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Abstract: Cotton processing is the process of converting harvested seed cotton into lint by cleaning,
ginning, and cleaning the lint. The real-time acquisition of lint parameters during processing is critical
in improving cotton processing quality and efficiency. The existing online inspection system cannot
realize quantitative sampling detection, resulting in large fluctuations in the detection of moisture
rate, and the impurity content of lint can only be measured according to the number of impurity
grains and the percentage of impurity areas. This research developed a quantitative sampling device
for cotton lint processing that can collect the right number of cotton samples and obtain the weight of
the samples, laying the foundation for the accurate detection of cotton lint dampness and impurity
rates. This research aimed to develop an online quantitative sampling device with a sampling plate
as its core. The quantitative sampling procedure, consisting of a gas–solid two-phase flow in a
cotton pipeline, was numerically simulated and experimentally analyzed using computational fluid
dynamics (CFD) and the discrete element method (DEM). According to the coupling results, the
maximum pressure differential between the top and bottom regions of the sampling plate when
conveying was 1024.45 Pa. This pressure is adequate to allow for cotton samples to accumulate on
the sampling plate. Simultaneously, the steady conveying speed of lint is 59.31% of the unloaded
conveying wind speed, providing a theoretical foundation for the sampling time of the quantitative
sample device in the processing chain. The results from testing the prototype indicate that the
quantitative sampling device in the cotton flow can effectively perform the quantitative sampling of
cotton lint under uniform conditions, with a sampling pass rate of 84%.

Keywords: cotton pipeline; sampling plate; negative-pressure transportation; computational fluid
dynamics; discrete element method

1. Introduction

Online lint quality inspection in the processing chain is a critical aspect influencing cot-
ton processing quality. According to National Bureau of Statistics data, the national cotton
planting area in 2022 was 3000.3 thousand hectares, with a production of 5.977 million tons.
Of these, 5.391 million tons were produced in Xinjiang, China’s largest cotton production
area, accounting for 90.2% of the country’s cotton production. With the popularization
of cotton production mechanization in Xinjiang, machine-picked cotton also introduces
certain quality problems [1]; the processing of cotton lint and online detection of dampness
and impurity rate can provide effective feedback information for the adjustment of the
process parameters of seed cotton, which is very important for the improvement of quality
and efficiency in the cotton industry.

Cotton moisture and impurity rate are major factors influencing the stability and
quality of the cotton processing system. Domestic and foreign scholars have conducted
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extensive research on cotton moisture and impurity rate detection. Regarding moisture
detection, foreign Uster cotton online quality testing equipment was installed in the lint
pipeline on an online sampling workstation to obtain cotton water content, impurities,
and color information [2,3]. The Zhengzhou Cotton and Jute Engineering Technology and
Design Research Institute has developed an online determination device for lint moisture
regain. This device uses the resistance method to detect the moisture rate of cotton in real
time. It consists of a detection electrode set, deflector plate, microprocessor, and display
module. This device helps to improve the stability of cotton pressure and compactness
during the detection process, resulting in more-accurate moisture rate measurements [4,5].
Xiao Zhonggao et al. [6] revealed a new device designed for the online testing of cotton.
This device consists of a porous sampling plate, a sampling rotating shaft, and a motor. The
sampling plate is positioned perpendicular to the direction of the cotton flow and driven
by the motor to perform automatic sampling. This device enables automatic sampling
and pressure during the online testing process, providing technical support for measuring
the dampness rate of cotton. In terms of impurity detection, Wan Long et al. [7] created
a machine-picked seed cotton acquisition link impurity detection system that used RGB
double-sided imaging to obtain a single image then analyzed the image impurities to
determine the proportion of the predicted impurity rate of seed cotton samples. Tian Hao [8]
employed image threshold segmentation and connection region analysis techniques to
quantify the pixel area occupied by cotton and impurities. Additionally, regression analysis
was utilized to forecast the impurity rate of cotton. In their study, Wu Tingrong et al. [9]
employed two distinct techniques to perform image segmentation, namely the maximum
interclass variance approach and edge detection in conjunction with multiple operators.
They then determined the impurity rate by calculating the pixel area share of the impurity
region. In short, the study and implementation of technology for detecting moisture
content and trash content in lint are quite advanced. However, due to the complex flow
field environment in pipelines, the existing online cotton lint inspection device is unable
to realize the quantitative removal of cotton samples and is unable to obtain the weight
of cotton samples in the online inspection of cotton lint moisture and impurity content
during processing. The result is that quality indicators such as cotton lint moisture and
impurity cannot be quantitatively detected. The issue of testing accuracy being significantly
influenced by variations in sampling weight requires immediate attention and resolution.

The utilization of computational fluid dynamics (CFD) has become a prominent ap-
proach in the examination of fluid motion. Similarly, the discrete element method (DEM)
has gained significant popularity in the analysis of particle collision. By combining CFD
and the DEM, it becomes possible to accurately monitor the movement of individual parti-
cles within a gas–solid flow system, thereby acquiring a substantial quantity of microscopic
data [10–13]. The primary emphasis in the numerical simulation of the gas–solid two-phase
flow of agricultural materials is on near-spherical particles, including wheat, soybeans,
corn, and similar materials. The materials are typically transformed into spherical particles
through the utilization of equivalent diameter, material characteristic parameters, contact
parameters, and other relevant factors [14–19]. Subsequently, numerical simulations of gas–
solid two-phase flow are conducted using computational fluid dynamics (CFD) software
and the discrete element method. This approach has yielded significant advancements in
the field of agricultural equipment development [20–22]. Huang Zhenyu et al. [23] analyzed
the gas–solid two-phase flow of vegetable seeds in the separation chamber of a wind sifter
using the RNG k-ε turbulence model and the DMP discrete-phase model of FLUENT 2021
R1 software. Zhang Xian et al. [24] simplified gross tea material into spherical particles
and used hydrodynamic methods to study the internal flow field and material motion
trajectory of a tea wind separator. Liu Jia et al. [25] simulated the working process of a
mechanical–pneumatic combined precision seeder based on a coupled CFD–DEM method,
and the model was built with non-spherical virtual corn grains by using bonding and API
replacement in EDEM 2022 software. Cotton is classified as a flexible flocculent material,
characterized by intricate mechanical properties and nonlinearity in deformation. Conse-
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quently, investigating the motion characteristics of cotton through numerical calculations
has posed a significant challenge in the field of computer numerical simulation.

This paper presents a novel approach utilizing the CFD–DEM coupled simulation
method to develop a quantitative sampling detection device for the processing of cotton
lint. The proposed method involves conducting numerical simulations to analyze the
movement of lint particles in the flow field during pneumatic conveying and to assess
the particle stacking state within the sampling device. The outcomes of this study aim
to offer a technical foundation for the advancement and optimization of a quantitative
detection system, specifically for evaluating the dampness and impurity content of cotton
lint during processing.

2. Machine Structure and Working Principle
2.1. Overall Structure

The lint quantitative sampling device as part of the processing chain mainly consists
of sampling and weighing components. The sampling components mainly include a servo
motor, reducer, coupling, rotary shaft, sampling plate, and air nozzle. The weighing
component mainly comprises a cotton collection box and a load cell. The specific structure
is shown in Figure 1.
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the weighing sensors are mounted on the base plate to ensure weighing stability. 
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of lint through the detection of lint’s dampness and impurity rate depending on the size 

Figure 1. Lint quantitative sampling device structure diagram as part of the processing chain:
(1) negative-pressure adjustment plate, (2) nozzle, (3) servo motor, (4) moderator, (5) coupling,
(6) cotton collection box, (7) weighing sensors, (8) electric cabinet, (9) cylinder, (10) rotary axis,
(11) sample plate, (12) information detection device, (13) touchscreen, (14) power switch, (15) start
button, (16) emergency switch.

The servo motor is connected to a gearbox (ratio = 1:25) for torque transmission; the
rotary axis is connected to the moderator using a coupling to realize the rotating action; the
sample plate is solidly connected to the concave surface of the rotary axis and rotates with
the rotary axis to complete the sampling action; the negative-pressure adjustment plate
moves up and down, driven by a pneumatic cylinder to realize a negative-pressure barrier
effect and provide a stable environment for cotton sample weighing; the cotton collection
box is connected to weighing sensors to obtain the weight of the sample; and the weighing
sensors are mounted on the base plate to ensure weighing stability.

2.2. Principle of Operation

A quantitative sampling device was installed in a cotton processing plant’s cotton lint
pipeline with the sampling components to complete the sampling action of the processing
of lint through the detection of lint’s dampness and impurity rate depending on the size of
cotton samples’ weight to provide the basis for accurate detection. The working principle
is shown in Figure 2.
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Figure 2. Sampling schematic.

To start sampling, the negative-pressure adjustment plate moves up, the sampling port
opens, the servo motor rotates counterclockwise by 90◦, the sampling plate is driven by the
rotary axis to the vertical position with the side wall of the cotton pipeline (hanging inside
the pipeline), and the cotton starts to pile up on the sampling plate. At the end of sampling,
the servo motor rotates 120◦ clockwise, the sample plate is driven by the rotary axis to
the quantitative sampling device inside, and the pile of cotton samples on the sampling
plate drops into the device inside; more specifically, collecting cotton samples, the negative-
pressure adjustment plate moves down, the sampling port is closed, the airflow between the
sampling plate and the cotton transport pipeline is blocked, and the cotton samples piled
up on the sampling plate fall into the cotton collection box. As for cotton sample weighing,
the cotton falls into the collection box through the weighing sensor to obtain the actual
weight of samples, to complete the quantitative sampling work. Eventually, the information
detection device moves forward and compacts the cotton sample, completing the accurate
detection of the sample’s moisture regain and trash content based on a known weight.

3. CFD–DEM Numerical Simulation of Quantitative Sampling Device
3.1. Mathematical Model
3.1.1. Gas-Phase Control Equations

Cotton pneumatic conveying link airflow is transported from the cotton collection
inlet to the return duct, which is considered to be a continuous gas phase following the
mass conservation law and momentum conservation law [11,26]. The governing equations
for the conservation of mass and momentum of an incompressible viscous fluid can be
expressed as follows:

∂(εgρg)

∂t
+∇(εgρgvg) = 0 (1)

∂(εgρgvg)

∂t
+∇(εgρgvg ⊗ vg) = −εg∇P + εg∇τ + εgρgvg − Rgp (2)

included among these:

Rgp =
n

∑
i=1

Fpi/∆V (3)

where ρg is the density of air, vg is the air velocity, εg is the gas volume fraction, P is the
gas pressure, τ is the viscous stress tensor, g is the gravitational acceleration, Rgp is the
momentum exchange between solid and gas phases of the unit grid, Fpi is the combined
force acting on lint particles, n is the number of particles in a given mesh, ∆V is the volume
of units, and t is the timing.
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3.1.2. Solid-Phase Governing Equations

The investigated particle motion is solved by the discrete element method (DEM),
where the cotton cleaned by the lint cleaner is subjected to several forces such as traction,
gravity, buoyancy, Saffman force (shear lift), and Magnus force (rotational lift) in the
pneumatic conveying link. The lint particles’ motion is described by Newton’s second
law [11] as:

mp
dvp

dt
= FD + FGB + FSa + FMa (4)

Ip
dωp

dt
= T (5)

where mp is the lint particle quality, FD is the motive force, FGB is the combined force of
gravity and buoyancy, FSa is the shear lift, FMa is the rotational lift, Ip is the moment of
inertia of particles, ωp is the angular velocity of lint particles’ rotation, T is the localized
torque of particles, and VP is the particle velocity.

The lint pellet traction force is calculated by the formula [11]:

FD =
4
3

CD
mpρp(vg − vp)

∣∣vg − vp
∣∣

ρpdp
(6)

where ρp is the density of particles, CD is the drag coefficient, and dp is the lint particle
equivalent diameter.

The difference between particle gravity and buoyancy is:

FGB = mp(1 −
ρg

ρp
)g (7)

The shear lift and rotational lift are perpendicular to the direction of the relative
velocities of the particles and the gas phase; thus, the shear lift applied to the particles is
calculated as:

FSa = 1.6515dpµgCSaRe0.5
s (

∣∣vg − vp
∣∣× ωg) (8)

Res =
ρgd2

p
∣∣ωg

∣∣
µg

(9)

where µg is the gas viscosity, CSa is the shear lift coefficient, Res is the shear Reynolds
number for particles, and ωg is the angular velocity of the gas’ rotation.

The rotational lift realizes the relative motion between the particles and the gas phase,
which can be expressed as:

FMa =
π

8
d3

pρg(ωg − ωp)× (vg − vp) (10)

3.2. CFD–DEM Coupling Parameter Analysis Settings
3.2.1. Determination of Characteristic Parameters of The Cotton Pipeline

Pneumatic conveying throughout the whole process of cotton processing is the primary
mode of transportation for seed cotton, lint, and other materials [27]. After the lint cleaning
machine cleans cotton through the suction-type pneumatic conveying device, the cotton
is sent to the baler in bales. The conveying device mainly comprises a lint suction nozzle,
cotton collection branch pipe, cotton collection pipe, cotton collection machine, return air
pipe, fan, dust collector, and other components and equipment, as shown in Figure 3.
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Cotton delivery in the processing plant mainly uses centrifugal suction fans, which
are collected and transported through the negative-pressure cotton transport pipeline.
In the lint cotton transportation chain, the length of the cotton pipeline is 15 m or less;
cotton is transported in the pipeline at a speed of 12 m/s–15 m/s [28]; and the lint cotton
transportation mixing ratio is 0.09~0.2. Based on a processing plant in Xinjiang, lint cotton
conveying link field research was used to determine the centrifugal fan in the lint cotton
conveying-related parameters as shown in Table 1.

Table 1. Reference configuration table for fans in lint transport.

Fan Model Fan Name Number
/Unit

Power of
Motor
/kW

Flow Rate
/(m3/h)

Rotational
Speed

/(r/min)

Full Pressure
(Pa)

Diameter of Air
Inlet and

Outlet
(mm)

4-72No.12C Centrifugal fan 1 45 49,641–69,481 1030 2318–1834 1000

3.2.2. Numerical Simulation Analysis of Unloaded Flow Field of Cotton Pipeline

The flow field simulation analysis focuses on the selection of the lint main pipe and the
return air pipe. To determine the airflow velocity and negative-pressure distribution within
the lint pneumatic conveying pipeline under no-load conditions, a numerical simulation
analysis of the flow field was conducted. This analysis provides the necessary boundary
parameters for the air–solid coupling in the CFD–DEM system. Figure 4 displays the
three-dimensional structural dimensions of the cotton conveying pipeline.
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the mesh determine the accuracy and time of the solution. To verify the reasonableness of
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the simulation model’s mesh selection, this study meshed the cotton pipeline model with
different densities; due to the large size of the model, a tetrahedral mesh was used to divide
the model, and the mesh size was set by the proximity control function and the curvature
control function; the mesh was fast using this mesh division, and at the same time, the
model shape was regular, and the model could be reasonably divided by the edges and
corners by these two control functions. The numbers of grids for the computational model
were 1768, 3638, 6498, 8947, 52,822, 74,428, 104,737, 130,119, and 373,575. Figure 5 (the red
stars are the data nodes; section B airflow velocity nodes correspond to different numbers
of grids) represents the values of section B’s airflow velocity, monitored as the model grid
is refined while other conditions are kept the same, and it can be seen from the figure
that the airflow velocity at section B changes very little when the number of grids exceeds
100,000, which means that continuing to increase the number of grids has less influence on
the calculation results, and it can be considered that the 130,119 grids already meets the
simulation requirements.
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The cotton pipeline model was imported into Ansys Geometry and the fluid domain
was delineated. Considering the shape and size of the model, the Proximity and Curvature
function was used to mesh the model in Ansys Mesh, the Num Cells Across Gap was
determined to be 8 layers, and the Curvature Normal Angle was determined to be 15◦.
Considering the boundary layer effect, the mesh near the pipe wall was encrypted in the
thickness direction, Maximum Layers was set to 5 in Inflation, Growth Rate was set to 1.2,
and Smooth Transition was selected in the Inflation Option to ensure a smooth transition of
the mesh encryption; the mesh was divided as shown in Figure 6. As shown in Figure 6,
the total number of meshes was 130,119, and the average value of Orthogonal Quality was
0.7136, which is more significant than 0.5, indicating that the quality of mesh division meets
the requirements.
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The mesh model was imported into FLUENT fluid simulation software, and based
on the characteristic parameters of the cotton pipeline, the external atmospheric pressure
was set as the standard value, i.e., 101,325 Pa, the relative pressure at the aerodynamic
inlet was set to be 0 Pa, and the pressure at the aerodynamic outlet was set to be −2000 Pa
(the centrifugal blower provided negative pressure). Relying on the k–epsilon (2 eqn)
turbulence model calculations to obtain the airflow in the pipe, the residuals of each index
are below 10−4, and the calculation results converge. The simulation results are shown in
Figures 7 and 8. After analysis, it can be seen that the average airflow velocity is 42.15 m/s
and the average pressure is −1297.71 Pa when the pipeline is unloaded, and the maximum
velocity is 45.2 m/s and the maximum pressure is −1182.80 Pa near the sampling port;
the airflow velocity and pressure inside the pipeline tend to be uniformly distributed
when the pipeline is unloaded, which contributes to the stable transportation of cotton
lint. Meanwhile, the average velocity at the velocity inlet (section C) is 43.7 m/s, and
the average pressure at the pressure outlet (section A) is −1247.75 Pa, which provides a
theoretical basis for the parameter setting of the boundary conditions in the simulation of
the cotton lint pneumatic conveying process by CFD–DEM.
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3.2.3. CFD–DEM Coupling Parameter Settings

The cotton pipeline with the presented sampling device (section A–section C) was
intercepted for coupling analysis, and the parameters of the intercepting device are shown
in Table 2.
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Table 2. Quantitative sampling device-related parameters.

Parameters Value

Device simulation parameters
Pipe Diameter, mm 1000

Sampling port size, mm 250 × 250
Intercept length (section A–section B), mm 2000

Boundary conditions
Velocity inlet (cross section C), m/s 43.7

Pressure outlet (section A), Pa −1247.75
Pipeline pressure, Pa −1297.71

In this EDEM–FLUENT coupled simulation test, we utilized FLUENT 2021 R1 and
EDEM 2022 software to conduct the coupled simulation. The Eulerian–Lagrangian coupling
model is chosen not only to realize the momentum exchange between the gas term and the
lint particle term but also to take into account the effect of the particle volume on the gas
continuum term, which can accurately analyze the interaction between the two gas–solid
flows. The coupled flow process is shown in Figure 9. First, FLUENT iteratively calculates
the time step of the airflow field. Suppose the current time step converges or reaches the
preset number of iterative steps. In that case, the airflow force is applied to EDEM by
compiling the coupling interface file, affecting the particle motion. Meanwhile, EDEM
performs iterative calculations of the same time step by the discrete element method and
imports the particle volume, position, and velocity information into FLUENT through the
coupling interface, thereby calculating the interaction between the particles and the flow
field. The entire coupling simulation process is achieved by iterating the calculation until
the set convergence value is reached.
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The grid file of the intercepted lint pipeline with the presented sampling device
(section A–section C) was imported into EDEM 2022 software for solid-phase parameter
setting, and the coupling interface file was used to start FLUENT software to realize the
numerical simulation of the lint particle pneumatic conveying and sampling process. The
force of the airflow field on the lint was simulated in FLUENT 2021 R1 software by checking
the Freestream Equation traction model and Saffman Lift and Magnus Lift models in the
coupling module. In EDEM, the solid-phase contact includes the contact between lint and
lint and between lint and the wall; we chose the Hertz–Mindlin no slip, no sliding contact
model reaction for the contact state between the particles and the wall.

In the CFD–DEM coupling process, lint particles are randomly generated in the
velocity inlet, and the plant’s generation rate and actual conditions are used to maintain
consistency. Iteration occurs in EDEM 2022 software. The time step is 1 × 10−6 s, and other
parameters are shown in Table 3 [29–31].
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Table 3. EDEM simulation parameters.

Parameters Value/Formal

Material Properties

Poisson’s ratio for lint 0.4
Modulus of elasticity of lint/(Pa) 2.4 × 109

Lint density/(kg·m−3) 400
Steel Poisson’s ratio 0.3

Steel shear modulus/(Pa) 7 × 1010

Steel density/(kg·m−3) 7850

Exposure parameter

Lint–lint collision recovery factor 0.05
Coefficient of static friction of lint–lint 0.55

Lint–lint rolling friction coefficient 0.15
Lint–steel collision recovery coefficient 0.1

Lint–steel static friction coefficient 0.45
Lint–steel rolling friction coefficient 0.2

Pellet Plants
Number of particles limitless

Particle generation rate (kg/s) 1.69
Location and direction of particle

generation randomization

The same mesh file was imported into FLUENT 2021 R1 software for flow simulation,
and the turbulence model was selected as k-omega, which was solved by the Phase-Coupled
SIMPLE algorithm. The time step of FLUENT was 1 × 10−4 s (100 times of EDEM), the
number of steps per coupling iteration was 30,000, and the total simulation time was 3 s;
Max Iterations Time Step was 20, i.e., the maximum number of iterations per time step was
20; to extract the detailed information of particle movement as much as possible, the data
were saved every 0.05 s in FLUENT. Max Iterations/Time Step was set to 20, i.e., each time
step was iterated at most 20 times; to extract the motion information of the particles in as
much detail as possible, the data were saved once every 0.05 s in FLUENT.

4. Simulation Results and Discussion

The analysis of the motion in a gas–solid multiphase flow system involves charac-
terizing the motion of the fluid phase and the motion of the solid phase (particles). This
study examines the impact of the cumulative weight of cotton samples on the quantitative
sampling process of cotton lint in the processing chain. Specifically, it analyses the changes
in the flow field, airflow pressure, airflow velocity, and motion state of cotton particles
during the sampling process. In the CFD–DEM coupled simulation, the residuals of each
index are below 10−3, and the calculation results converge, which can provide theoretical
support for the design optimization of the quantitative sampling device.

4.1. Change in Pressure of Flow Field in Cotton Pipeline

The role of a negative-pressure centrifugal fan in the cotton pipeline involves the
conveying of gas and lint particles. The interaction forces between these components are
considered, and the flow field pressure is analyzed to evaluate the speed and stability of lint
particle transport and the accumulation of particles in the sampling link. Additionally, the
movement characteristics of the particles during the conveying process can be predicted.
Therefore, an analysis of the flow field pressure at different moments during the re-sampling
process of the cotton pipeline is conducted. Without sampling in the online detection
device pipeline’s flow field, the pressure remains stable at an average value of −1247.75 Pa.
However, when the sampling plate is introduced into the pipeline, the pressure distribution
along the pipeline is analyzed at specific time intervals of 0.05 s, 1 s, 2 s, and 3 s. These
results are visually represented in Figure 10.
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The sample plate does not affect the initial pressure of the flow field at 0.05 s, and its
pressure is around −1247.75 Pa, which is in a relatively stable state and helps to stabilize
the transport and sampling of lint particles. After 0.05 s, the sampling plate affects the
pressure of the flow field in the pipeline, and cotton particles on the sampling plate begin
to pile up. The pressure at the upper end of the sample plate reduces as a result of the
overhanging sampling plate’s blocking impact on the airflow. In comparison, the pressure
at the lower end increases. The low-pressure range at the higher end of the sample plate
increases and then stabilizes as the sampling duration increases, while the high-pressure
range at the lower end of the sampling plate increases and then stabilizes.

Through pressure map analysis conducted within a time frame of 1~3 s, it was ob-
served that the sampling process resulted in a range of pressures. The upper end of the
sampling plate exhibited the lowest pressure at −1598.74 Pa, while the lower end displayed
the highest pressure at −574.29 Pa. The maximum pressure difference between the upper
and lower ends of the sampling plate was found to be 1024.45 Pa. This pressure difference
is crucial in facilitating the accumulation of cotton samples on the sampling plate, ensuring
their stable arrangement. The sampling plate, made of galvanized steel and measuring
250 × 250 mm in size, was determined to be suitable for executing the negative-pressure
conveying link sampling action. These findings provide theoretical support for the material
design and selection of core sampling components used in online testing and inspection.
The sample plate utilized in this study was constructed from a galvanized steel plate,
measuring 250 × 250 mm. This specific size was determined to facilitate the successful
execution of the negative-pressure conveying link sampling process. Additionally, the
sample plate serves the purpose of offering theoretical justification for the design and
selection of core sampling components utilized in online testing and inspection.

4.2. Velocity Change of Flow Field in Cotton Pipeline

The velocity of the flow field is a significant characteristic of pneumatic conveying
systems. By examining the changes in and distribution of the flow field velocity, one can
accurately evaluate the average flow rate of gas and lint particles within the pipeline and
determine the maximum flow rate. This analysis is crucial in determining the stability of
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the sampling device within the flow field and assessing its susceptibility to the impact of
the fluent within the pipeline.

When the sampling plate is inserted into the online detection device without initiating
sampling, the gas flow rate in the pipeline remains in a stable state, with an average steady
flow rate of 43.7 m·s−1. However, when the sampling plate is suspended in the pipeline and
sampling is initiated, the gas flow rate distribution in the pipeline is analyzed at specific
time intervals of 0.05 s, 1 s, 2 s, and 3 s. The corresponding results are depicted in Figure 11.

Agriculture 2024, 14, 127 12 of 18 
 

 

the highest pressure at −574.29 Pa. The maximum pressure difference between the upper 
and lower ends of the sampling plate was found to be 1024.45 Pa. This pressure difference 
is crucial in facilitating the accumulation of cotton samples on the sampling plate, ensur-
ing their stable arrangement. The sampling plate, made of galvanized steel and measuring 
250 × 250 mm in size, was determined to be suitable for executing the negative-pressure 
conveying link sampling action. These findings provide theoretical support for the mate-
rial design and selection of core sampling components used in online testing and inspec-
tion. The sample plate utilized in this study was constructed from a galvanized steel plate, 
measuring 250 × 250 mm. This specific size was determined to facilitate the successful 
execution of the negative-pressure conveying link sampling process. Additionally, the 
sample plate serves the purpose of offering theoretical justification for the design and se-
lection of core sampling components utilized in online testing and inspection. 

4.2. Velocity Change of Flow Field in Cotton Pipeline 
The velocity of the flow field is a significant characteristic of pneumatic conveying 

systems. By examining the changes in and distribution of the flow field velocity, one can 
accurately evaluate the average flow rate of gas and lint particles within the pipeline and 
determine the maximum flow rate. This analysis is crucial in determining the stability of 
the sampling device within the flow field and assessing its susceptibility to the impact of 
the fluent within the pipeline. 

When the sampling plate is inserted into the online detection device without initiat-
ing sampling, the gas flow rate in the pipeline remains in a stable state, with an average 
steady flow rate of 43.7 m·s−1. However, when the sampling plate is suspended in the pipe-
line and sampling is initiated, the gas flow rate distribution in the pipeline is analyzed at 
specific time intervals of 0.05 s, 1 s, 2 s, and 3 s. The corresponding results are depicted in 
Figure 11. 

 
Figure 11. Flow velocity clouds of the flow field at different moments within the cotton pipeline. 

When combined with the pressure map analysis, the sampling device does not affect 
the air velocity in the flow field at 0.05 s, and the average velocity is 43.7 m·s−1. After 0.05 

Figure 11. Flow velocity clouds of the flow field at different moments within the cotton pipeline.

When combined with the pressure map analysis, the sampling device does not affect
the air velocity in the flow field at 0.05 s, and the average velocity is 43.7 m·s−1. After
0.05 s, the sample plate creates a barrier effect in the pipeline, lowering the air velocity in
the flow field near the sampling plate. The air velocity at the upper end of the sampling
plate falls significantly with increasing sampling time, and the range of decline increases to
the range of the sampling plate overhang length, according to the 1~3 s flow field velocity
map analysis.

This study aims to investigate the variation in airflow rate over a 3 s interval. The
low density and lightweight nature of cotton lint primarily influences this variation. The
conveyance of the airflow rate within the pipeline’s flow field is minimally affected by
the presence of cotton lint. Additionally, the loose structure of cotton lint allows for the
continuation of airflow through the sampling plate despite the accumulation of lint particles.
Consequently, the lower end of the airflow assists in the sampling of cotton particles on the
sampling plate.

4.3. Velocity Analysis of Lint Particles in Cotton Pipelines

The lint particles enter the negative-pressure cotton pipeline from the velocity intake
with an initial velocity of 12 m/s in the linked simulation analysis. The cotton process-
ing factory produces 27 bales of cotton lint each hour, and the total lint production is
6080 kg/h. Therefore, the simulated lint particle creation rate is 1.69 kg/s [32], consistent
with actual production conditions. The movement of lint particles in the negative-pressure
cotton pipeline under this condition was analyzed numerically to identify the sampling
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process of lint particles as the movement speed changes and the impact on the sample
plate’s sampling.

The analysis involves sampling plates to observe the movement status of particles
within a 3 s interval. The resulting diagram, depicted in Figure 12, displays the cloud of
lint particle movement velocities at various time points. The analysis of the velocity of lint
particles during the pneumatic conveying process with a duration of 0.05 s reveals that
the particles experience a rapid increase in velocity to approximately 25 m/s when they
enter the negative-pressure cotton pipeline. This indicates that pneumatic conveying is
an effective method for quickly and efficiently transporting lint particles. Additionally,
during the period of 1~3 s, the velocity of the lint particles remains stable at around 25 m/s
and shows a tendency to stability. This observation, combined with an analysis of the
air velocity in the negative-pressure conveying pipeline, suggests that the stable speed
of the lint particles is approximately 59.31% of the velocity of the unloaded conveying
wind. The analysis of the movement speed of lint particles within a 1~3 s timeframe reveals
that these particles come into contact with a sampling plate once their speed decreases to
0 m/s. It is observed that the accumulation of particles on the sampling plate continues
to increase, thereby demonstrating the feasibility of utilizing the sampling plate to collect
cotton samples in a negative-pressure conveying environment. Moreover, this method
ensures stable transportation of lint particles during the movement process, facilitating
the effective capture of lint particles by the core of the sampling plate. The utilization of a
sampling plate as the central component assists the sampling organization in achieving
stable sample collection.
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4.4. Change in Weight of Lint Particles in the Sampling Device

The weight of the lint pile on the sample plate is a crucial evaluation metric in assessing
the effectiveness of the sampling device in carrying out the quantitative sampling operation.

EDEM 2022 software employs the Grid Bin Group function to partition the sampling
plate and collect cotton samples within a specified region. This facilitates the computation
of the cumulative weight of lint particles in each divided area. Consequently, it becomes
possible to ascertain the weight of lint particles on the sampling plate at various time



Agriculture 2024, 14, 127 14 of 18

intervals during the collection process. Figure 13 illustrates the variations in lint weight
collection within a 3 s timeframe.
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Analyzed from the above figure, the cotton lint’s overall weight accumulation on the
sample plate changes linearly; the transport of stable conditions of cotton lint particles
amounts to an approximately 100 g/s collection speed for sampling. The results of the lint
particle accumulation analysis at 1 s, 2 s, and 3 s are shown in Figure 14. At 1 s, the lint
accumulation on the sampling plate is 108.739 g, at 1~2 s, it is 123.011 g, and at 2 s~3 s, it is
107.291 g. After analysis, under the condition of stable transportation of lint, the sampling
device with the sampling plate as the core can realize quantitative sampling of lint in a
certain period.
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5. Sample Machine Performance Test

To verify the stability and reliability of the quantitative sampling device and assess
the sampling effect of the sampling device under the condition of uniform cotton flow, the
quantitative sampling device was installed on a cotton pipeline to carry out a prototype
performance test.

5.1. Pilot Program
5.1.1. Test Conditions

To assess the performance of our prototype, we installed a quantitative sampling
device on a negative-pressure cotton pipeline at a processing plant in Xinjiang. This device
allows us to transport lint through the pipeline during production, serving as the test object
for our performance test. In field measurements, the cotton factory’s pipeline suffers from
poor tightness, resulting in resistance caused by factors such as pipeline resistance and local
resistance (including inlet, lifting, elbow, tee, etc.). The actual unloaded wind speed in the
cotton pipeline is measured to be 25~30 m/s, while the lint conveying speed is 8~12 m/s.

An MS6H-60CM30BZ3-20P4 servo motor (Xinjie Electric, Wuxi, China) is used in
the quantitative sampling device. Selection of FAB060D-L2-14-50-70-M5-34 (TongLi Re-
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ducer, Suzhou, China). We selected an L6D-C3-5kg-0.45B-FS-type load cell (AVIC Electro-
Measurement). The size of the sampling plate was designed as a 250 × 250 mm square
perforated galvanized steel plate, and the thickness of the sampling plate was 8 mm; other
test components included a cotton collection box, nozzle, electric cabinet, touchscreen, and
so on. The test setup is shown in Figure 15.
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5.1.2. Test Method

The quantitative sampling device is turned on, and the parts return to the starting
position, as shown in Figure 16a. The device is now ready to sample with the adjustment
plate for negative pressure positioned upwards and the sampling port open, as shown in
Figure 16b. The sampling plate is then rotated 90◦ counterclockwise to enter the cotton
pipeline, as shown in Figure 16c. Sampling begins, and the sampling plate remains in
the pipeline with the cotton for 1 s. The lint is processed under negative pressure and
accumulates below the sampling plate, indicating that the sampling is complete. This is
shown in Figure 16d,e. After 1 s, the sampling plate rotates clockwise by 120◦, allowing
the cotton samples to enter the quantitative sampling device, as shown in Figure 16f.
The cotton samples are then weighed. The negative-pressure regulator plate is closed to
isolate the cotton pipeline environment from negative pressure. The cotton samples on the
sampling plate are then transferred to the cotton collection box through the action of the
pneumatic nozzle. The weight of the cotton samples is obtained using a load cell, as shown
in Figure 16g.
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5.2. Results and Discussion

We repeated the sampling test 50 times and weighed the sample weight statistics; the
results are shown in Figure 17. According to the national standard GB/T 6102.2-2012 [33]
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raw cotton dampness test method, the sample quality is 50 ± 5 g. The test statistics show
that the weight of the sample taken out is between 45~55 g. There are 43 groups, and the
sampling qualification rate is 84%, which meets the sampling requirements.
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6. Conclusions

1. The prototype test shows that the sampling plate, as the core of the presented quanti-
tative sampling device in cotton flow under uniform conditions, can achieve an 84%
sampling pass rate during a specified period in a quantitative sampling study;

2. During the conveying process in factories, there is a significant pressure difference
of up to 1024.45 Pa when sampling plates move up and down. This pressure differ-
ence allows for the accumulation of cotton samples on the sampling plate, ensuring
their stable placement. Additionally, this study provides theoretical support for
the selection of the sampling plate’s size and material, which are determined to be
250 × 250 mm and galvanized steel plate, respectively, to meet the requirements of
actual sampling. This information is crucial for the design of core components in
online testing equipment and material selection;

3. Upon conducting an analysis, it was determined that the stable speed of cotton
pipeline lint particles is 59.31% of the wind speed during unloaded conveying. This
discrepancy in conveying wind speed within the conveying pipeline is attributed to
variations in equipment parameters across cotton processing plants. Consequently, it
is possible to calculate the lint particle conveying speed for different conveying wind
speeds, thereby providing a theoretical foundation for determining the sampling time
of the online testing device.
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