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Abstract: Aiming at the problems of low soil cover and serious wear and tear of transmission parts in
the soil lifting device of potato planters, this paper carries out innovative optimization design of its
key parts based on TRIZ theory. The discrete element model of the soil model and the multi-body
dynamic model of the soil lifting device are established, the upper scraping and lower scraping
soil lifting devices are simulated respectively through the method of DEM-MBD coupling, and the
working mechanism of the soil lifting device is further explored. The simulation results show that the
lower scraping type lifting device has a large conveying capacity and a stable flow rate at the soil
outlet. The results of the soil tank performance comparison test show that: the improved soil lifting
device has a simple structure, large conveying capacity, stable flow rate, and fast flow speed and is
not easily congested. It meets the standard requirements of dryland potato seedling strip mulching
planting technology on mulching parameters and is of great significance for improving dryland food
production on the Loess Plateau.

Keywords: TRIZ theory; innovative design; discrete elements; multi-body dynamics; coupled DEM-
MBD simulation

1. Introduction

Potato is an important non-cereal food crop widely cultivated in the world and occu-
pies an important position in agricultural production planning. According to the statistics
of the Food and Agriculture Organization of the United Nations (FAO), it is cultivated in
150 countries with a production area of more than 20 million hectares. Together with rice,
wheat, and corn, it forms the world’s four major staple crops. Due to differences in natural
conditions, cultivation requirements, and agronomy, the level of mechanization in different
regions is also different.

According to the regional characteristics and planting mode of potato planting in
Gansu Province, this paper develops a potato film burrowing planter suitable for the
agronomic requirements of film mulching planting in dry land. By studying the mechanism
and structure of the key devices of potato burrowing, the composite operation of film
burrowing, precise sowing, soil lifting, and soil covering can be realized in mechanized
potato planting. Through the designed potato planting machine, the precise planting and
efficient operation of potato film seeding can be realized. The results and methods can
reduce the labor intensity, improve the quality of operation, reduce the loss and waste in
the sowing process, and enhance the comprehensive productivity of the industry, which is
conducive to expanding the scale of potato industry in the northwest arid area, increasing
potato yield, reducing the burden of human labor, and improving agricultural production
efficiency. This will further promote high-quality and high-yield potato and industrial
quality and efficiency and promote farmers’ income and rural revitalization industry
development and is of great significance to ensuring food security.
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The volatility of oil prices as a result of the Russian–Ukrainian situation has deeply
affected the agricultural sector, which has led to an increase in the operating costs of mech-
anized implements, further pushing up the production costs of agricultural products [1,2].
Considering the seasonal demand and high environmental requirements that agricultural
equipment faces during its service life, any design flaw or malfunction may trigger a reduc-
tion in efficiency and a downturn in profitability, which can seriously inhibit consumers’
willingness to purchase agricultural equipment. In this context, it is particularly important
to utilize advanced design tools to find strategies to solve practical problems. Through
the knowledge-based reasoning process, we can avoid blind guesses and randomized
experiments, thus shortening the R&D cycle and reducing production costs. This provides
a brand new perspective and idea for the research and development of modern agricultural
machinery. TRIZ, as a systematic and knowledge-based innovation design methodology
system, reveals to us the inherent laws and principles of innovation design [3]. It integrates
innovative ways of thinking, analytical tools, and knowledge-based problem solving meth-
ods, effectively bridging the gap between the rapid updating of market demand and the
innovative design capability of engineers. By applying TRIZ, enterprises can improve their
ability of independent innovation and design and significantly shorten the cycle of product
improvement and development.

At present, scholars at home and abroad have conducted a large number of studies
around TRIZ theory and agricultural product design. In 2017, Wang Yunpeng et al. [4]
designed four pepper picking tool solutions based on TRIZ theory and evaluated them
using the triangular fuzzy number complementary judgment matrix. In 2018, Jianqiang
Wang et al. [5] combined the eco-efficiency factor with TRIZ to optimize the design of key
components of silage equipment. In 2019, Jian-wei Wang et al. [6] innovated the appearance
and function of small rotary tiller products by constructing the TRIZ innovation design
model, analyzing the contradiction between product appearance and function to achieve a
good match. However, none of these research areas has dealt with potato mulching devices.

The potato mulching device plays a key role in agricultural production in arid regions.
Under windy and atmospheric conditions, the device not only stabilizes the mulch and
prevents it from being lifted but also protects potato seedlings from sunburn, thus significantly
reducing the burden of manual seedling release. More importantly, the mulching device
helps the soil in the seedling zone to absorb and collect rainfall on the film after sowing,
providing the seeds with necessary moisture and enhancing the crop’s drought resistance.
In response to the drought-resistant technology and agronomic requirements of Northwest
China, researchers such as Dai Fei, Shi Linrong, and Sun Wei [7] have designed film laying
mulching seeders for different crops. The mulching mechanism of this type of seeder consists
of several components, such as soil picking shovel, scraper lifting chain, lifting chain tensioning
mechanism, active and driven wheels, etc., which ensures the high efficiency and accuracy of
mulching operation. In terms of theoretical analysis, researchers have established a theoretical
soil delivery model from the characteristics of mulching and crop growth, which provides a
theoretical basis for optimizing the design of mulching devices. However, existing research
has not yet explored the reliability and stability of the devices sufficiently. In order to further
promote the development of this field, future research should strengthen the application
research of mulching devices in actual production. Through field tests and long-term tracking
and evaluation, their performance and performance under different environmental conditions
should be analyzed in depth to ensure that they play a greater role in agricultural production
in arid regions. This will help improve crop yield and quality in arid regions and promote
sustainable agricultural development.

Aiming at the unreliable problems of potato mulching devices in practice, this study
carries out a systematic optimization analysis of the soil picking shovel and scraper lifting
device with the help of “contradiction analysis” and “object field analysis” methods of
TRIZ theory. The optimized design flow is shown in Figure 1. After in-depth research and
innovative design, it aims to improve the overall working efficiency and stability of the
device [8,9]. In order to verify the performance of key parameters of the improved device,
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discrete element simulation and soil trench tests were adopted to ensure the accuracy and
reliability of the experimental data.
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2. Materials and Methods
2.1. Agronomic Requirements

Potato sprouts have a unique ability to break the film automatically. After sowing, the
film is covered with a layer of soil of 30–50 mm, and the interaction between this layer of
soil and the young shoots, combined with the characteristics of potato germination buds
avoiding light and cotyledons being tightly closed, means that seedlings can naturally
break through the film and come out smoothly. It is based on this characteristic that we
have integrated it into the high-yield cultivation technology of potato mulch. Figure 2
demonstrates the design of the ridge shape of potato full-film cover seed row mulch
planting, and the model adopts the configuration of large and small ridges, with a total
width of 1200 mm, a large ridge width of 80 cm, a small ridge width of 40 cm, and a height
of 10–130 mm. Full coverage was carried out using mulch with a width of 1350 mm, and
the large ridge was used for planting potatoes. The sowing depth was 130 m, and a layer of
soil with a width of 170 mm and a thickness of 30–50 mm was placed above the seed rows.
This configuration not only optimizes the soil structure but also significantly increases
potato yields.
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Figure 2. Agronomic effect.

2.2. Principle of Operation

A cross type film mulching device is a mechanical device used for film mulching and
planting in farmland, and its structure is shown in Figure 3. It includes components such
as the soil pick-up shovel, the lifting chain tensioning mechanism, the follower wheel, the
scraping plate, the lifting chain, the soil pick-up shovel depth adjuster, and the main wheel.
The implement moves forward by tractor traction, the soil picking shovel (6) shovels up the
soil, the soil is transported upward by the chain scraper (5), the screw conveyor transports
(2) the soil to both sides, and the soil is evenly covered on the planting holes on the mulch
according to the agronomic requirements to complete the mulching operation. The design
of this device is based on the team’s existing scraper lifting belt type film mulching device,
and after improvement and optimization, it improves the operational efficiency and mulching
quality, and the holes are compacted by the mulching soil layer, which promotes the smooth
emergence of seed potatoes, eliminates the need for manual mulching and other operational
procedures at a later stage, and improves the production efficiency.

Agriculture 2024, 14, x FOR PEER REVIEW 4 of 24 
 

 

This configuration not only optimizes the soil structure but also significantly increases 
potato yields. 

 
Figure 2. Agronomic effect. 

2.2. Principle of Operation 
A cross type film mulching device is a mechanical device used for film mulching and 

planting in farmland, and its structure is shown in Figure 3. It includes components such 
as the soil pick-up shovel, the lifting chain tensioning mechanism, the follower wheel, the 
scraping plate, the lifting chain, the soil pick-up shovel depth adjuster, and the main 
wheel. The implement moves forward by tractor traction, the soil picking shovel (6) shov-
els up the soil, the soil is transported upward by the chain scraper (5), the screw conveyor 
transports (2) the soil to both sides, and the soil is evenly covered on the planting holes on 
the mulch according to the agronomic requirements to complete the mulching operation. 
The design of this device is based on the team’s existing scraper lifting belt type film 
mulching device, and after improvement and optimization, it improves the operational 
efficiency and mulching quality, and the holes are compacted by the mulching soil layer, 
which promotes the smooth emergence of seed potatoes, eliminates the need for manual 
mulching and other operational procedures at a later stage, and improves the production 
efficiency. 

 
Figure 3. Schematic diagram of the working principle of the covering device on the spanning mem-
brane: 1. Frame; 2. Screw conveyor; 3. Mulching on film; 4. Monopoly body; 5. Soil lifting mecha-
nism; 6. Soil picking shovel; 7. Ground wheel; 8. Input axis. 

  

Figure 3. Schematic diagram of the working principle of the covering device on the spanning
membrane: 1. Frame; 2. Screw conveyor; 3. Mulching on film; 4. Monopoly body; 5. Soil lifting
mechanism; 6. Soil picking shovel; 7. Ground wheel; 8. Input axis.

2.3. Issues to Be Addressed

The structure of the cross-film mulching device is shown in Figure 4. During me-
chanical operation, obstruction occurs between the soil picking shovel and the transport
chain, which requires stopping the car or additional manpower to carry out the loosening
and clearing work, thus causing interruption of the operation process and increasing the
consumption of labor. When the scraper lifts the soil upwards, the chain and sprocket of
the lifting chain are prone to soil accumulation, which leads to reduced lubrication of the
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sprocket–chain, and sometimes even the problem of skipping teeth. These two problems
not only increase fuel consumption but also affect the operating speed and working effi-
ciency, reduce the quality of operation, and may lead to the amount of mulching being
unable to meet the agricultural demand. Therefore, in order to fundamentally solve the
reliability problem of the mulching device, it is necessary to optimize the design of the
structure of the soil extraction shovel and scraper lifting device.
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Figure 4. Structure of spanning membrane mulching device: (a) axonometric drawing: 1. soil shovel;
2. scraping board; 3. transmission chain; 4. guide wheel; 5. soil lifting shell; 6. soil lifting device drive
shaft; 7. soil transport box; 8. screw conveyor. (b) Starboard view.

2.4. Application of TRIZ in Design

TRIZ, which stands for “Theoria Resheneyva Isobretatelskehuh Zadach”, originated
from Russian, and its English translation is “Theory and Innovative Problem Solving”. As a
well-structured and powerful set of innovative problem solving methods, TRIZ provides a
systematic, reliable, and repeatable process for solving problems. TRIZ thinking tools have
successfully replaced traditional unsystematic trial-and-error and brainstorming methods
in many areas of engineering and business.

In the field of engineering, TRIZ provides a structured approach to guiding a designer
or engineer towards systematic innovation. By applying tools such as the causal chain
(CEC), TRIZ’s law of idealism helps designers identify and solve fundamental problems
more effectively. Meanwhile, the application of the concept of contradiction enables de-
signers to focus on their core ideas and utilize the contradiction matrix to obtain a series of
practical and creative principles. In addition, the contradiction matrix, one of the core tools
of TRIZ, is specifically designed to resolve conflicts between two different parameters. The
matrix is based on 39 general engineering parameters and provides innovative perspec-
tives for technical solutions through 40 inventive principles that resolve the corresponding
contradictions. After screening and weighing, the optimal solution is selected according to
the actual situation [10–12].

2.5. Innovative Design of Soil Extraction Shovel Based on “Contradiction Analysis”

The main function of the soil extraction shovel is to dig up the soil and send it to the
scraper and then form a rainwater collection ditch on the surface after the soil is lifted.
According to the agronomic requirements, two soil shovels are spaced 400 mm, and shovel
surface width b and soil scraper are consistent at 150 mm. In order to reduce the resistance
of the scraper lifting belt in the process and to prevent the soil scraper scraping the bottom
of the ditch soil, when the scraper runs to the driven wheel directly in a vertical state, the
soil shovel front should be lower than the apex of the scraper, with the two perpendicular
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distances δ being 20 mm, the general soil angle θ being 17◦–35◦, with a length of 80 mm. In
the time interval of two scrapers successively taking soil, the soil quantity q is:

q0 = v · ∆t · b0 · H (1)

where

q0 is the amount of soil extraction;
v is the forward speed of the unit;
∆t is the working time of the unit;
b0 is the width of the shovel surface of the soil extraction shovel;
H is the depth of soil extraction.

The force situation of the shovel is shown in Figure 5, and the general design angle of
the shovel is 17◦~35◦. The following equation can be established from the force diagram of
the shovel: {

Pcosθ − T − Gsinθ = 0
R − Gcosθ − Psinθ = 0

(2)

where

P is the force required to move the earth extraction shovel to dig up the soil;
R is the reaction force of the earth extraction shovel on the soil;
θ is the inclination angle of the shovel;
µ is the coefficient of friction of the soil on the earth extraction shovel.
G is the acceleration of gravity.
T is the friction of the shovel on the soil.
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From this it can be deduced that the inclination angle of the earth extraction shovel is:

θ = arctan
P − µG
µP + G

(3)

The angle of inclination of the earth moving shovel directly affects the force it is
subjected to. The smaller the angle of inclination, the less soil is lifted and the less resistance
is generated. Therefore, the tilt angle of the shovel should be as small as possible in order
to ensure the soil extraction performance.

The soil undergoes changes in state such as plastic flow and disintegration as the earth
removal shovel works. As the machine advances, the mixture of soil and weeds is prone
to form a blockage above the earth extraction shovel. As can be seen from Equation (1),
reducing the width of the shovel surface b and the digging depth H reduces the amount of
soil lifting q, which reduces the resistance and ensures that the soil flows smoothly over
the soil extraction shovel to avoid accumulation. However, if the area of action of the soil
extraction shovel is reduced, the amount of soil cover will be reduced again. By describing
the key problem of the earth extraction shovel, the problem is transformed into a technical
contradiction of TRIZ (i.e., when improving one parameter or characteristic of a technical
system, it will cause the deterioration of another parameter or characteristic of the system at
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the same time), and the basic model for solving the problem of the technical contradiction
is shown in Figure 6.
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Thus, the above paradoxical conflict can be summarized as follows: while improving
the force, the quantity of the substance or thing deteriorates. By finding the contradiction
matrix, we can obtain the specific solution applicable to the sub-matrix of this problem.
The specific solutions are shown in Table 1.

Table 1. Conflict matrix for earth extraction shovels.

Improved Parameters Deteriorating Parameters
26 Quantity of a Substance or Thing

10 Force

14 The principle of surfacing
29 Pneumatic and hydraulic construction principles

18 Principle of mechanical vibration
36 Phase change principle

The following innovation principle tips can be obtained.
Innovation Principle 14—Surfacing Principle, which advocates the use of shapes such

as curves, spheres, and spheroids to replace traditional straight lines and flat surfaces in
design. Examples include the use of forms such as rollers, spheres, or spirals or the use of
centrifugal force to achieve non-linear motion by rotating an object. This approach offers
multiple advantages, including reduced friction, optimized material flow, and enhanced
overall system performance.

Innovation Principle 29—Pneumatic and Hydraulic Structural Principle, which advo-
cates the use of air or hydraulic technology to replace traditional system components. By
utilizing the properties of gases or liquids, especially expandable or inflatable objects, the
application of pneumatic and hydraulic principles can be realized. This approach has a
wide range of applications in many fields, such as aerospace, vehicles, and robotics, and
can significantly improve the efficiency and performance of systems.

Innovation Principle 18—Mechanical Vibration Principle, which advocates the exci-
tation of mechanical vibration of an object in order to increase the vibration frequency or
utilize the resonance frequency. This method can produce a regular, periodic change that
realizes some effect or system change within a specific interval. The principle of mechanical
vibration is used in many engineering fields, such as vibrating screens and vibrating motors,
to improve the stability and efficiency of a system.

Innovation Principle 36—Phase Change Principle, which utilizes the effect or system
change produced by a substance in the process of phase change. Through the rational use of
phase change, energy conversion and control can be achieved to optimize the performance
of the system. The phase change principle has a wide range of applications in energy
conversion, materials science, aerospace, and other fields. For example, the use of phase
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change materials to absorb and release heat to achieve temperature control, or the use of
volume changes in the phase change process to create new structures or functions.

Referring to the description of the innovation principles, the innovation principles in
Table 2 were analyzed and screened to find specific solutions based on specific problems.

Table 2. Summary ranking table of scenarios.

Program Number Program Description Schema Programmatic Evaluation Order

1

The surface of the shovel
is designed as a curved

surface, which improves
the damping performance
and provides the effect of

breaking up the soil.
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Innovation Principle 14 (Surfacing Principle) is used to suggest that the shovel surface
of the earth extraction shovel is designed as a curved surface, i.e., a bionic shovel. According
to the bionic test, it is shown that the curved surface has both better drag reduction
performance and can have the effect of breaking up the soil with less soil disturbance.
Prompted by Innovation Principle 29 (Pneumatic and Hydraulic Structure Principle), with
air as the medium, a blower is proposed to be used to blow the soil into the scraper lifting
chain, so as to solve the problem of soil congestion. Prompted by Innovation Principle
18 (Mechanical Vibration Principle), by the crank linkage mechanism to drive the soil
extraction shovel for reciprocating motion to realize the vibration, the use of vibration
technology of the shovel working resistance is low, power consumption is low, the viscosity
reduction effect is obvious, and the effect of soil crushing is good. However, it is necessary
to add an additional driving device to the earth moving shovel, which will increase the
complexity of the mechanism. Or, according to the tips, by the vibration motor as a
soil shovel excitation source and power source, the soil shovel makes an up and down
reciprocating motion, so that the soil shovel above the soil is relatively loose and has good
mobility with smooth transportation.

In summary, through the program analysis and combined with practical applications,
the structure and object of the soil extraction shovel designed in Program 1 are screened out,
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and the innovative design of the soil extraction shovel is as follows: improve the traditional
flat shovel into a curved shovel and shorten the length of the shovel, and then carry out
carburizing and quenching of the shovel in order to improve the hardness and abrasion
resistance of the shovel (spraying resistance reducing materials). The design of the shovel
is expected to fulfill the following functions during joint planting operations: at a certain
angle of entry, the shovel blade effectively cuts the soil and drives the soil upward along
the shovel face. The advantage of the curved surface design is that it can produce the effect
of crushing the soil during the movement of the soil along the shovel surface. This design
not only improves the smoothness of operation of the entire machine but also helps to
reduce the resistance between the soil and the shovel surface, thus improving the economy
of operation.

2.6. Innovative Design of Scraper Lifting Device Based on “Object Field Analysis”

The scraper lifting device serves as the core component for the task of efficiently
lifting and transferring soil [13]. During operation, the device gathers the soil with the soil
lifting shovel and subsequently transports it to the soil distributor, driven by the lifting
chain. After precise distribution by the soil distributor, the soil is evenly spread on the
corresponding film strip, thus ensuring the efficient implementation of the film mulching
operation, as shown in Figure 7.
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Figure 7. Working process diagram of the earth scraper.

Occasionally, in complex operating environments, soil can build up inside chains and
sprockets. This situation leads to a decrease in the lubrication effect of the sprocket–chain,
and the normal rotation of the lifter is impeded, further affecting the overall soil covering
effect. In order to accurately analyze the cause of the degraded lubrication performance, an
in-depth study was conducted using the cause-and-effect analysis method, as shown in
Figure 8.

In the causal analysis of the scraper lifting device, the main causes were the lack of
appropriate protection devices and the insufficient effectiveness of the lubrication system,
which led to frequent damage to the chain–sprocket assembly. In order to describe and
solve the problem more precisely, the causal analysis model was transformed using the
object field model. Based on the steps applied to the standard solution, it was determined
that this was a system problem that needed improvement. Specifically, the problem occurs
when the soil accumulated on the chain clogs the sprocket, thus affecting the efficiency of
the entire unit.



Agriculture 2024, 14, 1695 10 of 22

Agriculture 2024, 14, x FOR PEER REVIEW 10 of 24 
 

 

  

Figure 7. Working process diagram of the earth scraper. 

Occasionally, in complex operating environments, soil can build up inside chains and 
sprockets. This situation leads to a decrease in the lubrication effect of the sprocket–chain, 
and the normal rotation of the lifter is impeded, further affecting the overall soil covering 
effect. In order to accurately analyze the cause of the degraded lubrication performance, 
an in-depth study was conducted using the cause-and-effect analysis method, as shown 
in Figure 8. 

 
Figure 8. Causal analysis. 

In the causal analysis of the scraper lifting device, the main causes were the lack of 
appropriate protection devices and the insufficient effectiveness of the lubrication system, 
which led to frequent damage to the chain–sprocket assembly. In order to describe and 
solve the problem more precisely, the causal analysis model was transformed using the 
object field model. Based on the steps applied to the standard solution, it was determined 
that this was a system problem that needed improvement. Specifically, the problem occurs 
when the soil accumulated on the chain clogs the sprocket, thus affecting the efficiency of 
the entire unit. 

Obviously, the object field model of the problem according to the causal analysis in 
Figure 8 is of the type that produces a harmful effect, and the standard solution 1.2.4—
counteracting the harmful effect with the field F2—is applied. Therefore balancing the soil 
gravity (harmful) requires the introduction of a force in the opposite direction to the soil 
gravity, thus eliminating its detrimental effect, so the object field model of the solution is 
shown in Figure 9b, i.e., the supporting force FN. Combined with the specifics of this sys-
tem and evaluating the solution according to the dimensions of technical difficulty, relia-
bility, desirability, and economy, the final solution is presented—change from the original 

Figure 8. Causal analysis.

Obviously, the object field model of the problem according to the causal analysis in
Figure 8 is of the type that produces a harmful effect, and the standard solution 1.2.4—
counteracting the harmful effect with the field F2—is applied. Therefore balancing the soil
gravity (harmful) requires the introduction of a force in the opposite direction to the soil
gravity, thus eliminating its detrimental effect, so the object field model of the solution
is shown in Figure 9b, i.e., the supporting force FN. Combined with the specifics of this
system and evaluating the solution according to the dimensions of technical difficulty,
reliability, desirability, and economy, the final solution is presented—change from the
original clockwise rotation of the main wheel (Figure 10a) to counterclockwise rotation, i.e.,
change the conveyor from the original upper scraping type to the lower scraping type, as
shown in Figure 10b.
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Figure 9. “Object field model” analysis of soil shovel: (a) General Model; (b) Improved model.

The movement of the lowest point of the scraper across the membrane mulching
device is the synthesis of two kinds of movement, namely, the lowest point of the scraper
around the center of the driven wheel of the uniform speed rotary movement and the
forward movement of the unit operation, shown in Figure 11, to establish the lowest point
of the scraper displacement equation (see Equation (4)), which indicates that when the
machine’s other parameters are fixed, the smaller the ratio of the linear velocity of the
transport chain to the forward speed of the unit, the longer the time to take the soil and the
time of the maximum soil taking capacity limitations. Within the scope of the maximum
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soil extraction capacity, the greater the soil extraction capacity of the mulching device; the
line speed of the scraper type soil transfer device conveying material is generally 1–2 m/s,
the line speed of the lifting chain of the mulching device was selected to be 1.5 m/s, and
the forward operating speed of the potato film planter was 0.8 m/s.{

x = rϕv
v′ + (r + h)sinϕ

y = (r + h)(1 − cosϕ)
(4)

where

x is the horizontal displacement of the scraper end;
y is the vertical displacement of the scraper end;
r is the radius of the driven wheel;
h is the height of the scraper;
v′ is the speed of the ascending chain;
v is the forward speed of the unit;
ϕ is the turning angle of the scraper.
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Figure 11. (a) Upper scraping. 1. Soil; 2. Lifting shovel; 3. Driven wheel; 4. Scraper; 5. Lifting chain;
(b) Lower scraping: 1. Soil; 2. Lifting shovel; 3. Driven wheel; 4. Scraper; 5. Lifting chain. Working
principle of scraper lifting mechanism where ω is the angular velocity of the driven wheel, rad/s−1;
v is the forward speed, ms−1; H is the depth of the soil, mm; γ is the angle between the ascending
belt and the horizontal plane, (◦); ψ is the angle of internal friction of the soil, (◦); r is the radius of the
driven wheel, mm; h is the height of the scraper, mm; l is the pitch of the scraper, mm; v′ is the speed
of the ascending chain, m/s−1.

Figure 11a,b are the working principles of the upper scraper and lower scraper lift
mechanism, respectively, and the angle between the scraper and the horizontal plane
reflects the angle of internal friction of the soil. The volume of soil transported is controlled
by the length l of the lifting chain, and the volume is determined by multiplying the area of



Agriculture 2024, 14, 1695 12 of 22

the scraper end with the width. When the advancing length of the machine is l′, the soil
lifting amount Q of the upper scraper lifting mechanism is

Q =

{
ηibl′

2 tan(γ−ψ)l l ≥ h/ tan(γ − ψ)

ηbl′i[h − l tan(γ−ψ)
2 ] l < h/ tan(γ − ψ)

(5)

The length of the machine forward movement is l′. The soil lifting quantity Q of the
lower scraper lifting mechanism is (γ = ψ):

Q = ηbl′i[h − ltan(γ − ψ)

2
] (6)

where η is the conveying efficiency in Equations (5) and (6), mainly related to the fullness
coefficient; γ is the angle between the lifting chain and the horizontal plane; h is the height
of the scraper; b is the width of the scraper; i is the ratio of the speed of the lifting chain to
the forward speed [14].

3. Simulation Test
3.1. Discrete Element Modeling

In order to verify the feasibility of the design, the discrete distinct element method
(DEM) was introduced to simulate the optimized design. EDEM was used to establish a
soil model to simulate the mulching process, and the design with good mulching effect was
selected for the experiment by counting the number of actual mulching particles and the
resistance of the soil lifting shovel before and after optimization.

The default Hertz–Mindlin non-sliding contact model of EDEM software 2022.3 was
used to simulate the soil used in the mulching device. Since most of the soil used in the
mulching mechanism is surface soil, in order to highlight the experimental effect and
improve the efficiency of the simulation and calculation, no bonding was set between
the particles in the mulching process. When establishing the soil model with the help of
discrete unit method software, due to the complexity of the soil structure, it is necessary to
characterize its properties with several soil contact model parameters, such as the radius
of soil particles, density, Poisson’s ratio, shear modulus, elasticity recovery coefficient,
and coefficient of static and dynamic friction. The parameters obtained with reference to
relevant literature [15] are shown in Table 3 below. To establish the soil model, a rectangular
soil tank with a length of 2100 mm, width of 400 mm, and height of 300 mm is firstly
established, and the soil tank is filled with 230,000 round particles placed inside the soil
tank, which is exported as Figure 12 after the generation is completed.

Table 3. Mechanical properties of materials.

Material

Material Parameters Contact Parameters

Poisson Ratio Shear
Modulus/MPa

Density
/(kg·m−3) Collision Form Restitution

Coefficient
Static Friction

Coefficient

Dynamic
Friction

Coefficient

Soil 0.3 100 2680 Particle–Particle 0.3 0.5 0.3
65Mn 0.28 3.5 × 104 7850 Particle–Steel 0.3 0.3 0.2
Steel 0.25 1.0 × 107 7800

In order to simulate the actual operation of the device in the plot, a virtual soil tank
is created and it is imported into the EDEM software for simulation together with the
optimized device. In order to improve the efficiency of the simulation calculation, the
device model is simplified, which will not affect the operation effect. In this study, the
subject material property of the simulation model is set to 65Mn steel, because of the soil
abrasion caused by the soil shovel is larger, and the specific parameters are shown in Table 3.
Also, taking into account the efficiency of the simulation calculations, the soil particles are
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with a diameter of 5 mm and the material properties of the soil particles are as follows:
Poisson’s ratio is 0.31, the density is 2600 kg/m3, the shear modulus is 1.0 × 107 Pa, and
the contact model between soil particles is Hertz-Xtra, which is the same as that in the
simulation. The Hertz–Mindlin with bonding model was used to simulate the bonding
between soil particles. To ensure that the simulation is carried out accurately, it is also
necessary to set the contact parameters between soil and soil and between steel and soil
particles, referring to the literature [16–18]. The bonding parameters for the simulated
model contact are shown in Table 4.
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Figure 12. Model drawing of soil trench.

Table 4. Soil particle cohesion parameters.

Parameters Numerical Value

Normal contact stiffness/(N·m2) 108
Tangential contact stiffness/(N·m2) 5 × 107

Critical normal stress/Pa 30,000
Critical tangential stress/Pa 15,000

Bonding radius/mm 5.4

3.2. Multi-Body Dynamics Modeling

In accordance with the above innovative design scheme, SolidWorks software 2023
was used for 3D modeling to obtain the 3D model of the earth extraction shovel and scraper
lifting device as shown in Figure 13.
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Figure 13. The 3D model of soil lifting device: (a) upper scraping; (b) lower scraping.

After saving the three-dimensional model of the soil lifting device as x_t, it is imported
into RecurDyn software, and in accordance with the actual motion characteristics of the
chain drive, a rotating vice is added between every two adjacent inner and outer links, and
the contact constraints are added between every inner link and the active sprocket and
follower sprocket [19–21], as shown in Figure 14.
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After establishing the multi-body dynamics model, according to the theoretical analy-
sis and pre-test, the simulation contact parameters were adjusted to determine the forward
speed of the unit to be 400 mm/s, the linear speed of the soil lifting device to be 1.5 m/s,
and the angle of the soil removing shovel to be 30◦.

3.3. Simulation Tests and Results

The multi-body dynamics model generates a wall file which is exported and saved,
then the established discrete element model is opened and exported to a Simulation Deck
file in the Analyst module, the simulation time is set to start from 0 s, then the exported
Simulation Deck file is opened, and the exported wall file is imported into the discrete
element model. Adjusting the relative positions of the simulation model [22,23], the
modeling process is shown in Figure 15.
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The simulation results of the upper scraping soil lifting device are shown in Figure 16.
From the simulation results of the upper scraping soil lifting device, it can be seen that at
the beginning of the simulation, after 1.5 s, the ascending chain scraper will lift the soil
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particles from the top to the soil outlet with smooth operation, the number of soil particles
of the conveyor is small, the flow rate of the outlet is unstable, and the congestion curve
formed with the soil particles in the advance is high. It is easy to cause soil accumulation
and blockage at the soil inlet of the soil lifting device.
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Figure 16. Simulation results of upper scraping soil lifting device.

The simulation results of the lower scraping soil lifting device are shown in Figure 17.
From the simulation results of the lower scraping soil lifting device, it can be seen that after
1.2 s, at the beginning of the simulation, the scraper lifts the soil particles from the bottom
to the soil outlet. Throughout the simulation process, the lower scraping soil lifting device
conveys a large amount of soil particles during the whole working process, and the flow
rate of the soil outlet is stable.
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Figure 17. Simulation results of lower scraping soil lifting device.

Comparing the simulation results of the upper and lower soil lifting devices at different
times, the soil particle conveying volume and conveying efficiency of the lower scraping
soil lifting device are significantly higher than that of the upper scraping soil lifting device,
and the particle flow of the lower scraping outlet is also more stable. This shows that the
lower scraping soil lifting device is more in line with the agronomic requirements of potato
mulching operation.

3.4. Analysis of Simulation Test Results

In order to further analyze the working process of the two soil lifting devices and
investigate the root cause of the above phenomenon, the simulation model was dissected
along the middle plane and the soil particle velocity cloud of the soil lifting device was
obtained in the EDEM post-processing module.
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The soil particle velocity cloud diagram of the upper scraping soil lifting device is
shown in Figure 18. The working process of the whole soil lifting device is analyzed
through the local zoomed-in diagram. When the soil lifting device starts to work, the
active sprocket of the upper scraping soil lifting device runs clockwise, the ascending chain
scraper plate starts to move under the action of the active sprocket and chain, and the
space for conveying soil is formed between two adjacent scraper plates. As the machine
moves forward, the soil particles are shoveled up by the soil lifting shovel, and under the
joint action of the soil lifting shovel and the soil particles in front, the soil particles are
transported upward from the bottom under the action of the scraper, then they enter the
space formed between the two neighboring scraper plates and are transported upward by
the ascending chain scraper. When transported to the top, the soil scraping plate makes a
circular movement around the sprocket wheel, and the soil particles transported by the soil
scraping plate are thrown to the soil lifting shell under the action of centrifugal force and
finally leave the soil lifting device by the soil outlet below the soil lifting shell under the
guidance of the soil lifting shell.
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Figure 18. Velocity cloud of soil particles of upper scraping soil lifting device.

The soil particle velocity cloud diagram of the lower scraping soil lifting device is
shown in Figure 19. The working process of the whole lower scraping soil lifting device is
analyzed through the local zoomed-in diagram. When the soil lifting device starts to work,
the active sprocket of the lower scraping soil lifting device runs counterclockwise. With
the forward movement of the machine, soil particles are shoveled up by the soil shovel,
and under the joint action of the soil shovel and the soil particles in front, the soil particles
are transported by the scraping plate from the top to the bottom and then enter into the
space formed between two neighboring scraping plates and are transported upward by the
ascending chain scraping plate. When conveyed to the top of the soil lifting device, the soil
particles leave the soil lifting device along the soil outlet below the soil lifting shell.

Taking two kinds of speed direction cloud diagrams of the soil lifting device’s soil
picking shovel portion and the upper scraping soil particle movement direction cloud
diagram shown in Figure 20, it can be seen in the upper scraping soil lifting device, after the
soil picking shovel shovels up the soil particles and due to the sprocket rotating clockwise,
when the soil particles come into contact with the scraping boards, that some of the soil
particles will be driven by the scraping boards from the downward and upward movements.
Due to inertia, the soil driven by the scraping plate does not all enter the space formed
between two adjacent scraping plates, so the number of soil particles lifted by the lifting
chain is limited, resulting in a decrease in the lifting efficiency of the upper scraping soil
lifting device.
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Figure 20. Cloud view of the direction of motion of soil particles in the upper scraping type.

The lower scraping soil particle movement direction cloud diagram is shown in
Figure 21. The lower scraping soil lifting device in the soil picking shovel shovels up the
soil particles and, due to the sprocket counterclockwise rotation, when the soil particles and
the scraping plate contact, the soil particles will be in the scraping board under the drive
from the top due to the downward movement and due to the direction of the movement of
soil particles with the soil lifting shell as well as the soil picking shovel support, resulting in
a majority of soil particles in the scraping plate entering the two adjacent scraping boards.
The soil particles are supported by the soil lifting shell and the soil lifting shovel in the
direction of the soil particles. Therefore, the working efficiency of the lower scraper is
higher than that of the upper scraper.

To further analyze the conveying efficiency of the two soil lifting devices, a flow sensor
was added at the soil outlet of the soil lifting hood to measure the flow of soil particles at
the soil outlet of the two soil lifting devices at different times as shown in Figure 22.
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Figure 22. Adding a flow sensor: (a) upper scraping; (b) lower scraping.

The flow rates of the soil outlet of the upper scraping and lower scraping soil lifting
devices were measured separately, starting from 0 s with a time interval of 0.1 s, and the
flow rate graph is shown in Figure 23.
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As shown through the flow–time curve, the upper scraping soil lifting device works
stably in 2 s. The flow rate fluctuates around 1.5 kg/s, the conveying volume is small,
and the flow rate fluctuates greatly, which will cause the uneven thickness of soil on the
membrane mulching area in the actual mulching operation, which is not in line with the
agronomic requirements of potato mulching and will affect the growth of potato seedlings
in the later stage. The lower scraping soil lifting device starts to work at 1.5 s, and the flow
rate is maintained at about 4.5 kg/s. Compared with the upper scraping soil lifting device,
the flow rate of the lower scraping soil lifting device is higher and more stable.

In summary, the lower scraping soil lifting device has a large soil conveying capacity,
high conveying efficiency, and stable flow rate at the soil outlet, which is more in line with
the requirements of potato mulching operation on the membrane.

4. Test Validation

In order to verify the actual operational performance of the improved soil extraction
shovel and scraper lifting chain membrane mulching device, a working performance test
was conducted in March 2022 on the soil trough of the School of Mechanical and Electrical
Engineering of Gansu Agricultural University, and the test apparatus and equipment
included a soil trough, soil trough truck, 2 cm−2 potato seedling strip mulching planting
machine, soil moisture content tester, tape measure, balance, stopwatch, tachometer, etc.
The test site is shown in Figure 24. The length of the soil trough is 10 m, the width is
1.2 m, and the maximum traction force of the soil trough truck is 15,000 N, which can
realize stepless speed regulation in the speed range of 0.3–9 km/h. The power of the
planting machine is obtained from the soil tanker, and the power is transmitted to the prime
mover of the mechanism through the belt drive and chain drive, with a total transmission
ratio of 1:30. According to the required speed of planting, the speed of the soil tanker
is set at 1 m/s, and the test soil is yellow sheep’s soil, with a soil moisture content of
13.2–15.9%, a soil capacity of 1300 kg/m3, and a soil solidity of less than 0.16 MPa. Under
the working conditions, with reference to GB/T 25417-2010 [24] “Technical conditions
of potato planting machine”, NY/T 1415-2007 [25] “Technical specification for quality
evaluation of potato planting machine”, NY/T 987-2006 [26] “Quality of film spreading
and hole seeding machine operation”, and relevant requirements of agricultural machinery
test methods, the probability of congestion and the amount of soil cover on the entire film
surface are determined.
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Potato planting machine congestion refers to the phenomenon of soil aggregation
caused by the operational performance of the soil extracting shovel during the operation
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of the machine, resulting in congestion of the operating device and a reduction in the
amount of mulch, which impedes the normal traveling operation of the planting machine.
In order to determine the operating performance of the soil extraction device, the operating
processes strictly control other variable factors, namely, field performance test, the total
number of tests nz (times), the number of times of congestion in the test process nyt (times),
and the probability of planting machine congestion n (%) is calculated as follows:

n =
nyt

nz
× 100% (7)

When the potato planter is working stably in the soil tank, a distance of 1 m in length
is randomly selected in the test area, all the soil on the whole membrane surface is collected,
and its weight is measured by using an electronic scale and recorded as the amount of soil
covering the whole membrane surface. The test was repeated 10 times, and the mean value
of soil cover was calculated, then

X =
m1

m0
× 100% (8)

where X is the whole membrane surface soil covering quantity qualified rate, %, m1 is the
average value of the soil covering quantity of the planter, kg, m0 is the weight calculated
according to the standard, kg.

As shown in Table 5, the soil shovel and scraper lifting chain membrane mulching
device were improved to a certain extent. This provides a reference for the improvement of
the planting machine operating performance for a self-developed potato full-film cover
membrane seedling with mulching planting machine and enhancement of joint operation.

Table 5. Field trial results.

Test Indicators Improved Device
Value/Mean Deviation

Original Installation
Value/Mean Deviation

Probability of machine congestion 10% 30%
Mulching of the entire membrane surface 21.06 kg/1.06 kg 14.27 kg/1.12 kg

5. Conclusions

(1) Using TRIZ theory to carry out “contradiction analysis” on the soil extraction shovel
and putting forward a structural form that can realize the effective coupling of multi-
schemes according to the characteristics of the scraper lifting and transporting chain-
type film mulching device provides a guarantee for the smoothness, high efficiency,
and reliability of the potato planting machine’s operation process. Based on the “object
field analysis”, the cause-and-effect analysis of the scraper lifting device, through the
invention of the principle of the final solution, improves the smoothness and economy
of the whole machine and solves the problem of poor lubrication of the sprocket–chain
in the lifting system in the process of operation.

(2) Combined with EDEM to simulate the soil covering simulation of the scraper lifting
chain membrane mulching device before and after optimization, from the starting
shovel crushing performance and soil quality to analyze and measure the effect of the
improvement, the simulation results show that: the innovative design of the curved
surface shovel soil upgrading effect is good. Applying the EDEM post-processing
Selection module, it was calculated that the lower scraper conveyor soil flow rate was
increased by a factor of three.

(3) The results of the soil tank performance comparison test show that under the same
soil conditions and operating parameters, the improved membrane mulching device
has a simple structure, low power consumption, good working performance of all
components, good soil crushing effect during planting operations, fast flow speed, test
probability of congestion of about 10%, and low congestion, and the whole membrane
surface mulching quantity has been improved by 47.5%. After optimization and
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improvement, the standard requirements of dryland potato seedling strip mulching
planting technology on mulching parameters have been reached, and the innovative
and optimized working structure combination is of great significance for dryland
potato yield on the Loess Plateau.
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