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Abstract: Throughout germination, which represents the initial and crucial phase of the wheat
life cycle, the plant is notably susceptible to the adverse effects of drought. The identification and
selection of genotypes exhibiting heightened drought tolerance stand as pivotal strategies aimed at
mitigating these effects. For the stated objective, this study sought to evaluate the responses of distinct
wheat genotypes to diverse levels of drought stress encountered during the germination stage. The
induction of drought stress was achieved using polyethylene glycol at varying concentrations, and
the assessment was conducted through the application of multivariate analysis and machine learning
algorithms. Statistical significance (p < 0.01) was observed in the differences among genotypes, stress
levels, and their interaction. The ranking of genotypes based on tolerance indicators was evident
through a principal component analysis and biplot graphs utilizing germination traits and stress
tolerance indices. The drought responses of wheat genotypes were modeled using germination data.
Predictions were then generated using four distinct machine learning techniques. An evaluation
based on R-square, mean square error, and mean absolute deviation metrics indicated the superior
performance of the elastic-net model in estimating germination speed, germination power, and water
absorption capacity. Additionally, in assessing the criterion metrics, it was determined that the
Gaussian processes classifier exhibited a better performance in estimating root length, while the
extreme gradient boosting model demonstrated superior performance in estimating shoot length,
fresh weight, and dry weight. The study’s findings underscore that drought tolerance, susceptibility
levels, and parameter estimation for durum wheat and similar plants can be reliably and efficiently
determined through the applied methods and analyses, offering a fast and cost-effective approach.

Keywords: tetraploid wheat; drought stress; germination; stress tolerance; modeling

1. Introduction

Wheat holds the distinction of being the primary staple food [1]. Tetraploid wheat is a
species that displays heightened vulnerability to abiotic pressures, particularly showing
susceptibility to drought [2]. This species exhibits a discerning preference for specific
climatic and soil conditions to attain optimal yield and quality and is more responsive to
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environmental challenges compared to bread wheat [3]. In 2021, durum wheat production
in Türkiye decreased by around 21% compared to the previous year [4].

The anticipated climate change and global warming are expected to exacerbate the
magnitude of stressors [5]. Plants commonly face a combination of biotic and abiotic
stressors within their native environment [6]. However, among all the stressors influenced
by climate change, drought emerges as the primary factor hindering plant productivity [7].
Climate change may have varying impacts on crop performance depending on the timing
and duration of drought events, as well as whether drought stress occurs alone or in
combination with heat stress. In the Mediterranean region, low rainfall and irregularities
in the rainfall regime can cause significant yield losses for crops grown under rainfed
conditions, such as durum wheat [8]. Drought stress during germination can have severe
consequences for the success of the plant’s life cycle, as an inadequate water supply at
this stage can hinder the robust growth of roots and shoots, resulting in significant crop
losses [9,10].

The global population is undergoing a significant and rapid growth trajectory, with
projections estimating that it will reach approximately 9.74 billion individuals by the year
2050 [11]. Simultaneously, there will be an escalating demand for sustenance. To meet
the nutritional requirements, it is crucial to cultivate new cultivars that demonstrate high
productivity and resilience to both biotic and abiotic challenges [12]. To facilitate the
development of novel drought-tolerant cultivars, it is essential to ascertain the tolerance
status of existing genotypes [13].

According to Rai et al. [14], obtaining accurate and dependable outcomes may be
achieved by performing selection during the first development phase in controlled lab-
oratory settings. In laboratory settings, NaCl, polyethylene glycol (PEG), sorbitol, and
mannitol are often used to induce drought stress in plants [15]. This manipulation serves to
augment the dry conditions within the plant’s growth environment, hence impeding water
uptake by the plant [16]. High molecular weight polyethylene glycols (PEGs) are often
used as stress agents in various studies [17]. This is mostly attributed to their water-soluble
nature, lack of toxicity, and inability to be absorbed by plant roots [18].

The examination of yield components, the assessment of yield stability, and the en-
hancement of stress tolerance represent conventional methodologies in plant breeding [19].
It is paramount to establish a clear and comprehensive understanding of the correlation
between improved agricultural features and their reciprocal impacts [20]. In controlled
breeding research, the effects of input elements (genotype and treatment factors) on ob-
served plant characteristics (outputs) have been extensively investigated [21,22]. Traditional
statistical approaches have been predominantly utilized for the examination and interpre-
tation of outcome variables [23,24]. Analysis of variance, principal component analysis
(PCA), and linear regression models are commonly employed techniques to determine the
associations between independent input factors and dependent output variables [25].

Machine learning (ML) algorithms are increasingly being employed in various aspects
of plant science and agriculture. In addition to these effective approaches, it is noteworthy
that ML algorithms, as a subfield of artificial intelligence, possess the capacity to make
precise predictions and enhance the efficacy of various intricate biological systems. Fre-
quently employed for acquiring knowledge and constructing models optimized for specific
tasks, ML algorithms undergo a learning process from data. Their objective is to provide
predictions for a designated target variable using knowledge acquired from the data’s prop-
erties [20,26,27]. Presently, the determination of drought tolerance, susceptibility levels,
and the estimation of observed parameters in plants can be reliably accomplished using
ML systems in the fastest, most cost-effective, and practical manner through the applied
methods and analyses.

The objective of this study was to investigate common tetraploid wheat genotypes
in Türkiye to determine their drought tolerance at the initial growth stage using a mul-
tivariate analysis and stress tolerance indices. Furthermore, the study aimed to employ
ML algorithms to predict the parameters observed during the early development phase
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of tetraploid wheat under drought conditions and to present a range of available ML
models. Consequently, this research sought to unveil the drought tolerance of varieties and
characterize genotypes suitable as parental plants for future breeding-focused studies.

2. Materials and Methods
2.1. Plant Materials

This research was conducted at Ankara University, Faculty of Agriculture, Department
of Field Crops. The study utilized eleven varieties extensively employed in durum wheat
cultivation in Türkiye, along with one hulled tetraploid wheat genotype, emmer (Triticum
dicoccum), sourced from the Kars province of Türkiye (Table 1). The selected genotypes in
our study have been registered in arid and semi-arid regions of Türkiye.

Table 1. Tetraploid wheat genotypes used in the research.

Genotype Type Registration Year Growth Habit Breeding Company

Altın-40/98 Cultivar 1998 Alternative Field Crops Central Research Institute,
Ankara, Türkiye

Artuklu Cultivar 2008 Spring GAP International Agricultural Research
and Training Center, Diyarbakir, Türkiye

Çakmak-79 Cultivar 1979 Alternative Field Crops Central Research Institute,
Ankara, Türkiye

Çeşit-1252 Cultivar 1999 Alternative Field Crops Central Research Institute,
Ankara, Türkiye

Eminbey Cultivar 2009 Winter Field Crops Central Research Institute,
Ankara, Türkiye

Kızıltan-91 Cultivar 1991 Alternative Field Crops Central Research Institute,
Ankara, Türkiye

Kunduru-1149 Cultivar 1967 Winter Field Crops Central Research Institute,
Ankara, Türkiye

Meram-2002 Cultivar 2002 Alternative Bahri Dagdas International Agricultural
Research Institute, Konya, Türkiye

Mirzabey-2000 Cultivar 2000 Alternative Field Crops Central Research Institute,
Ankara, Türkiye

Sarıçanak 98 Cultivar 1998 Spring GAP International Agricultural Research
and Training Center, Diyarbakir, Türkiye

Selçuklu-97 Cultivar 1997 Alternative Bahri Dagdas International Agricultural
Research Institute, Konya, Türkiye

T. dicoccum (Emmer) Landrace - Alternative Collected from Kars Province, Türkiye

2.2. Treatment Conditions and Plant Growth

The seeds underwent sterilization in 5% commercial bleach (NaClO) for a duration
of twenty minutes, followed by thorough washing with distilled water. Germination
was carried out in dark conditions at a temperature of 25 ± 1 ◦C. Drought stress was
induced using high molecular weight polyethylene glycol (PEG 6000) following the protocol
outlined by Michel and Kaufmann [28]. The levels of drought intensity (−0.50, −1.48, −2.95,
and −4.91 bar) were determined based on the work of previous researchers who deemed
them appropriate [29]. Data collection was conducted in accordance with the measurements
and counts established on the fourth and eighth days, following the guidelines provided
by the International Seed Testing Association (ISTA) [30].

Germination was considered complete when the radicles reached a length of 2 mm.
Subsequently, on the fourth day, the number of germinated seeds was recorded, and
the germination rate (GS) was calculated. On the eighth day, the germination strength
(GP) was determined by counting the germinated seeds. Additionally, the root length
(RL) was measured as the longest root formed by the seed, the shoot length (SL) was
measured as the endpoint of the plumule emerging from the coleoptile, and the fresh
weight (FW) was determined by weighing all embryonic roots, the coleoptile, and the
plumule immediately [31,32]. To calculate the dry weight (DW) of the plants, fresh samples
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underwent a drying process at 105 ◦C for two hours, and the subsequent mass was recorded.
The water absorption capacity (WAC) was determined by calculating the difference between
the FW and DW, and the percentage rate was subsequently computed.

Fischer and Maurer [33] proposed the stress susceptibility index (SSI) as a means of
measuring trait stability, considering changes in both potential and actual traits in variable
environments. Clarke et al. [34] evaluated the drought tolerance of wheat genotypes using
the SSI and found different annual variations in the SSI for different genotypes, allowing a
ranking of their patterns. An SSI > 1 in spring wheat cultivars indicates an above-average
susceptibility to drought stress, according to Guttieri et al. [35]. A smaller value of SSI is
preferred as larger values indicate a greater sensitivity to stress. Fernandez [36] proposed
the Stress Tolerance Index (STI) as a tool for identifying genotypes that exhibit high grain
yield under contrasting conditions. The STI is designed to identify genotypes with favorable
characteristics for the examined traits under both stressful and normal conditions.

Ypi = The value of observed feature of each genotype under normal conditions (control)
Ysi = The value of the feature of each genotype under stressful conditions
Yp = The mean of the features of the genotypes examined under normal conditions (control)
Ys = The mean of the features of the genotypes examined under stressful conditions

- Stress tolerance index: STI = Ypi × Ysi
Yp2

- Stress intensity: SI = 1 − Ys
Yp

- Stress susceptibility index: (SSI) =
1−( Ysi

Ypi )

SI

2.3. Experiment Design and Statistical Analysis

A completely randomized design was employed with four replications per genotype
and per stress level. A unit of replication were a Petri dish containing 50 seeds. Statistical
analyses of the acquired data were conducted using JMP 13.2.0 with SAS software ver-
sion 9.4. The impacts of genotype and stress level on germination responses were assessed
through analysis of variance and Duncan tests. PCA was carried out using standardized
average values for each germination parameter and the STI value for genotypes, providing
insight into their tolerance or susceptibility to drought stress. The dissimilarity between
genotypes was calculated using Ward’s method of clustering. Correlations between the
examined traits of tetraploid wheat genotypes under control and drought stress treatments
were computed using JMP 13.2.0 [37].

2.4. Machine Learning Analysis and Model Assessment

The primary aim of this study was to determine the relationships between input
variables (genotype and drought stress) and the output variable (observed germination
parameters) to develop a predictive model. Four ML techniques were employed, namely
support vector machines (SVM) [38], extreme gradient boosting (XGBoost) [39], elastic-
net (ELANET) [40], and the Gaussian processes classifier (GPC) [41]. The evaluation of
algorithm performance utilized three key metrics: root mean square error (MSE), R-squared
(R2), and mean absolute deviation (MAD). The coefficient of determination, denoted as
R2, gauges the extent to which the model (Equation (1)) replicates the observed data.
MSE measures the proximity between the predicted and actual values, as expressed by
Equation (2). Additionally, the root MAD characterizes the overall distribution of prediction
errors, as outlined in Equation (3) [20,26,27]. The dataset was randomly divided into two
sets using the caret package in the R software (version 4.3.2): the training set (70%) and
the testing set (30%). The Grid Search Cross-Validation (GCV) method was employed to
identify the optimal hyperparameters for each ML model, as indicated by Equation (4) [42].

R2 = 1 −
(

∑n
i=1
(
yi − yip

)2

∑n
i=1(yi − y)2

)
(1)
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MSE =

√
1
n

n

∑
i=1

(
yi − yip

)2 (2)

MAD =
1
n

n

∑
i=1

∣∣yi − yip
∣∣ (3)

GCV(λ) =
∑n

i=1
(
yi − yip

)2[
1 − M(λ)

n

]2 (4)

where n is the training/testing sample size in the dataset, yi is the measured real value, yip is
the predicted value, and y is the measured values mean. M(λ) is the penalty function for the
complexity of the model covering λ terms. The R program was used for the computation
of ML algorithms and performance metrics [26,27].

3. Results

According to the variance analysis of the data, it was determined that the differences
among genotypes and stress levels were significant at p < 0.01 for all examined parameters.
Additionally, the Genotype × Stress interaction was found to have a significant effect at
p < 0.01 on all parameters, except for germination power (Table 2). Figure 1 displays the
mean, minimum, and maximum values resulting from the interaction between genotype
and stress.

Table 2. Variance analysis of tetraploid wheat genotypes’ germination performances under different
drought stress levels.

Variation Source df
Mean Square

GS GP RL SL FW DW WAC

Genotype (G) 11 184.833 ** 97.391 ** 17.668 ** 10.879 ** 0.290 ** 0.047 ** 242.055 **
Stress level (S) 4 2981.008 ** 642.359 ** 628.871 ** 522.911 ** 5.938 ** 0.057 ** 9299.92 **

G × S 44 35.308 ** 16.267 ns 2.936 ** 6.641 ** 0.053 ** 0.005 ** 72.837 **

GS: germination speed; GP: germination power; RL: root length; SL: shoot length; FW: fresh weight; DW: dry
weight; WAC: water absorption capacity. ** 0.01 significant at the probability level; ns: non-significant.

3.1. Germination Speed and Germination Power

The results suggest that the impact of drought stress on germination rate is more
significant than its effect on GP. Specifically, compared to the control group, the germination
rate of genotypes under −1.48 bar drought stress was significantly reduced. Notably,
Artuklu exhibited the highest GS, particularly at −4.91 bar, representing the highest level of
drought stress. At this maximum stress level, T. dicoccum displayed the lowest GS (66.6%)
(Supplementary Table S1). Considering stress-tolerance indices, the varieties demonstrating
the highest tolerance in terms of GS were Eminbey, Kızıltan-91, and Mirzabey 2000 at
−0.50 bar drought stress, Altın-40/98 at −1.48 bar drought stress, and Artuklu at −2.95
and −4.91 bar drought stress (Supplementary Table S2). Conversely, based on the SSI,
Kunduru-1149, Eminbey, Selçuk-97, and Meram-2002 were significantly affected by drought
stress, resulting in a notable reduction in GS. The highest stress-susceptibility indices were
observed in Kunduru-1149 at −0.50 bar stress, Eminbey and Selçuklu-97 at −1.48 bar
stress, and Meram-2002 at −2.95 bar and −4.91 bar stress levels. Moreover, drought stress
had a comparatively lower impact on the germination rate of tetraploid wheat genotypes.
It was observed that the GP of these varieties was not affected by the -0.50 bar level,
representing the lowest drought stress level, and remained comparable to the control
group (Supplementary Table S1). Across the different levels of drought stress, Altın-40/98
displayed the highest average GP, while T. dicoccum exhibited the lowest. According to
the STI, Altın-40/98 achieved the highest tolerance values at all stress levels. Conversely,
based on the SSI, the varieties whose germination power was most affected by drought
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stress were identified as Artuklu, Kunduru-1149, and Selçuklu-97 at −0.50 bar, Selçuklu-
97 at −1.48 bar, Eminbey at −2.95 bar, and Eminbey and Kunduru-1149 at −4.91 bar
(Supplementary Table S2). When the genotypes were analyzed in terms of GS and GP,
it became evident that there were significant decreases, especially at the fourth and fifth
stress levels.
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Figure 1. The meaning of parameters examined according to genotype and stress levels. GS: germination
speed; GP: germination power; RL: root length; SL: shoot length; FW: fresh weight; DW: dry weight;
WAC: water absorption capacity; RMSE: root mean square error; R2: coefficient of determination.

Even though −0.50 bar represented the lowest drought stress level, it caused a sig-
nificant reduction in the root length of all genotypes compared to the control group. The
decreases in root length persisted with increasing stress levels. Notably, Kızıltan-91 and
Sarıçanak 98 exhibited the highest mean root length at different drought stresses. Specifi-
cally, Kızıltan-91, at −0.50 bar, −1.48 bar, and −4.91 bar stress levels, and T. dicoccum at the
−2.95 bar stress level showed the most robust root formation (Supplementary Table S2).
The most tolerant genotypes in terms of root development, according to the STI, were
Kızıltan-91 at −0.50 bar and −1.49 bar stresses, Eminbey at −2.95 bar stress, and Kızıltan-91
at −4.91 bar stress. On the other hand, based on the SSI, the genotypes where drought
stress significantly affected root development were Çeşit-125 at the −0.50 bar, −1.48 bar,
and −2.95 bar drought levels, and Altın-40/98 and Çakmak-79 at −4.91 bar stress (Supple-
mentary Table S2).

Moreover, drought stress had a more pronounced impact on shoot development
compared to root development in tetraploid wheat genotypes. When examining the
average shoot length of the genotypes, there was an approximately 61% decrease compared
to the control group at −0.50 bar, the lowest drought level in the study. The sharp declines
in shot length continued with increasing stress levels. Shoots did not occur in some
genotypes at drought stresses of −2.95 bar (Çeşit-1252, Meram-2002, and Selçuklu-97) and
−4.91 bar (Çakmak-79, Çeşit-1252, Eminbey, Kızıltan-91, Meram-2002, and Selçuklu-97).
Eminbey formed the highest shoot length in terms of the general shoot length average of
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genotypes but could not produce shoots at high-stress levels. However, according to the
results under stress pressure, the genotype that produced the most shoots was Sarıçanak 98.
When stress tolerance values were considered based on shoot-forming abilities, Eminbey
at −0.50 bar stress, Kızıltan-91 at −1.49 bar stress, Altın-40/98 at −2.95 bar stress, and
Altın-40/98 and Sarıçanak 98 varieties at −4.91 bar stress had the highest index values.
However, according to the SSI, at −0.50 bar drought, Çeşit-1252; at −1.49 bar, Meram-2002;
at −2.95 bar, Çeşit-1252, Meram-2002, and Selçuklu-97; at −4.91 bar, Çakmak-79, Çeşit-1252,
Eminbey, Kızıltan-91, Kunduru-1149, Meram-2002, and Selçuklu-97 were identified as the
most susceptible varieties in terms of shoot elongation (Supplementary Table S2).

3.2. Fresh Dry Weight and Water Absorption Capacity

The FW of tetraploid wheat genotypes were not as significantly affected as root and
shoot formation under the pressure of drought. The highest mean FW was observed in the
control group, with gradual decreases occurring with increasing stress levels. Specifically,
the highest average FW was observed in Eminbey, while the lowest was in Selçuklu-97.
FW was measured to be the highest in the control group and at −0.50 bar for Eminbey, at
−1.49 bar for Altın 40/98, and at −2.95 and −4.91 bar for Mirzabey-2000 (Supplementary
Table S1). According to the STI, the genotype most tolerant regarding FW was Eminbey at
−0.50 bar, −2.95 bar, and −4.91 bar stresses, and Altın-40/98 at −1.48 bar stress. On the
other hand, based on the SSI in terms of FW, the most vulnerable genotypes were Çeşit-1252
at the −0.50 bar drought level, Meram 2002 at the −1.48 bar, −2.95 bar, and −4.91 bar
drought levels (Supplementary Table S2). The DW average was highest in Eminbey and
lowest in T. diccoccum. Eminbey consistently had the highest DW values in both the control
group and under all stress conditions (Supplementary Table S1). According to the STI,
Eminbey displayed the highest tolerance values at all stresses regarding DW. However,
based on the SSI, it showed the highest susceptibility in terms of DW, with Çakmak-79
being the most susceptible at the −0.50 bar, −2.95 bar, and −4.91 bar drought levels, and
Kunduru-1149 being the most susceptible at the −1.49 bar and 2.95 bar drought levels
(Supplementary Table S2).

Furthermore, the water absorption abilities of the tetraploid wheat genotypes exhibited
a significant decrease with the increasing pressure of drought because of drought stress.
There was a 53% decrease in water absorption averages of the genotypes between stress-
free conditions and the highest stress level. The WAC averages at all stress levels were
highest for Mirzabey 2000 and lowest for Selçuklu 97. According to the STI, the most
tolerant genotypes regarding WAC were Artuklu at −0.50 bar, Altın-40/98 at −1.48 bar,
and Mirzabey 2000 at −2.95 bar and −4.91 bar stress. The STI for WAC was highest for
Artuklu at −0.50 bar stress, Altın-40/98 at −1.48 bar stress, and Mirzabey 2000 at −2.95 bar
and −4.91 bar stresses. Conversely, based on the SSI, the most sensitive varieties in terms
of water absorption were Çeşit-1252 at the −0.50 bar and −2.95 bar drought levels, Meram
2002 at the −1.48 bar drought level, and Eminbey at the −4.91 bar drought level.

3.3. Multivariate Analysis

The STI and SSI demonstrated inversely proportional values. Therefore, the STI was
used in the first PCA. The PCA revealed a high level of variation among the tetraploid wheat
genotypes. The distribution of tetraploid wheat genotypes concerning the first two principal
components under different drought levels, based on morphological characteristics and STI
values, was tabulated in a biplot (Figure 2). The variation examined with PCA indicated that
the first two principal components contributed 75.20% of the total variance among the seven
variable germination traits under normal conditions. Furthermore, the first two principal
components contributed to 77.75%, 68.47%, 67.20%, and 63.37% of the total variance among
the seven germination traits and seven STI values for the −0.50 bar, −1.48 bar, −2.95 bar,
and −4.91 bar drought stress levels, respectively. Taking into consideration the means of
the fourteen values examined, it was determined that the first two principal components
constituted 69.63% of the total variation (Supplementary Table S3).
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Figure 2. Classification of tetraploid wheat genotypes for different drought stress levels along
with the first and second principal components on biplots ((a) control, (b) −0.50 bar, (c) −1.48 bar,
(d) −2.95 bar, (e) −4.91 bar, and (f) mean of all). GS: germination speed; GP: germination power; RL:
root length; SL: shoot length; FW: fresh weight; DW: dry weight; WAC: water absorption capacity;
STI: stress tolerance index.
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The first two principal components were graphically plotted to illustrate the similari-
ties among genotypes at different drought stress levels (Figure 2). The biplot graphs were
designed by computing each feature individually to separate the stress levels, demonstrat-
ing the variability of genotypes for the seven morphological traits and seven STI values in
the study. The graphical representation on the biplot indicates a wide genetic variability
among the genotypes based on their distribution model under different drought stresses
(Figure 2). Considering the positive and high values of these two principal components
on the biplot, genotypes located near the investigated traits are likely to be highly efficient
under both stressed and unstressed conditions. Notably, in the biplot graphs, Selçuklu-97
and Meram-2002 are seen to be in the negative direction of the first two principal com-
ponents. This suggests that these genotypes are more susceptible to drought stress than
others. Throughout all the biplot graphs, T. dicoccum was observed to be located at a
distance from the other genotypes, indicating a potential difference in its genetic structure.
In the biplot charts, it is evident that Artuklu, Eminbey, Kızıltan-91, and Sarıçanak-98 were
distributed near tolerance indicators. This suggests that these genotypes may possess a
higher stress tolerance compared to others. The biplot analysis provides valuable insights
into the genetic variability and stress response of the tetraploid wheat genotypes under
different drought conditions.

In the second biplot analysis (Figure 2), conducted to reveal the relationships among
genotypes and all parameters examined, a total of 11 principal component axes were
obtained, with five principal component axes having an eigenvalue greater than 1.0. The
eigenvalues of these five principal component axes, which collectively account for 91.85%
of the total variation, range between 1.06 and 7.45. Upon examining the angles between
the axes, a high angle among the SSI(WAC), SSI(GS), and SSI(SL) axes and the STI(WAC),
WAC axes suggests a highly negative correlation among these parameters. Conversely,
the slight angle between the GP axis and the axes of STI(GS), STI(GP), and GS in the same
region reveals a highly positive relationship among these parameters. Considering the
axis regions and lengths of all parameters, as well as their angles with each other and
the positions of genotypes, T. dicoccum is located alone and in a region opposite to the
axes. Considering this analysis, T. dicoccum appears to have the lowest values regarding
the examined properties compared to the other genotypes. The biplot analysis provides a
comprehensive view of the relationships among the genotypes and various parameters,
aiding in the interpretation of the dataset and highlighting the characteristics that contribute
most to the observed variability.

Additionally, according to Figure 3, T. dicoccum is positioned in the highest class in
parameters close to the Eminbey axis tip, clustered in the same region with the Kızıltan 91
and Altın 40/98 varieties. Upon examining the WAC and STI (WAC) axes, Mirzabey-2000
and Sarıçanak 98 emerge as the leading genotypes (Figure 3, Supplementary Table S2).

To analyze the interactions between genotypes throughout the germination period and
to decide which genotypes are appropriate for future breeding programs, a cluster analysis
was conducted using the evaluated characteristics of the genotypes that were subjected to
drought stress. Understanding the diversity in parents is crucial for the improvement of
breeding programs aimed at developing new, tolerant varieties. According to the cluster
analysis, the genotypes with the least genetic diversity distance between them concerning
GP and stress indexes were identified as Çeşit-1252 and Kunduru-1149. On the other hand,
the genotypes with the furthest genetic diversity distance between them were Artuklu and
T. dicoccum (Figure 4). The findings suggest that T. dicoccum exhibits distinctive genetic
characteristics compared to the other genotypes, particularly in terms of germination
performance under drought stress. This differentiation is further emphasized by both
the principal component analysis and cluster analysis. These insights can inform future
breeding strategies for developing improved, drought-tolerant wheat varieties.
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Figure 4. Phylogenetic tree of tetraploid wheat genotypes according to germination performance and
tolerance indices under different drought stresses.

The correlation analysis revealed statistically significant relationships among all pa-
rameters. According to the analysis, the highest positive correlation among the quantitative
traits was identified between FW and RL (0.917). Conversely, the highest negative cor-
relation was observed between WAC and DW (−0.549). Notably, there was a consistent
negative correlation between DW and all the other parameters (Figure 5).
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Figure 5. Heat map showing the correlation between germination parameters in tetraploid wheat
genotypes under various levels of drought stress. * Significant at the 0.05 probability level; ** sig-
nificant at the 0.01 probability level; ns: non-significant. GS: germination speed; GP: germination
power; RL: root length; SL: shoot length; FW: fresh weight; DW: dry weight; WAC: water absorption
capacity; r: Pearson’s correlation.

3.4. Machine Learning (ML) Analysis

The responses of Triticum durum wheat to drought stress were modeled with respect to
various variables, including GS, GP, RL, SL, FW, DW, and WAC. Predictions were generated
using four different ML techniques: SVM, XGBoost, Elastic Net (ELNET), and GPC. The
modeling approach employed a total of twelve wheat genotypes (Table 1) and involved
five levels of drought stress (0, −0.50, −1.48, −2.95, and −4.91 bar) applied to the geno-
types. Separate models were developed for each of the seven variables studied as output
parameters. The study’s findings are presented comprehensively in Table 3, providing
an overview of the outcomes generated by the ML models utilized in the investigation.
Evaluation metrics, such as MSE and MAD, were employed to assess the overall perfor-
mance of the algorithms. A reduction in the values of these metrics indicates that the
model predictions are becoming closer to the actual observed values. Additionally, the
study evaluated the extent to which the R2 model could elucidate the variability observed
between the independent factors and the dependent variable under investigation. The
performances of the SVM, XGBoost, ELNET, and GPC models were assessed using a GCV
approach. Among the various evaluation metrics, the XGBoost model exhibited the lowest
MSE and MAD values, indicating a superior predictive accuracy for the training data.
The MSE values for the variables GS, GP, RL, SL, FW, DW, and WAC were found to be
3.280, 2.291, 0.355, 0.263, 0.058, 0.012, 0.008, and 1.259, respectively. Additionally, the
MAD values for the same variables were determined to be 2.591, 1.426, 0.245, 0.157, 0.039,
and 0.795, respectively. Furthermore, this model demonstrated the highest R2 coefficient
while making predictions for the variables (GS, GP, RL, SL, FW, DW, and WAC) using
the training dataset (0.890, 0.789, 0.992, 0.995, 0.980, 0.974, and 0.993, respectively). For
the training dataset, the XGBoost model emerged as the top-performing model compared
to the other models (Table 3). Each trained ML model underwent evaluation by making
predictions based on the test dataset (Table 3). This helps estimate how well the model is
likely to perform on new, unseen data. Based on the evaluation of the R2, MSE, and MAD
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metrics, the ELNET model demonstrated a superior performance in predicting GS, GP, and
WAC. Furthermore, while evaluating the criteria metrics, it was concluded that the GPC
model had a better performance in predicting RL, but the XGBoost model had a better
performance in estimating SL, FW, and DW. Figure 6 displays the linear regression graph
depicting the projected values of the models that provide the most accurate prediction
model for the variables under examination, alongside the observed actual values.

Table 3. Algorithms’ goodness-of-fit criteria for prediction of variables.

Observed
Variable

ML
Criterion

SVM XGBoost ELNET GPC

Train Test Train Test Train Test Train Test

GS 1
R2 0.801 0.600 0.890 0.730 0.796 0.762 0.871 0.715

MSE 4.406 6.320 3.280 5.190 4.455 4.873 3.540 5.339
MAD 3.389 4.831 2.591 3.861 3.608 3.755 2.990 4.266

GP
R2 0.655 0.310 0.789 0.352 0.621 0.514 0.758 0.349

MSE 2.934 5.894 2.291 5.713 3.074 4.946 2.455 5.725
MAD 1.794 4.264 1.426 3.915 2.267 3.581 1.730 4.092

RL
R2 0.866 0.736 0.992 0.980 0.944 0.949 0.987 0.981

MSE 1.454 2.072 0.355 0.571 0.936 0.915 0.449 0.552
MAD 0.802 1.217 0.245 0.409 0.706 0.705 0.329 0.407

SL
R2 0.779 0.673 0.995 0.962 0.887 0.852 0.990 0.942

MSE 1.723 2.244 0.263 0.761 1.234 1.512 0.368 0.944
MAD 0.758 1.147 0.157 0.457 0.794 0.912 0.230 0.501

FW
R2 0.903 0.759 0.980 0.962 0.915 0.892 0.974 0.945

MSE 0.128 0.193 0.058 0.077 0.120 0.129 0.066 0.092
MAD 0.080 0.125 0.039 0.056 0.093 0.106 0.047 0.070

DW
R2 0.901 0.807 0.974 0.944 0.733 0.793 0.935 0.886

MSE 0.023 0.033 0.012 0.018 0.038 0.034 0.019 0.025
MAD 0.015 0.022 0.008 0.014 0.029 0.028 0.014 0.020

WAC
R2 0.924 0.830 0.993 0.891 0.949 0.902 0.989 0.880

MSE 4.309 6.750 1.259 5.419 3.505 5.140 1.657 5.684
MAD 2.903 4.738 0.795 3.914 2.844 2.492 1.238 3.235

1 GS: germination speed; GP: germination power; RL: root length; SL: shoot length; FW: fresh weight; DW: dry weight;
WAC: water absorption capacity; MSE: root mean squared error; MAD: mean absolute deviation; SVM: support
vector machines; XGBoost: extreme gradient boosting; ELNET: elastic-net; GPC: Gaussian processes classifier.
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their real values. GS: germination speed; GP: germination power; RL: root length; SL: shoot length;
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XGBoost: extreme gradient boosting; ELNET: elastic-net; GPC: Gaussian processes classifier.

4. Discussion

The successful cultivation of tetraploid wheat, with its high yields, hinges upon its
ability to withstand drought stress during early development. A pivotal aspect in achieving
resilient strains is the identification of drought tolerance levels in existing varieties, a crucial
step in effective breeding programs. This emphasis on drought tolerance is underscored by
prior research conducted by Sayar et al. [43] and Aslan et al. [44], where the assessment
of wheat responses to drought stress during germination, using PEG like our current
study, aligns with the present research focus. Both studies emphasized the significance
of determining tolerance levels, particularly during germination, as an essential measure
in addressing challenges posed by drought. Notably, Badr et al. [45] stressed the impor-
tance of studying stress-responsive traits in genotype germination performance as a swift
and effective screening method for identifying drought-resistant genotypes. The current
research aimed to expand upon these insights by delving into the drought tolerance of di-
verse tetraploid wheat genotypes during the initial growth stage, employing a multivariate
analysis and ML algorithms.
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The research findings highlight a noticeable impairment in the germination perfor-
mance of tetraploid wheat genotypes with increasing drought stress. This aligns with the
observations of Aslan et al. [44] and Benlioglu and Ozgen [2], who similarly reported a
negative impact of drought on the germination of tetraploid wheat. Root length emerges as
a critical factor influencing wheat tolerance to drought during the early growth stages [44].
A longer root allows the plant to penetrate deeper into the soil, accessing more water re-
sources. Varieties that excel in root formation during germination in arid conditions tend to
exhibit better shoot development in subsequent growth stages. Therefore, both RL and SL
are important features in evaluating drought tolerance [46]. In this study, Artuklu, Eminbey,
Kızıltan-91, Sarıçanak-98, and T. dicoccum stood out in terms of root development under
high drought stress. The results indicate that drought stress significantly affected shoot
development compared to root growth, consistent with previous studies [47]. Sarıçanak 98
and Mirzabey 2000 outperformed other genotypes, demonstrating superior shoot formation
and development, particularly under conditions of high drought stress. The increasing
drought pressure in the external environment hampers seed absorption of sufficient water
for germination [48]. Thus, drought stress hinders the use of stored nutrients in the seed
for shoot and root development [49]. In this study, an increase in dry weight during the
germination phases of tetraploid wheat varieties was observed to coincide with escalat-
ing stress levels. This phenomenon may be attributed to limited water access due to the
heightened drought stress, which prevents the optimal utilization of storage nutrients [50].
Consequently, the impact of drought stress on FW was more pronounced than on DW,
which is consistent with the findings of Sayar et al. [43]. In contrast to studies conducted on
barley [50] and wheat [46], our results suggest a tendency for DW to increase with elevated
stress levels.

Many studies conducted at different ploidy levels have consistently indicated that
drought stress significantly reduces grain yield, yield components, harvest index, plant
height, leaf area, and DW [51]. The utilization of STI and SSI provides a clear differenti-
ation among tetraploid wheat genotypes based on their germination performance under
varying drought stress levels [52]. However, it is important to note that STI and SSI may
not always yield parallel results, especially when there is no statistically significant dif-
ference between genotypes and treatments. This discrepancy was evident in our study,
particularly in the GP parameter, where the difference between genotypes and treatments
was statistically insignificant. Similarly, in the DW parameter, which exhibits an inverse
relationship with stress levels, these indexes may be deemed inappropriate for assessing
tolerance. This discrepancy in results could be attributed to the sensitivity of these in-
dices to statistical variations and their effectiveness in capturing differences under specific
conditions. Researchers should be cautious and consider alternative indices or additional
statistical analyses when dealing with parameters that may not align well with STI and SSI,
especially in cases where there is no statistically significant difference between genotypes
and treatments.

Selection based on a combination of indices can be a valuable strategy for developing
drought tolerance in tetraploid wheat. Utilizing methods like PCA is crucial for charac-
terizing genotypes under stress conditions. A narrow vector angle of axes in the same
region indicates significant positive relationships among these elements [53]. Moreover,
for the efficient use of PCA and accurate interpretation of results, it is recommended that
the first two or three principal components explain at least 25% of the total variation [25].
The biplot graphs generated in our study revealed that Artuklu, Eminbey, Kızıltan-91, and
Sarıçanak-98 were positioned near the tolerance indicators, indicating a higher drought
stress tolerance compared to the other genotypes. Conversely, Selçuklu-97, Meram-2002,
and T. dicoccum were located further away from tolerance indicators, suggesting a lower
drought tolerance. This observation aligns with the findings of [54], who noted that domes-
tication, selection, and breeding of wheat have positively influenced the improvement of
above-ground biomass, ultimately increasing wheat yield. Similarly, our study indicated
that T. dicoccum exhibited a low drought tolerance during the germination period. The
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germination performance of tetraploid wheat varieties under different drought stress levels
unveiled a wide variation among genotypes, emphasizing the importance of a multifaceted
approach for selecting genotypes with robust drought tolerance.

Methods based on ML offer the advantage of creating nonlinear correlations between
yield factors and independent samples [20,26]. ML has demonstrated significant advance-
ments compared to traditional regression models that rely on linear associations [27,32,55].
This technique allows for a comprehensive examination of multitemporal field sample data,
facilitating the optimization of plant growing conditions and crop output [56–58]. The
utilization of historical sampling and prediction models is crucial for enhancing future crop
management strategies, providing valuable insights into the impact of previous farming
practices and abiotic variables on observed target metrics [5]. Moreover, the selection of
algorithms used in the estimation process holds significant importance. Various measures,
such as MSE, MAD, and R2, are employed to determine the most optimal and superior
performing algorithms [27]. Based on the results obtained from this research, it can be
concluded that the ELNET model demonstrated a higher level of effectiveness in forecast-
ing GS, GP, and WAC. The analysis also revealed that the GPC model exhibited superior
predictive performance in relation to RL, while the XGBoost model demonstrated a better
predictive performance for SL, FW, and DW. The models that exhibited the highest predic-
tive accuracy in relation to the observed variables had a range of values between 0.7324 and
0.9932, as indicated by the linear regression R2 metric (Figure 6). The SL parameter estimate
yielded the highest accuracy in the R2 value measurement. The use of these algorithms
in forthcoming breeding investigations has the potential to enhance the decision-making
process in tetraploid wheats under drought situations using data-driven methodologies.
Furthermore, this study provides a fast and cost-effective method to determine the tolerance
of genotypes to drought stress.

5. Conclusions

The responses and tolerance levels of tetraploid wheat genotypes to drought stress
during the early period were assessed based on germination performance, STI, SSI, and a
multivariate analysis. All PEG treatments led to reduced germination rates and delayed
seedling growth. Severe drought stress levels of −2.95 bar and −4.91 bar in the early period
inhibited further growth in some genotypes, indicating the sensitivity of these genotypes
to these stress levels. The STI and SSI effectively conveyed the tolerance and susceptibility
levels of the genotypes. The PCA provided valuable insights into tolerance levels and
relationships among different parameters by analyzing the distribution of genotypes in
the direction of tolerance indicators. The cluster analysis confirmed the results of the PCA,
demonstrating a divergence across genotypes with respect to the characteristics under
investigation. Moreover, the study suggests that employing a combined ML technique,
potentially incorporating additional ML methods, could provide a reliable approach to
establish the relationship between tetraploid wheats subjected to drought stress and their
observed parameters during the early phases of growth. This integrated approach may
offer a time-saving and cost-effective means of determining drought tolerance and suscep-
tibility levels in tetraploid wheat. Overall, the methods and analyses applied in this study
present a comprehensive and efficient approach for assessing drought stress in tetraploid
wheat genotypes.
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//www.mdpi.com/article/10.3390/agriculture14020206/s1, Table S1. The mean values and Duncan
groups of germination parameters of tetraploid wheat genotypes under different drought stress
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genotypes. Table S3: Eigenvalues and percent of total variation for the principal components.
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31. Haliloğlu, K.; Türkoğlu, A.; Aydin, M. Determination of imazamox herbicide dose in in vivo selection in wheat (Triticum aestivum

L.). Eregli J. Agric. Sci. 2022, 2, 1–11.
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