in functional types with similar features, as they are likely to
respond similarly to climatic conditions and/or disturbances [8,14].

The transformation of natural rangelands to cultivated agroecosystems has been
shown to reduce plant diversity and alter composition [15–17]. For the maintenance of
diverse and functional ecosystems within farmlands, it has become important to understand
the potential effects that farming activities and practices might have on surrounding plant
community composition and diversity [18]. Therefore, farmers need to manage their land
for specific plant functional types to maintain the required ecosystem services.

In agroecosystems, specific management practices need to be applied to maximise crop
production levels. For crop production, farmers may adopt various methods of pest and
weed control that can be either chemical or mechanical [19–21]. Adoption and application
of methods vary for different crops, farming practices, and regional requirements, and are
influenced by abiotic and biotic components. As pest management mechanisms evolved,
so did genetic engineering tools [22]. It has been more than 25 years since the introduction
and use of Genetically Modified (GM) crops [23] to improve pest management and alleviate
crop failures, while also addressing other climatic and environmental challenges [24,25].

Globally, cotton, canola, maize, and soybean remain the big four biotech crops, even
though other new crops have entered the market [23]. These crops continue to offer, with im-
provements, traits (single and stacked) that confer insect resistance and herbicide resistance [22].
In South Africa, maize is one of the most important grain crops and is cultivated in all nine
provinces [26]. South Africa produces approximately 1.1 million hectares of yellow maize and
1.3 million hectares of white maize for commercial purposes annually [27]. About 85–95%
of maize grown in South Africa is GM, with the major traits being that of insect resistance,
herbicide tolerance, and/or a stacked combination of both [28].

The use of herbicide-tolerant crops has not been a complete solution, as weeds have been
shown to have varying levels of natural tolerance to different herbicides in Australia, Brazil,
Canada, China, Europe, South Africa and United States of America [29,30], which is further
influenced by regional climatic conditions, site-specific herbicide application, and grazing
intensities [30]. Fried et al. [31] found that in France most abundant weeds in maize crops were
species that germinate in spring to summer, flower late, and are likely to have the same life cycle
as maize. Weeds therefore share traits that are related to high colonisation capacity, involving
wind dispersal and seed longevity, which are beneficial to species exposed to exogenous
disturbances such as ploughing. Traits related to specific seasonal adaptation (such as late
flowering) and the C4 photosynthetic pathway, are better adapted to endogenous disturbances
such as herbicide use. Traits that predict the ability of weeds to persist after agricultural
disturbance include growth form [32], life span [33], flowering phenology, pollination mode,
flowering season [34], N-fixating ability [30], and photosynthetic pathway [31].

In plant communities, it is often those with high functional trait diversity that are
more stable and resilient after a disturbance. This large pool of traits allows plant species
to respond across a wider range of disturbance [35]. To understand weed dynamics, it is
therefore important to know which weed traits play an important role in species’ ability to
cope with the disturbances associated with agricultural activities, as some functional traits
are more beneficial than others [36]. For example, functional traits that are more resilient to
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agricultural activities may serve as indicators in land-use monitoring studies to assess the
transformation of the natural landscape into agricultural systems [36]. From a biodiversity
management and conservation approach, the protection of field margins enhances those
species with trait diversity that provide a wide array of ecosystem services [37]. At the
same time, it is important to assess, monitor, and guard against some species in these
marginal areas with traits that can contribute to their weediness or the ability to develop
resistance towards various types of chemical control methods. This is important to monitor,
as weed species with such traits can threaten ecosystems and their functions should they
become herbicide-resistant [38,39].

To develop a better understanding of the plant traits that allow species to overcome
agricultural disturbances, we considered changes/shifts in weed functionality in an agroe-
cosystem exposed to ploughing and herbicide application, by testing the following hy-
potheses: Firstly, we expected that weeds in different fields of glyphosate-tolerant maize
would share similar functional traits in response to similar disturbances; and secondly,
we predicted that dominant weeds of the same field of glyphosate-tolerant maize would,
before and after two rounds of herbicide application, not share similar traits. To test these
hypotheses, we aimed to identify and assess the functional traits that enable weed species
to persist in glyphosate-tolerant maize fields that followed a specific herbicide applica-
tion protocol (pre- and post-maize emergence applications). The main objectives were to:
(1) identify indicator weed species that persist after herbicide application; (2) classify weed
species into functional types using disturbance traits; (3) compare the composition of weed
traits before and after herbicide applications; (4) compare the richness of weed traits before
and after herbicide applications; and (5) compare if plant functional types (PFTs) increase
from before to after herbicide application. These objectives allowed us to assess and es-
tablish whether there are specific functional traits that allow weed species to persist in
glyphosate-tolerant maize and determine which species are likely to develop resistance to
herbicides. This would enable us to address the knowledge gap regarding weed resistance
to herbicides in maize agroecosystems of South Africa.

2. Results
2.1. Indicator Weed Species

Forty-two indicator weed species were identified (Supplementary Table S1) and
the dominant families were Asteraceae (11 species), Cyperaceae (4), and Fabaceae (5).
Twenty-five native species and seventeen alien species were identified as indicator species.
Indicator species with the highest IndVal, greater or equal to 0.3, were Amaranthus viridis L.
with the highest value of 0.558 and highest frequency of occurrence in 114 plots, followed by
other exotic weeds, namely, Bidens bipinnata L., Chenopodium carinatum R.Br., Cirsium vulgare
(Savi) Ten., Conyza bonariensis (L.) Cronquist, Daucus carota L., Ipomoea purpurea (L.) Roth,
Portulaca oleracea L., and Sonchus nanus Sond. ex Harv.

2.2. Plant Functional Types

Twenty-four indicator weed species were annual (Figure 1), whereas eighteen species were
perennial (Figure 2) to provide a 4:3 split. Full names for abbreviated weed species names can be
found in (Supplementary Table S1). Ten PFTs were identified for the 42 weed indicator species
based on 11 disturbance resistance traits, which are growth form, life form, perennial or biennial,
monocotyledon or dicotyledon, prostrate or erect growing, nitrogen- or non-nitrogen-fixing,
spinescent or non-spinescent, assisted or unassisted seed dispersal, specified flowering season,
specialised carbon storage organs, and C3 and C4 photosynthetic pathway.

Six PFTs were identified for annual species (Figure 1). The pairs PFT 2 and 3, and
PFT 4 and 5, shared similar traits, with the exception that one of each pair was a nitrogen
fixer. An outlier species Hibiscus nigricaulis Baker f. was grouped with PFT 6 because
it shared most of its traits with this group, such as being a spinescent, N-fixing species
with assisted seed dispersal (Figure 1). This indicates that a carbon storage organ was an
important trait for all but one annual species.
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Figure 1. Cluster analysis Unweighted Pair Group Method with Arithmetic Mean (UPGMA) based on
Gower distance measure proposing six major plant functional types (PFTs) from the trait composition
of annual species recorded in fields of glyphosate-tolerant maize. Red lines in the dendrogram indicate
branching with significant structure, as determined by Similarity Profile Analysis (SIMPROF).

Four groupings of PFTs were identified for perennial species (Figure 2). An outlier
species, Rorippa nudiuscula Thell., was grouped with PFT 10 because it shared some of
the traits such as a specialised carbon storage organ, assisted seed dispersal without
spinescence, and nitrogen-fixing ability (Figure 2). Therefore, all but one perennial species
had a specified flowering season, and this highlights the importance thereof. All PFTs
(Table 1), except PFT 7, had specialised carbon storage organs as the main trait.

Table 1. Description of the ten plant functional types (PFTs) identified by means of cluster analysis.
The detailed descriptions of Functional Traits are in (Supplementary Table S2).

Plant Functional Types Life History Species Names Functional Traits Description
(Supplementary Table S2)

PFT1 Annual
• Gisekia pharnaceoides L.
• Solanum retroflexum Dunal
• Solanum humile Lam.

Annual, dicotyledonous, prostrate and
erect-growing, non-nitrogen-fixing weeds
with specialised carbon storage organs.

PFT2 Annual
• Bidens pilosa L.
• Galinsoga parviflora Cav.
• Portulaca oleracea L.

Annual, monocotyledonous and
dicotyledonous, non-nitrogen-fixing
weeds with unassisted seed dispersal and
specialised carbon storage organs.

PFT3 Annual

• Amaranthus viridis L.
• Bromus diandrus Roth
• Indigofera spicata Forssk.
• Medicago polymorpha L.

Annual, monocotyledonous and
dicotyledonous, nitrogen-fixing weeds
with unassisted seed dispersal and
specialised carbon storage organs.
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Table 1. Cont.

Plant Functional Types Life History Species Names Functional Traits Description
(Supplementary Table S2)

PFT4 Annual
• Bidens bipinnata L.
• Euphorbia prostrata Aiton
• Eleusine coracana (L.) Gaertn.

Annual, monocotyledonous and
dicotyledonous, nitrogen-fixing and
non-spinescent weeds following an
assisted seed dispersal and specialised
carbon storage organs.

PFT5 Annual

• Bulbostylis humilis (Kunth)
C.B.Clarke

• Chenopodium carinatum R.Br.
• Erigeron bonariensis L.
• Hibiscus trionum L.
• Ipomoea purpurea (L.) Roth
• Oncosiphon pilulifer (L.f.)

Källersjö

Annual, monocotyledonous and
dicotyledonous, non-nitrogen-fixing and
non-spinescent weeds following an
assisted seed dispersal and specialised
carbon storage organs with a C3 and C4
photosynthetic pathway.

PFT6 Annual

• Argemone mexicana L.
• Hibiscus nigricaulis Baker f.
• Sonchus asper (L.) Hill
• Urtica urens L.
• Xanthium spinosum L.

Annual, monocotyledonous and
dicotyledonous, nitrogen- and
non-nitrogen-fixing spinescent weeds
with assisted and unassisted seed
dispersal following a specialised carbon
storage organ.

PFT7 Perennial/Biennial

• Callicoma serratifolia Andrews
• Chascanum hederaceum (Sond.)

Moldenke
• Cotula heterocarpa DC.

Perennial and biennial, assisted and
unassisted seed dispersal weed species
with specified flowering season and no
specialised carbon storage organs.

PFT8 Perennial/Biennial

• Cyperus congestus Vahl
• Cyperus esculentus L.
• Cyperus spp.
• Polygala amatymbica Eckl. & Zeyh.

Perennial and biennial, nitrogen- and
non-nitrogen-fixing weed species with
non-spinescent, specified flowering season,
and specialised carbon storage organs.

PFT9 Perennial/Biennial

• Berkheya onopordifolia Burtt Davy
• Cirsium vulgare (Savi) Ten.
• Daucus carota L.
• Sonchus nanus Sond. ex Harv.
• Tephrosia capensis (Jacq.) Pers.
• Zornia capensis Pers.

Perennial and biennial, nitrogen- and
non-nitrogen-fixing weeds following
non-spinescent and spinescent with
assisted seed dispersal, specified
flowering season, and specialised carbon
storage organs.

PFT10 Perennial/Biennial

• Aristea abyssinica Pax ex Engl.
• Lobelia erinus L.
• Plantago virginica L.
• Rorippa nudiuscula Thell.
• Trifolium repens L.

Perennial and biennial, nitrogen- and
non-nitrogen-fixing non-spinescent with
assisted seed dispersal following
specified flowering season with
specialised carbon storage organs.
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Figure 2. Cluster analysis Unweighted Pair Group Method with Arithmetic Mean (UPGMA) based on
Gower distance measure proposing four major plant functional types (PFTs) from the trait composition
for perennial species recorded in fields of glyphosate-tolerant maize. Red lines in the dendrogram
indicate branching with significant structure, as determined by Similarity Profile Analysis (SIMPROF).

2.3. Weed Trait Assemblages

Weed assemblages differed significantly among most sites (p < 0.005), except Tsolo (T),
which showed similarity to some Baziya sites (Supplementary Table S3). These differences
were supported by the non-metric multidimensional scaling (NMDS), which indicated
strong clustering. However, the variation in trait composition per field at Baziya Makaula
(MV) (elongated clustering—substantial species turnover) made it different from all the
other sites (Figure 3). Although trait composition before and after herbicide applications
(Figure 4) did not separate conspicuously into clear groups, significant differences in com-
position were revealed by permutational multivariate analysis of variance (PERMANOVA)
(p = 0.003). A stress value of 0.1 was an acceptable representation of weed trait composition
in ordination space to support the significant differences in composition.

2.4. Weed Trait Richness

Weed trait richness among maize field sites differed significantly (p < 0.05) between
MV and T sites only, with the latter significantly higher than MV, which had the lowest
trait richness (Figure 5). In terms of functional trait richness, site T showed similarity to the
other sites, particularly sites Baziya Mission (BM) and Baziya Jojweni (MJN), whereas no
differences in trait richness were observed before and after herbicide applications (Figure 6).

2.5. Weed Trait Responses to Disturbance

Redundancy analysis (RDA) of the ten PFTs in response to herbicide application
revealed a strong correlation of PFTs 9 and 10 before herbicide application (Figure 7). The
longest vectors (associated with after-herbicide applications) were those of PFTs 3 and 5
(Figure 7), which could be expected, as these groups were constituted of annual species.
Moreover, both these PFTs had specialised carbon storage organs with unassisted seed
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dispersal traits. PFTs 9 and 10 were closely related and consisted of perennial species with
specialised carbon storage organs and assisted seed dispersal as the main shared traits for
fields before herbicide application.
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Figure 3. Non-metric multi-dimensional scaling (NMDS) ordination of weed functional trait composition
across maize field sites MV = Baziya Makaula; MJN = Baziya Jojweni; T = Tsolo; BM = Baziya Mission.
Permutational multivariate analysis of variance (PERMANOVA): p = 0.001. (Bray–Curtis resemblance on
square root-transformed functional trait data).

Trait and environmental data used to compile the RDA (Figure 7) had response and
explanatory variables of 10 and 2, respectively, with functional type composition and
general analyses. The results showed a total variation of 5827.91 and explanatory variables
accounted for 5.8% (Table 2). The test values on all axes revealed pseudo-F = 12.7 and
p = 0.002, which shows a significant difference in plant functional types before and after
herbicide applications.

Table 2. Eigenvalues for axis 1 and axis 2, with explained variation and correlation for both axes.

Statistic Axis 1 Axis 2

Eigenvalues 0.06 0.21
Explained variation (% cumulative) 5.8 27.19
Pseudo-canonical correlation 0.61 <0.005
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Figure 4. Non-metric multi-dimensional scaling (NMDS) ordination of weed functional trait com-
position before and after herbicide applications. Permutational multivariate analysis of variance
(PERMANOVA): p = 0.003. (Bray–Curtis resemblance on fourth root-transformed functional trait data).

To better unpack the effect of herbicide control on weeds, the abundances of species
in each PFT were compared before and after herbicide applications. Annual plant species
count was substantially higher for PFTs 1 (p = 0.009), 3 (p = 0.017), and 5 (p = 0.003), and
lower for PFT 2 (p = 0.008) after herbicide applications (Table 3). However, perennial
weed species counts showed that PFT 8 had greater number of individuals after herbicide
applications, although non-significant (Table 4). All the other perennial PFTs showed a
non-significant decrease in weed abundance. The species of PFTs 1, 3, 5 and possibly 8, can
therefore be considered to hold traits that enable them to overcome both ploughing and
herbicide application (Table 4).

Table 3. Plant functional types of t-test results before and after herbicide applications.

Variable Mean t-Value Df p Valid N Std.Dev. F-Ratio
Variance p Variance

PFT1-Pre 1.394 −2.601 206 0.009 104 7.683 30.517 <0.01
PFT1-Post 12.394 104 42.446
PFT2-Pre 10.125 2.663 206 0.008 104 34.077 54.299 <0.01
PFT2-Post 1.144 104 4.625
PFT3-Pre 40.134 −2.385 206 0.017 104 108.438 6.503 <0.01
PFT3-Post 109.615 104 276.539
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Table 3. Cont.

Variable Mean t-Value Df p Valid N Std.Dev. F-Ratio
Variance p Variance

PFT4-Pre 11.471 1.567 206 0.118 104 42.59 2.806 <0.01
PFT4-Post 3.846 25.42
PFT5-Pre 48.278 −2.922 206 0.003 104 100.933 10.346 <0.01
PFT5-Post 145.721 324.660
PFT6-Pre 19.615 0.421 206 0.674 104 74.676 1.699 <0.01
PFT6-Post 15.730 57.281
PFT7-Pre 62.932 1.155 206 0.249 104 169.276 1.058 0.773
PFT7-Post 35.413 174.168
PFT8-Pre 17.865 −1.819 206 0.070 104 63.501 1.093 0.650
PFT8-Post 34.259 66.409
PFT9-Pre 44.326 0.673 206 0.501 104 74.706 1.659 <0.01
PFT9-Post 36.278 96.237
PFT10-Pre 33.231 1.507 206 0.133 104 108.620 6.831 <0.01
PFT10-Post 16.038 41.557

PFT = Plant functional type; Pre = Before herbicide application; Post = After herbicide application; Std. Dev. =
Standard deviation; A negative t-value means a reversal in the directionality of the effect, which has no bearing
on the significance of the difference between types.
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between mean values.

Table 4. T-tests of the increase or decrease in species abundances of plant functional types from
before- and after-herbicide applications.

Plant Functional Type (PFT) Increase/Decrease Significant Difference p < 0.05

PFT1 Increase
√

PFT2 Decrease
√

PFT3 Increase
√

PFT4 Increase X
PFT5 Increase

√

PFT6 Decrease X
PFT7 Decrease X
PFT8 Increase X
PFT9 Decrease X
PFT10 Decrease X

√
= represent a significant difference; X = represent a non-significant difference.
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Figure 7. Redundancy analysis (RDA) of plant functional type data in response to before- and
after-herbicide applications.

Ten weed indicator species with highest abundances could be considered in terms
of three important traits (carbon storage, nitrogen-fixing ability, and life span) known to
be significant in crop fields (Table 5). Amaranthus viridis had the highest average sum
of 62.77, followed by Chenopodium carinatum with an average sum of 36.83 (after herbicide
applications). When the average sums before- and after-herbicide applications were com-
pared, eight out of the ten most dominant weed species showed an increase after herbicide
applications. These provisionally flagged as herbicide tolerant (Table 5).

Table 5. Top ten most abundant weed species after herbicide applications in glyphosate-tolerant
maize fields and their associated traits.

Scientific Name Average
Sum

Ave Sum
Pre

Ave Sum
Post

Herbicide-
Resistant

PFT
Traits

Carbon Storage Nitrogen-Fixing
Ability Life Span

Amaranthus
viridis 62.77 33.61 91.93

√
3 Specialised

storage organ N-Fixer Annual

Bromus diandrus 10.70 6.31 15.08
√

3 Specialised
storage organ N-Fixer Annual

Bulbostylis
humilis 16.69 9.95 23.44

√
5 Specialised

storage organ Non-N-Fixer Annual

Chenopodium
carinatum 36.83 10.94 62.73

√
5 Specialised

storage organ Non-N-Fixer Annual

Cotula heterocarpa 20.14 40.20 0.09 × 7 Specialised
storage organ N-Fixer Perennial

Cyperus spp. 25.36 17.33 33.39
√

8 Specialised
storage organ N-Fixer Perennial
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Table 5. Cont.

Scientific Name Average
Sum

Ave Sum
Pre

Ave Sum
Post

Herbicide-
Resistant

PFT
Traits

Carbon Storage Nitrogen-Fixing
Ability Life Span

Euphorbia
prostrata 22.38 16.44 28.32

√
4 Specialised

storage organ N-Fixer Annual

Ipomoea purpurea 32.59 12.14 53.04
√

5 Specialised
storage organ Non-N-Fixer Annual

Sonchus asper 13.67 16.86 10.48 × 6 Specialised
storage organ Non-N-Fixer Annual

Tephrosia capensis 16.60 7.75 24.45
√

9 Specialised
storage organ Non-N-Fixer Perennial

√
= represents the ability to resist herbicides; × = represents the inability to resist herbicides.

3. Discussion
3.1. Weed Traits Composition and Richness

Ecosystem functions are known to be affected by species composition [40,41], func-
tional trait composition of the community, and trait diversity [30,42]. We found weed
species trait composition of maize fields to differ before and after herbicide applications
(Figure 4). This trend is consistent with Hejda et al. [43], who found disturbance to be one
of the main influences on species trait composition. Trait variation can maintain diversity in
communities by reducing competition [44], but these responses are spatially and temporally
dynamic, as shown in our study. For example, some sites were relatively similar in trait
composition and richness, despite being located far apart (Tsolo, which is 40 km away from
Baziya), and were expected to differ, considering the different soil and climate conditions
(Figure 3) [43]. Field history in terms of use and weed management may also contribute to
this difference [3,45], even though these were not fully known and explored in our study.
We related our findings to the herbicide protocol that was successfully applied and efficient,
and generally seemed to override the environmental parameters, because although soil
and climate were different between sites, these sites still harboured plant traits that were
similar compositionally. This suggests that weeds of fields, be it before or after herbicide
application conditions, had specific, shared sets of traits that enabled persistence in fields
despite the herbicide disturbance effect or locality.

Additionally, assemblages differed in trait composition among sites in proximity
although they used similar herbicides and had similar soil and climate conditions. The
weeds of these maize fields were expected to have similar traits to persist, given their
exposure to similar environmental conditions and herbicide applications. A plausible
explanation for this dissimilar composition could be that of incorrect and/or overuse of
herbicides applied in the individual fields in terms of litres per hectare [45–47]. Moreover,
various factors such as the mixing ratio, time of day for application, and weather conditions
have been shown to have an influence when it comes to the response of weeds towards
herbicides [46,48]. In this study, these were some of the factors that we had no control over
as they were the farmer’s responsibility. Therefore, any such variation between sites could
have led to the observations reported here. The careful notation of exact times of application
and weather conditions needs to be documented to achieve similar weed control.

Weed composition differed before and after herbicide application, as the former was
less disturbed (before ploughing), and no herbicides were applied. Therefore, weeds with
traits associated with a more stable ecosystem would be present [49]. Weeds that appear after
ploughing and seed sowing are responding to intense disturbances and colonise fields with
seed or vegetative means after herbicide application. There is a selection for species with either
tolerance (vegetative) [49] or rapid colonisation ability (seeding) [50]. In the case of cropland
disturbance, weed species traits enabling weeds to persist after herbicide application would be
the most beneficial, but detrimental to the farmer, as they persist and thereby enable a shift in
trait composition in the fields [51]. It is for this reason that the herbicide application protocol
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of this study included non-selective herbicides, to better manage those species often hard to
control—especially where mechanical control is not possible.

Management strategies to counter herbicide resistance should consider species traits
that indicate persistence before herbicide application takes place. Herbicides are still the
best choice for overall weed control [52], but to cater to the different functional groups
of weeds, it is becoming important to be more proactive with weed control and post-
emergence herbicides by seeking advice from crop advisors and weed specialists to assist
with long-term planning initiatives [53]. The need for advice is supported by the lack
of differences in trait richness that was observed between before- and after-herbicide
application (Figure 6), suggesting that the two dominant weed assemblages before and
after herbicide application are pre-adapted to the changes brought about. The idea should
be to target those species within a particular functional plant response that are pre-adapted
to successfully survive in frequently disturbed environments.

3.2. Plant Functional Types

We reported a higher number of functional types for annual than for perennial weeds
(Table 1). This is because perennials are slower growing and not well-adapted to being
periodically disturbed by ploughing and herbicides and are continuously removed and
replaced by fast-reproducing annual species that colonise in abundance [50]. Annual weeds
are adapted to various disturbance scenarios and bloom continuously throughout the
season, but only live (and reproduce) when conditions are favourable [54]. Hence, they
have a wider range of functional types and are dominant in herbicide-disturbed fields
because over short time spans, they use resources efficiently, flower quickly, set seed, and
disperse between ploughing and herbicide application events [55].

Before a weed can germinate and grow, its seeds must reach and remain viable in the
soil seed bank of a specific area. The soil seed bank contains seeds from previous weed
generations within the region and time within the soil can represent a stage in the life cycle
of a weed [56]. At this point, weeds may have a chance to germinate or remain dormant
within the seed bank for many seasons. Farmers use tillage, crop rotation, as well as
herbicides to reduce and inhibit weed seeds that germinate [47]. Therefore, understanding
weed seed characteristics and requirements for germination in particular crop systems
remains essential in developing sustainable weed control strategies [45].

Botha et al. [30] also found that maize fields favoured annual species with a long-range
dispersal trait. These findings are further supported by that of Siebert et al. [57], that
reported the annual, nitrogen-fixing ability of forbs as favourable after abiotic disturbance
such as fire, herbivory, and drought stress. In addition, Botha et al. [30] found that maize
fields were characterised by a greater relative abundance of herbaceous growth forms with-
out nitrogen-fixing ability compared to the higher numbers of nitrogen-fixers in marginal
and rangeland vegetation. The differentiation in the relative abundance of nitrogen-fixing
taxa may be the result of fertiliser application in maize fields, which overrides the competi-
tive advantage that would favour nitrogen-fixers [30].

Most weed species that persisted in fields had carbon storage organs. Carbon storage
organs are important to aid survival in response to frequent disturbances in fields. Shen et al. [58]
demonstrated that disturbance contributed to a diversity of traits associated with carbon storage.

Assisted seed dispersal is one of the traits that was found to be common in our analysis
and possibly the reason PFTs 1, 3, 4, 5, and 8 maintained high abundances after herbicide
applications (Tables 3 and 4). Maize fields are dominated by weeds that are known to
spread their seeds through wind dispersal [31], which is typical for plants to overcome
high disturbance levels [59]. Tainton [60] found that wind dispersal is a characteristic
of pioneer species that often occupy disturbed sites. This is an adaptive strategy which
evolved to rapidly colonise open systems, which is ideally mimicked by the intensive
management associated with maize agriculture, including agro-chemical application [36].
Petit et al. [61] concluded that weed dispersal mechanisms are now globally driven by
agricultural management at multiple scales.
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Predominant weed species traits in maize fields revealed a positive relationship between
regional frequency and local abundance [62]. Our results here indicated maize crop fields to
be dominated by weeds that follow the C4 photosynthetic pathway (Supplementary Table S1).
This agrees with the findings by Fried et al. [31], as the majority of our weed indica-
tor species followed C4 photosynthesis, such as Bulbostylis humilis (Kunth) C.B.Clarke,
Erigeron bonariensis, Hibiscus trionum L., and Oncosiphon pilulifer (L.f.) Källersjö. In high light
and temperature environments, C4 plants tend to be more productive. Some agrotypes
are associated with a specific crop, and such association can evolve a system of mimicry,
where the weed resembles the crop at specific stages during its life cycle [63]. It would then
appear that the herbicide-resistant mechanisms are easier in C4 weeds. It has also been
reported that herbicide usage of glyphosate with higher concentrations than recommended
levels has led to the evolution of herbicide resistance in both C3 and C4 [64].

Plant species of the Poaceae, and those with triazine-resistant populations, were
documented to be more abundant in maize crop fields [31]. Although grass species richness
was high, we recorded only two indicator weeds from the Poaceae, namely, Bromus diandrus
Roth and E. coracana. Flowering period or season is another key trait of weeds for their
adaptation and survival [65]. Lososová et al. [66] reported specified flowering season as
one of the main weed traits in cultivated fields of Czech Republic. We also found perennial
PFTs to have specified flowering seasons throughout the year (Table 1), and this is further
supported by Charbonneau et al. [65] in their findings on perennials. It means that if weeds
flower, they will produce seeds in favourable conditions specific to the species and result in
the effective dispersal of the seeds, which makes the unaligned reproduction periods of
weeds difficult to control.

3.3. Herbicide-Resistant Weeds

Fried et al. [31] reported five species, Amaranthus retroflexus L., Chenopodium album L.,
Echinochloa crus-galli (L.) P. Beauv., Persicaria maculosa Gray, and P. lapathifolia (L.) Delarbre
to have traits resistant to herbicides. Although these weed species were not recorded
in this study, their plant genera and families were well represented. The families were
Amaranthaceae, Poaceae, and Polygonaceae, and their associated traits correspond with
that of species we reported on for maize fields. The common traits include annual life form,
C4 photosynthetic pathway, and specified flowering season.

Certain traits were identified for dominant annual weeds after herbicide applica-
tions, and distinguished between monocotyledonous and dicotyledonous, prostrate, and
erect-growing, nitrogen-fixing and non-nitrogen-fixing with specialised carbon storage
organs with a C3 and C4 photosynthetic pathway, non-spinescent and following an as-
sisted or unassisted seed dispersal. These traits are associated with related to dominant
weeds: Argemone mexicana L., Amaranthus viridis L., Bromus diandrus Roth, Bulbostylis humilis
(Kunth) C.B.Clarke, Chenopodium carinatum R.Br., Erigeron bonariensis L., Gisekia pharnacioides L.,
Hibiscus nigricaulis Baker f., Hibiscus trionum L., Ipomoea purpurea (L.) Roth, Indigofera spicata
ForsskForsk., Medicago polymorpha L., Oncosiphon pilulifer (L.f.) Källersjö, Sonchus asper (L.)
Hill, Solanum humile Lam., Solanum retroflexum Dunal, Urtica urens L., Xanthium spinosum L.
(Table 1) [2,67,68]. Since these weed species have traits that are pre-adapted to herbicide
disturbance and can persist after herbicide application, it is therefore necessary that they
are further investigated for their potential herbicide tolerance under different agricultural
practices and landscape management approaches. They also have the potential to be-
come problematic weeds, possibly with invasive traits, that may pose a threat to various
ecosystems and their functions.

4. Materials and Methods
4.1. Generated Plant List of Weed Species

The list of weed species (Supplementary Table S4) was generated from surveys con-
ducted in four study sites of the Oliver Tambo District Municipality, Eastern Cape Province,
South Africa (see Kwinda et al. [69] where the comprehensive sampling criteria and proce-



Agriculture 2024, 14, 223 15 of 20

dures are explained, including the identification process). The weed surveys in fields of
glyphosate-tolerant maize were carried out across three growing seasons, namely, 2017/18,
2018/19, and 2019/20. Overall, a total of 74 weed species were recorded within 208 quadrats
within fields. Glyphosate-tolerant maize NK603XMON810 (2017/18) and MON89034
(2018/19 and 2019/20) were planted by the farmers. Two different herbicide protocols were
administered to the maize fields in the three seasons, between the summer months of December
and February/March. The herbicide protocols applied are detailed in Table 6. The herbicide
spraying protocol consisted of a pre-emergence herbicide that was sprayed between three
and seven days after planting, followed by post-emergence spraying five to six weeks after
germination of the maize crop [69]. The herbicide protocol consisted of both selective and
non-selective herbicides, ensuring that a wide variety of weeds were controlled/managed
successfully. Surveys took place before ploughing and herbicide application and then again
after ploughing and two herbicide applications (pre- and post-emergence).

Table 6. Detailed listing of pre- and post-emergence herbicides applied in fields planted with glyphosate-
tolerant maize over three seasons (2017/18; 2018/19; 2019/20). Insecticides in italics.

Seasons Pre-Emergence Post-Emergence
Selective
(S)/Non-

Selective (NS)

Measurement/Use
Per Hectare

(ha)–200 L of
Water Mixing

Ratio Used Per ha

Active Ingredient Trade Name Active Ingredient Trade Name

2017/18 Primagram gold Primagram gold Primagram gold Primagram gold S 2.5 L/ha
2,4-D Amine 2-4-D Amine 480 SL 2,4-D Amine 2-4-D Amine 480 SL S * 2–5.4 L/ha
Halosulfuron Halo 750 WDG Halosulfuron Halo 750 WDG S 50 g/ha
Glyphosate PowerMax Glyphosate PowerMax NS 3 L/ha

Sorgomil Sorgomil Gold
600 SC Sorgomil Sorgomil Gold

600 SC S 1.4 L/ha

2018/19 Alpha-cypermethrin Alpha-thrin 100 SC Alpha-cypermethrin Alpha-thrin 100 SC Insecticide 200 mL/ha
Metolachlor Metolachlor 915 EC Metolachlor Metalochlor (ˆ) EC S ˆ 1–2 L/ha
Glyphosate PowerMax Glyphosate PowerMax NS 3 L/ha

Mesotrione Cantron 480 SC Halosulfuron
Halo 750 WDG

(50g water
soluble bag)

S 50 g/ha

Terbuthylazine Terbuweed
600 WDG S * 2–4 L/ha

2,4-D Amine 2,4-D Amine 480 SL S * 2–5.4 L/ha
Adjuvant Villa 51 Wetting agent 12 mL/ha

2019/20 Alpha-cypermethrin Alpha-thrin 100 SC Post-emergence herbicides were not applied Insecticide 200 mL/ha
Metolachlor Metolachlor 915 EC S ˆ 1–2 L/ha
Mesotrione Cantron 480 SC S ** 210–260 mL/ha
Glyphosate PowerMax NS 3 L/ha

ˆ Application per hectare differs when used for pre-emergence versus post emergence, and soil type. * Differs on
application of litres per hectare depending on soil type, conditions, and season. ** Application per hectare differs
based on soil clay percentage (%).

4.2. Functional Trait Identification and Adaptation for Herbicide Disturbance Analysis

The indicator value index (IndVal) proposed by Dufrene and Legendre [70] was
calculated from quadrat data to determine the indicator weed species in glyphosate-tolerant
maize fields. Overall abundance of all weed species was recorded from maize fields before
ploughing and herbicide applications. Frequency measures (%) were used for indicator
species analysis performed in RStudio using the IndVal function under the labdsv package
version 2.5-7, and significance levels were considered at p < 0.05.

Functional traits that have known positive responses to agricultural disturbance were
selected based upon reported and published data from different databases [32,71]. To detect
groupings of indicator weed species based on their trait scores, hierarchical clustering anal-
ysis with an Unweighted Pair Group Method with Arithmetic Mean (UPGMA)-clustering
algorithm and Gower distance measure appropriate for mixed (categorical and binary)
data types was created in PRIMER 6 [30]. The Gower distance measure was used because
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it is appropriate for mixed data types [30]. A Similarity Profile (SIMPROF) test was also
applied as an objective method for the identification of significant groupings compared to
subjective cut-off levels. Each life form (annual versus perennial) was analysed separately
to identify and describe the plant functional types across glyphosate-tolerant maize fields.
Since life form remains the strongest indicator of agricultural disturbance [72], the effects
of underlying important disturbance traits may be weakened when PFTs of life forms
are analysed collectively [5]. PFT clusters were identified at different hierarchical levels,
following the approach of Linstädter et al. [8].

Redundancy analysis (RDA) in Canoco 5 [73] was applied to the complete species–
trait matrix to test for clustering based on specific traits in ordinal space. Non-metric
multi-dimensional scaling (NMDS) ordinations of weed functional traits were compiled
using PAST software version 4 to determine the functional trait composition of indicator
species. A trait–species matrix of the 42 indicator weed species (determined by IndVal), and
11 functional traits (from the literature review) were multiplied with the species–abundance
matrix using the MMult function in Microsoft Excel to produce a matrix from which trait
diversity index calculations (richness) was performed in PRIMER 6 [74]. Prior to detailed
statistical analyses, the normality of trait richness data was tested in Statistica version 64
and transformed accordingly to adhere to assumptions for normality. Variables that were
transformed were appropriately back-transformed to generate visual representations. Sig-
nificant differences in weed species diversity among the sites, and for before-herbicide
application, were tested in Statistica. T-tests were performed using PFTs from before- and
after-herbicide applications to test for differences between the means of the two data groups
collected at different times in the same maize fields. The top ten most abundant weed
indicator species were selected manually from the IndVal results and their average sum for
the before-herbicide application survey was calculated in Microsoft Excel. These species
were selected according to the highest total number of individuals to determine whether
the total number of individuals per species increased or decreased when comparing the
selected traits per PFT before and after herbicide applications.

5. Conclusions

Maize fields are agroecosystems that are subjected to a diverse range of disturbances
through various management practices. Our study identified specific weed traits which are
associated with species that can persist in fields planted with glyphosate-tolerant maize.
We successfully documented specific patterns of plant functional types and specific weed
functional traits associated with maize fields before and after herbicide applications. Our
findings revealed that weed species in fields with glyphosate-tolerant maize share similar
traits in response to similar disturbances (first hypothesis supported). We further showed
that weed traits before herbicide application differed compositionally from those after
herbicide application (second hypothesis supported). In addition, specific traits (e.g., seed
dispersal) might be important for some species, but not others. Therefore, functional types
dictated species persistence and how they react to measures of control and/or disturbance
such as herbicide application in maize fields. Overall, we determined a set of plant traits
that might lead to herbicide resistance in weeds. As these traits can be linked to specific
plant functional groups of species after herbicide applications, this knowledge will enable
farmers to develop and adapt spray protocols and apply specific herbicides to target these
problematic weeds. To delay development of herbicide tolerance, farmers need to adopt
protocols that allow for rotation, as both annuals and perennials have different adaptive
strategies towards herbicide tolerance—ultimately resistance.

Even though we detailed some of the reasons behind our findings and various mech-
anisms behind some of the functional traits, they were still unclear for other observed
trends relating to weed responses to the agricultural disturbances. This is where a factor
such as the soil seed bank could have had an impact which needs to be considered for
further investigation. Other factors of interest could also include those on genetic variabil-
ity, the evolution of reproductive organs, and other survival lifespan traits. Some maize
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fields shared traits with those not in proximity, whereas those in proximity had differences
in traits. Although we assume this to result from various ecological and management
factors, it calls for further investigation and close monitoring of the herbicide protocols
administered, the monitoring of environmental variables, especially on spraying days
(including time of day and weather conditions), and the need for additional sampling
seasons. This approach will benefit the formulation of future management practices in
glyphosate-tolerant maize cultivation, while enhancing our knowledge of biodiversity and
conservation priorities within these grassland agroecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture14020223/s1, Table S1: Indicator weed species with
their functional traits in fields planted with herbicide tolerant (Glyphosate) maize. Table S2: Description
of plant functional traits. Table S3: Dissimilarity in weed trait assemblages across maize field sites at
p < 0.05. Table S4: List of species recorded for maize fields and margins in Baziya and Tsolo.
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