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Abstract: This study focuses on real-time detection of maize crop rows using deep learning technology
to meet the needs of autonomous navigation for weed removal during the maize seedling stage. Crop
row recognition is affected by natural factors such as soil exposure, soil straw residue, mutual shading
of plant leaves, and light conditions. To address this issue, the YOLOv5s network model is improved
by replacing the backbone network with the improved MobileNetv3, establishing a combination
network model YOLOv5-M3 and using the convolutional block attention module (CBAM) to enhance
detection accuracy. Distance-IoU Non-Maximum Suppression (DIoU-NMS) is used to improve the
identification degree of the occluded targets, and knowledge distillation is used to increase the
recall rate and accuracy of the model. The improved YOLOv5s target detection model is applied
to the recognition and positioning of maize seedlings, and the optimal target position for weeding
is obtained by max-min optimization. Experimental results show that the YOLOv5-M3 network
model achieves 92.2% mean average precision (mAP) for crop targets and the recognition speed is
39 frames per second (FPS). This method has the advantages of high detection accuracy, fast speed,
and is light weight and has strong adaptability and anti-interference ability. It determines the relative
position of maize seedlings and the weeding machine in real time, avoiding squeezing or damaging
the seedlings.

Keywords: maize seedlings; autonomous navigation; deep learning; crop row detection; inter-row
weeding

1. Introduction

The early growth stage of maize is a crucial time for weed management. While
excessive use of chemical herbicides is effective, it may damage the integrity of soil and
water [1]. With the advancement of agricultural technology, there is an urgent need for
innovative weed management solutions that not only effectively suppress weeds [2], but
also reduce labor, increase efficiency, and enhance crop yields [3]. Mechanical weeding
serves as a viable alternative to chemical pesticides, saving labor and time compared
to manual methods [4,5]. However, traditional mechanical weeding often struggles
to accurately identify and locate maize seedlings, leading to potential damage [6,7].
This issue primarily stems from the diverse and uneven distribution of weed species
in the field as well as the need to improve the recognition accuracy and robustness of
existing methods in complex backgrounds [8]. These methods currently cannot diagnose
the relative position of crops and weeding machinery in real time, making it difficult
to precisely control weeding locations [9]. Therefore, developing a method that can
accurately identify and precisely locate maize seedlings to provide reference positions
for inter-row weeding can improve the weeding efficiency.

Machine learning has been integrated into mechanical weeding, improving detec-
tion accuracy and reducing manual labor costs [10]. For large-scale inter-row weed
management, the accuracy of inter-row detection, weed identification, and automatic

Agriculture 2024, 14, 124. https://doi.org/10.3390/agriculture14010124 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture14010124
https://doi.org/10.3390/agriculture14010124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://doi.org/10.3390/agriculture14010124
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture14010124?type=check_update&version=2


Agriculture 2024, 14, 124 2 of 26

control is crucial [11]. Despite advancements such as RTK-GPS navigation, the effec-
tiveness of existing methods is challenged by variations in plant spacing caused by
environmental factors and the accuracy of seeders [12,13]. Machine vision combined
with precision control systems has been proposed to address these challenges [14], uti-
lizing image processing and sensor technology to reduce labor intensity and costs [15].
In recent research on crop row detection, a central line representing the width of the
crop row in the image is usually extracted as the navigation information for mechanical
travel [13]. Most methods can be divided into two steps. The first step is to accurately
segment the image and background to extract the green plants in the image, including
weeds and crops to obtain a binary clipping image. The second step is to extract the crop
rows from the binary image. The process of crop row extraction is generally based on the
model [16]. Ref. [17] employed a horizontal strip method to obtain crop row features and
determined the final clusters using a location clustering algorithm and the shortest path
method. However, if there are weeds near the crop rows, the accuracy of the horizontal
strip method is poor. Ref. [18] proposed a new method for detecting wheat rows using
a mobile window to scan images of early-stage wheat, and crop row feature points
were obtained using the Hough transform and vanishing points. Meanwhile, Ref. [18]
introduced a new method for detecting curved and straight crop rows using a Hough
transform-based approach that overcomes the effects of varying lighting conditions
and different plant heights and volumes during different growth stages. Furthermore,
Ref. [19] proposed an improved multi-ROI method to accurately detect crop rows in
complex field environments.

With the emergence of computer vision and artificial intelligence, convolutional
neural networks (CNNs) have gained widespread attention in the field of computer
vision [20]. Advanced agricultural countries have already made significant strides in
the development of agricultural robots [21]. CNNs have shown their versatility and
prowess in various intelligent machine learning applications, and recently they have been
applied to weed control [22]. For instance, Ref. [23] proposed a method that combines
optical flow with CNNs to achieve accurate crop row segmentation in weed-infested
fields. Moreover, Ref. [24] introduced a weed species identification method using the
CNN-based approach in wheat fields, with an accuracy rate of 97%. Similarly, Ref. [25]
developed a soybean weed detection model using CNNs, which achieved an accuracy of
98% based on images from multiple soybean fields. Additionally, Ref. [26] proposed an
optimized method combining dilated convolution with global pooling for crop and weed
recognition with excellent recognition results. Ref. [27] further improved the Xception
model by employing exponential linear units as activation functions and a lightweight
convolutional neural network-based weed recognition model, which attained an average
test recognition accuracy of 98.63% across eight weed species and young maize. Finally,
Ref. [28] developed a field navigation agricultural robot that can track early crop rows
in unstructured and irregular agricultural environments by proposing a row anchor
selection classification method.

As the demand for deep learning algorithms on mobile devices has increased, re-
search on lightweight network structures such as MobileNet and other designs have also
become popular [29]. These networks improve running speed while maintaining accu-
racy, reducing requirements for parameters and computing power, and are suitable for
embedded and mobile devices in real-life scenarios. Furthermore, to meet the demands
of deep learning, the performance and computing power of embedded devices have
also improved, as indicated in recent studies. In terms of object detection, single-stage
models such as SSD, EfficientDet, RetinaNet, and YOLO series can directly localize
and classify targets [30]. Recently, Ref. [31] proposed an optimized method for cotton
seedling weed identification and localization based on Faster R-CNN, achieving an aver-
age recognition accuracy of 88.67% for cotton seedlings and weeds. Meanwhile, Ref. [32]
applied depthwise separable convolution and a residual structure while incorporating
an attention mechanism into the YOLOv4 feature extraction backbone network to detect
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weeds in carrot fields, providing a promising solution for accurate weed detection in
agricultural applications. Ref. [16] utilized the YOLOv5 network model to extract regions
of interest (ROIs) from images, using these feature points to detect driving areas, thereby
addressing the impact of background clutter on detection results. The average errors in
calculating the driving path and heading angle were 2.74◦, meeting the real-time and
precision requirements of agricultural machinery visual navigation. Ref. [4] proposed a
new spatial pyramid pooling structure, ASPPF, and constructed the ASPPF-YOLOv8s
network model, achieving a detection accuracy of over 90% for the maize plant heart.
However, the detection is performed individually for each weed, which may result in
false detections when dealing with a large variety and dense distribution of weeds in
the field. To address these challenges, Ref. [33] compared the performance of several
lightweight deep learning models to minimize the model size and compute load while
ensuring accuracy. The results show that MobileNetV2 and ShuffleNetV2 performed
better than other models in both efficiency and effectiveness.

Research both domestically and internationally has predominantly focused on the
following aspects: (1) methods based on morphological features, however the identifica-
tion performance is unsatisfactory in complex environments; (2) the use of deep learning
object detection models, with the need to improve the accuracy and robustness of small
object recognition; (3) utilizing improved backbone networks for feature extraction,
yet the effectiveness in maize seedling scenes remains to be verified; (4) employing
single-stage object detection models, which offer high recognition efficiency, but limited
capability in scenarios involving overlapping targets. Overall, the current methods still
require improvement in the identification and positioning of maize seedlings in complex
backgrounds. To address this issue, this paper proposes a maize seedling automatic
recognition and navigation positioning method based on an improved YOLOv5s object
detection model. Specifically, this study adopts lightweight backbone networks such as
MobileNetV3 for feature extraction and incorporates the Convolutional Block Attention
Module (CBAM) to enhance small object recognition capability. Simultaneously, the
method utilizes the least squares fitting to extract precise navigation centerlines and
obtains the target position of the weeding wheel through max-min optimization, pro-
viding reference for mechanical weeding. Experimental results demonstrate that this
method significantly improves recognition accuracy while maintaining speed, effectively
resolving the issue of identification and positioning in complex environments.

2. Materials and Methods
2.1. Structure and Operating Principle of Inter-Row Weeding Machine

The intelligent inter-row weeding mechanism consists of an image recognition system,
a control system, a hydraulic system, and a mechanical structure. The mechanical struc-
ture mainly includes a beam frame structure, an inter-row weeding mechanism, a lateral
displacement mechanism, and a steering mechanism. It can automatically align with the
navigation line, improve weeding efficiency, and reduce plant injury. The overall structure
is shown in Figure 1.

The intelligent inter-row weeding equipment extracts real-time seedling and weed
information from the field through a camera, performs image recognition processing to
accurately distinguish seedlings, weeds, and soil, and locates the positions of seedlings.
Using maize seedling crop rows as a reference benchmark, computer vision technology is
introduced to fit the center lines of two crop rows, and calculate the middle position between
the two lines as a guide line. The lateral movement of the weeding machine is controlled and
adjusted using the guide line as a reference. The weeding machine’s execution mechanism
automatically adjusts its lateral position as the vehicle deviates, maintaining a safe distance
from the crop rows. The computer processes relevant information and sensors feedback,
issues control signals, and drives the weed removal equipment to complete tasks such
as lateral movement, turning, weed removal, and seed avoidance. The hydraulic system
outputs control signals, and the hydraulic cylinder, as the actuator of the closed-loop
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control system, adjusts the lateral displacement of the weeding wheel accordingly to avoid
damaging the maize seedlings. The schematic diagram in Figure 2 illustrates the weed
control principle of the inter-row weeding machinery.
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2.2. Method for Extracting Crop Row Navigation Line

This study proposes a method for extracting the navigation line of crops during the
seedling stage of maize cultivation. The method is divided into three stages:

Using deep learning, a maize detection model for crop row maize seedling target
detection is trained. Firstly, the acquired RGB image of the crop row is analyzed according
to the camera pitch angle and the imaging relationship of the seedlings, and the ROI region
in the image is constructed. Then, based on the improved YOLOv5s target detection model,
the maize crop targets are detected, and the maize category, detection boundary box, and
category confidence are output. As shown in Figure 3a, the red boundary box surrounds
the detected maize seedlings, showing their classification and stability.

As shown in Figure 3b, the dots in the bounding box represent the position of the
detected maize seedlings. This step is to calculate the positions of the seedlings and
represent them with coordinates. The geometric center of the bounding box can represent
the position of the maize seedlings, as they are uniformly distributed around the plant
stem during image acquisition. For the maize seedling line fitting, in the two crop rows
in the ROI processing area, the coordinates of the maize seedlings in the crop rows were
extracted, and linear fitting was adopted for the seedling target detection coordinates, as
shown in Figure 3c. In this step, crop row bending diagnosis and guide line extraction
were achieved. As the ultimate goal is to automatically control the lateral offset of the
weeding mechanism to prevent them from damaging the seedlings, the optimal position
of the weeding mechanism was calculated. In Figure 3d, the red midline is marked as the
trajectory of the optimal position as the navigation line.
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2.3. YOLOv5 Object Detection Model

YOLOv5 is a one-stage detection model released by UitralyticsLLC, whose core idea
is to take the whole picture as the network input, integrate the target decision and target
recognition into one, and directly regress the position of the prediction box and the class
of the prediction box at the output layer, with the advantages of smaller mean weight file,
shorter training time, and inference speed [34,35]. The detection performance has been
further improved. The YOLOv5 target detection network model structure has YOLOv5n,
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x; these five models have similar structures,
among them YOLOv5s network parameters are the smallest, training speed is the fastest,
but AP accuracy is the lowest. If the detection target is mainly large-scale target and the
training target pursues speed, YOLOv5s can meet the training conditions. The other four
networks continue to deepen and widen the network on this basis, and the AP accuracy
continues to improve, but the speed consumption is also increasing. Therefore, this paper
decided to improve YOLOv5s, so that the improved model can not only maintain its speed
advantage when applied, but also improve its accuracy, so as to be able to quickly and
effectively train small targets.

The structure of the YOLOv5s model consists of four parts: a convolutional network-
based backbone main network [30], which mainly extracts feature information of the image;
a head detection head, which mainly predicts the target box and predicts the target class; a
neck between the main network and the detection head; and a prediction layer that outputs
the detection result, predicting the target detection box and label category, as shown in
Figure 4.
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2.4. Improvements to YOLOv5’s Object Detection Model
2.4.1. Design of YOLOv5-M3 Network Model

In the original YOLOv5s model, the CSPDarknet-53 network structure contains 52 stan-
dard convolution layers and 1 fully connected layer, which has many layers, high model
complexity, and difficult training. Therefore, based on the original YOLOv5s, a lightweight
real-time object detection neural network model YOLOv5-M3 was proposed to improve
the inference speed of the model, and the CBAM attention mechanism network structure
was integrated, as shown in Table 1.

Table 1. MobileNetv3 network model architecture parameters with attention mechanism.

Floor Input Output Numbers Activation
Function

CBAM
Attention

Conv2D_BN_
hard-swish 4162 × 3 2082 × 16 1 hard-swish ×

Bneck_block 2082 × 16 2082 × 16 1 relu ×
Bneck_block 2082 × 16 1042 × 24 2 relu ×
Bneck_block 1042 × 24 522 × 40 3 relu

√

Bneck_block 522 × 40 262 × 112 6 hard-swish
√

Bneck_block 262 × 112 132 × 160 3 hard-swish
√

YOLOv5-M3 is an end-to-end detection framework based on regression idea, and
the network model is shown in Figure 5. MobileNetv3 is used as the backbone network
of YOLOv5s to extract features, and the performance and running time of the model are
studied. MobileNetv3 is improved to design the model lightweight, and CBAM attention
mechanism is used to replace SENet module in the network model to optimize the accu-
racy of target detection and strengthen the focus on the detection target, thus reducing
the decline of detection accuracy caused by the complex environment. The designed
YOLOv5-M3 network model uses depthwise separable convolution to replace standard
convolution, further reducing the model complexity, improving training efficiency and
inference speed.
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2.4.2. Optimization of Backbone Network in YOLOv5s

The CSPDarkNet53 backbone network model used in YOLOv5s introduces Cross Stage
Partial Network (CSPNet) to extract effective deep feature information [36,37]. However,
it was found in the experiment that only by directly adjusting the width multiplier and
depth multiplier to lighten the model (when the width coefficient and depth coefficient are
smaller than 1.0), there was a serious problem of missed targets in the video image. There-
fore, when considering adjusting the lightened model, a lighter backbone network with a
stronger feature extraction ability on the mobile side needs to be introduced. Replacing
CSPDarkNet53 with the lightweight backbone network MobileNetV3 attempts to achieve a
balance between lightness, accuracy, and efficiency.

MobileNetV1 is a lightweight CNN suitable for deployment on edge devices, which
can reduce the number of network parameters by using depthwise separable convolution
(DSC) and balance the detection accuracy and speed [38]. Subsequently, MobileNetV2 has
added two features: the Inverted Residuals method makes the feature transmission more
powerful, and the network layer is deeper [39]; the Linear Bottleneck module replaces the
non-linear module and reduces the loss of low-level features.

MobileNetV3 released in 2019 combines part of the structures of V1 and V2 [40],
integrates, optimizes, and deletes the network layers with high computational cost in
the V2 system, and introduces the SE-Net (squeeze-and-excitation networks) lightweight
attention structure without sacrificing accuracy while consuming low resources [41]. DSC
(Depthwise Separable Convolution) consists of depthwise convolution (DW) and pointwise
convolution (PW), as shown in Figure 6. Compared with traditional convolution, DSC
reduces parameters and calculation greatly, and the comparison of calculations is shown in
Formula (1):

w1

w2
=

D2
k ·M·D2

F + M·N·D2
F

D2
k ·M·N·D2

F
=

1
N

+
1

D2
k

(1)

where w1 is the computational cost of depthwise separable convolution; w2 is the computa-
tional cost of traditional convolution.
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Figure 7. The residual block and inverted residual block. (a) The residual block. (b) The inverted
residual block.

The reverse residual structure uses point convolution to increase the number of chan-
nels, then performs deep convolution at a higher level, and finally uses point convolution
to reduce the number of channels. The reverse residual network improves the feature’s
gradient propagation ability with the help of residual connections, making the network
layers deeper while using smaller input and output dimensions, greatly reducing the
computational cost and parameter volume of the network. In addition, the reverse residual
network has efficient CPU and memory inference capabilities, which can build flexible
mobile models and thus be applicable to mobile device programs.

In MobileNet, two hyperparameters, α and β, are proposed. α is used as a width factor
to adjust the number of convolution kernels to α times of the original one, and β is used to
control the size of the input image. The calculation of using DSC to adjust α is obtained by
Formula (2):

W = D2
K·αM·βD2

F + αM·αN·βD2
F (2)
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The adjustment of the width coefficient can directly reduce the computation and
volume to 1/α2, greatly reducing the number of model parameters and computation, with
little loss of accuracy. In this paper, α is set to 0.5.

2.4.3. Convolutional Block Attention Module’s Attention Mechanism

Most of the missed detections in the experiment occurred when the target size sud-
denly changed drastically, especially in the process of the bumpy field vehicle swaying
left and right, the miss rate is very high. This also indirectly indicates that the native
lightweight attention mechanism SE-Net in YOLOv5s may be limited in the case of sudden
and drastic changes in target scale.

Compared with SE-Net, which only focuses on the importance of channel pixels,
CBAM is a lightweight attention model that comprehensively considers the differences
in importance between different channel pixels and the same channel pixels at different
locations. It is a simple and efficient attention mechanism design, with minimum computa-
tional consumption, and it can be seamlessly integrated with convolutional networks and
used for end-to-end training, as shown in Figure 8.
 

4 
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Module

Spatial

Attention

Module

Refined

Feature

Convolutional Block Attention Module

Input feature F

MaxPool

AvgPool Shared MLP

Channel 

Attention Mc

Channel Attention Module

Figure 8. CBAM attention mechanism structure.

The CBAM consists of a channel attention module and a spatial attention module.
The input features are inferred to contain attention features in sequence, and then the
attention feature vector and the input feature vector are multiplied to achieve adaptive
feature optimization. As shown in Figure 9, the channel attention vector is calculated along
the spatial dimension to obtain the feature vector and is multiplied with the input feature.
The channel attention mechanism is expressed in Formula (3):

Mc(F) = Sigmoid(MLP(AvgPool(F)) + MLP(MaxPool(F))

= Sigmoid(W1(W0(FC
avg)) + (W1(W0(FC

max))
(3)
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Figure 9. Channel attention mechanism.
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Figure 10 represents the spatial attention vector, which is obtained by operating along
the channel direction to obtain the feature vector and then multiplied by the input feature.
The expression of the spatial attention mechanism is shown in Formula (4):

Ms(F) = Sigmoid(conv([AvgPool(F); MaxPool(F)]))

= Sigmoid(conv([FC
avg, FC

max]))

F′ = MS(MC(F)⊗ F)⊗ (MC(F)⊗ F)

(4)
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In the target detection model, replacing the SE-Net module with the CBAM attention
mechanism to optimize the target detection accuracy makes the target feature extraction
more complete, thus improving the target loss problem when the field bumping causes
oscillating changes.

2.4.4. Improved Non-Maximum Suppression

When using Non-Maximum Suppression (NMS) to remove redundant detection boxes,
the criterion for judging is the Intersection over Union (IoU) between the detection box
and the box with the highest predicted score. When IoU is greater than the set threshold,
the predicted detection box will be removed. However, in the case of densely distributed
targets, due to the large overlap area of the detection boxes caused by the occlusion of the
targets, the targets are often incorrectly removed by NMS, resulting in missed detection.
Combining DIoU and NMS to improve missed detection, Distance-IoU Non-Maximum
Suppression (DIoU-NMS) not only considers the value of IoU, but also considers the
distance between the two box centers of the predicted boundary box and the true boundary
box, as shown in Formula (5) of DIoU-NMS:

Si =

{
Si, IOU − RDIOU(M, Bi) < ε
0, IOU − RDIOU(M, Bi) ≥ ε

(5)

M represents the prediction box with the highest predicted score; Bi determines if the
prediction box needs to be removed; Si is the classification score; RDIOU is the threshold
for NMS; RDIOU represents the distance between the centers of the two boxes, as shown in
Formula (6):

RDIOU =
ρ2(b, bgt)

c2 (6)

where ρ2(·) represents the Euclidean distance; b and bgt represent the distance between
the predicted bounding box and the ground truth bounding box centers; c represents the
shortest diagonal length of the minimum bounding box encasing two boxes.
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The biggest difference between DIoU-NMS and NMS is that when two boxes with far
apart centers are encountered, DIoU-NMS considers the possibility that they may belong to
different objects and should not be suppressed, thereby improving detection rates.

2.4.5. Knowledge Distillation

The technique of knowledge distillation is a widely adopted approach for compressing
models, which differs from pruning and quantization in model compression. Essentially,
knowledge distillation involves training a compact network model to emulate the knowl-
edge extracted from a pre-trained larger network. This training methodology is commonly
referred to as “teacher-student”, where the larger network is the “teacher network”, while
the smaller network is the “student network”. The goal of knowledge distillation is to
enable the student network to achieve comparable, if not better, accuracy than the larger
network while having fewer parameters and a smaller scale. By distilling the model, the
problem of slow speed and high memory consumption is resolved, while also enhancing
model accuracy. The distillation process can be observed in Figure 11.
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This article utilizes the YOLOv5m model as the teacher model. Firstly, a deeper and
more capable teacher network is trained using the data to extract features. Then, the teacher
network outputs the logits function, which is distilled at a temperature of T. The class
probability distribution obtained by applying the softmax layer is used as soft targets. At
the same time, the student network outputs logits that are distilled at the same temperature
T, and knowledge distillation is performed. This is a commonly used method for model
compression, which differs from pruning and quantization. The main idea of knowledge
distillation is to train a small network model to imitate a pre-trained large network. After
the layer has been distilled, the class prediction probability is obtained as soft predictions,
and the loss function is further obtained, shown in Formula (7):

Lsoft = −∑N
j pT

j log qT
j (7)

where pT
j is the probability of predicting the j-th class using softmax at temperature T for

the teacher network denoted; qT
j is the predicted probability of the j-th class using softmax

at temperature T for the student network denoted.
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Considering the teacher network also has a certain error rate, the loss function Lhard is
computed using the true labels as hard targets, combined with the original softmax output
of the student network. The formula for Lhard is shown in Formula (8):

Lhard = −∑N
j cj log qT

j (8)

where cj is the jth class ground truth label value.

Ltotal = αLso f t + (1 − α)Lhard (9)

The final loss function Ltotal is obtained by combining the weighted sum of the loss
function Lhard and Lso f t, where α is the weighting coefficient.

The YOLOv5m model serves as the basis for the teacher model, which is initially
trained to extract distinguishing features from the data. Usually, the teacher network has
better classification or detection ability than the student network, and the more accurate
the teacher network’s classifications or detections are, the more beneficial it is for the
student network’s learning. Consequently, the student model acquires knowledge from
the teacher model while cross-checking with the true labels, ensuring that it does not learn
incorrect information.

2.5. Crop Row Fitting Method
2.5.1. Extraction of Crop Image ROI Based on Perspective Projection

In the actual navigation process of the weed control machine, the rows of crops are
generally guided lines in the middle of the image, and the crops on the left and right sides
closest to the guide line of the weed control machine directly affect the accuracy of the
navigation. Therefore, pre-screening the ROI area in the image can reduce the amount of
image data processing and reduce the interference of crop rows at the edge of the image,
making the subsequent image processing steps more efficient. Therefore, it is necessary to
construct the ROI of seedling images before training the YOLOv5 network model and then
train the YOLOv5 network after labeling.

In order to determine the ROI of the crop rows in the image, the image is simplified to
an imaging model under perspective projection, as shown in Figure 12. OO’ is the center
line of the crop rows in the middle of the image, EF and GH are the center lines of the left
and right seedling rows, and the quadrangle ACDB is the ROI area.
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The specific process for determining ROI is as follows:
Under perspective projection, the pixel distance between the two ends of the central

line of the maize crop on the DOG and DO’H is as follows (10):

GG =
DOG
DO′H

=
sin

(
θ − α

2
)

sin
(
θ + α

2
) (10)
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GG is the ratio of DOG to DO′H ; θ is the angle between the camera optical axis and a
horizontal line, 45◦ to 60◦; α is the vertical field of the view angle of the camera (◦).

The pixel distance between point O’ and point H can be obtained from the imaging of
the camera.

DO′H =
2 f dsinθ

H(1 + GG)k
(11)

d is the average distance between rows of crops, mm; f is the focal length of the
camera, mm; H is the height of the camera’s optical center from the ground, mm; k is the
physical size of a single pixel in the image, mm.

When the camera is tilted to its maximum angle (θ = 60◦), the pixel distance DO′H
between point O’ and point H is the largest. By substituting A = 60◦ into Formula (9) and
(10), the values of DO′H and DOG can be calculated. Using the referenced values of DO′H
and DOG, the area inside the quadrilateral ABCD is set as the ROI, and the non-ROI section
of the image is masked and filled. Here, DO′D = DO′B = cDMQ, DOC = DOA = cDOG, and
c is the margin factor (c = 1.2). The ROI extraction effect is shown in Figure 13.
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2.5.2. Calculation of Maize Seedling Positions

As the maize seedling detection only provides bounding boxes with the coordinates of
the box vertices, the maize positions are simplified to a coordinate value to represent their
x-y positions in the image [42]. The bounding box position is described using coordinate
information, starting from the vertex closest to the origin and moving clockwise. The defini-
tion of bounding box vertex positions is as follows: (xmin, ymin), (xmax, ymin), (xmax, ymax),
and (xmin, ymax). In Formula (12), xmin, xmax, ymin, ymax are used to define the positions of
the maize seedlings, where (x, y) represents the coordinates of the center of the guiding line
for maize seedlings. {

x = (xmin + xmax)/2
y = (xmin + xmax)/2

(12)

2.5.3. Fitting of Crop Seedlings

The intelligent weed remover will adopt an automatic weeding system, taking into
account that the crop rows in large fields usually do not deviate within a short distance.
Moreover, since the tractor moves slowly at about 0.6 m/s, a simple linear fitting method
can be used. Formulas (13)–(15) represent the seedling line fitting algorithm using the least
squares method, and the center navigation line is fitted with linear fitting.{

X = 1
n ∑n

i=1 xi

Y = 1
n ∑n

i=1 yi
(13)
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m =
∑n

i=1
(
xi − X

)(
yi − Y

)
∑n

i=1
(

xi − X
)2 (14)

b = Y − mX (15)

where X is calculated as the average of all x-coordinates of the points; Y is calculated as the
average of all y-coordinates of the points.

The coordinates (xi, yi) represent the location of each seedling on the graph, where m
represents the slope of the line and b represents the y-intercept.

Crop line fit lines are indicated as in Formula (16):

y = mx + b (16)

In order to separate the two crop rows, a threshold value yth and a reference point
sc(xc, yc) are set, and the other points are defined as xi, where i ≤ n is the sequence number
for identifying crops and n is the total number of points outside the reference point. Since
the maize crop rows extend along the positive direction of the y-axis, these points need to
be classified into different crop rows using only the xci = xc − xi value for calculation. When
|xci| ≤ xth, they are classified as L1 crop rows, and when |xci| > xth, they are classified as
L2 crop rows.

After classifying all detection points, Formulas (13)–(16) are used to calculate the
m and b for L1 and L2 separately, and finally, the expressions for the two crop rows are
obtained. The formulae are shown in (17):{

yL1 = m1x + b1
yL2 = m2x + b2

(17)

2.5.4. Calculation of Optimal Weed Removal Positions

In agricultural reclamation areas, the standardization of crop rows is high, and inter-
row weeds are cleared by controlling the lateral displacement of the weeding shovel of
the inter-row weeder. Building upon the previous Section 2.5.3 on crop row fitting, the
next step involves determining the centerline of two crop rows. The diagram illustrating
the position relationship between the weeding machine and the crop rows is shown in
Figure 14. This can be achieved by obtaining the average of the fitted lines of the two crop
rows to derive the navigation centerline, as shown in Formula (18):

y = mcenterx + bcenter

mcenter =
m1+m2

2

bcenter =
b1+b2

2

(18)

where m1 and m2 are the slopes of the two crop rows, and b1 and b2 are the intercepts of the
two crop rows.

We can express hx as a function of the position of the weeding machine and the fitted
lines of the crop rows. Assuming the weeding machine position is (xvehicle, yvehicle), then hx
is as shown in Formula (19):

hx =
|mcenter · xvehicle − yvehicle + bcenter|√

1 + m2
center

(19)

where mcenter is the slope of the central navigation line, and bcenter is the intercept of the
central navigation line.

We can consider h as a function of the position of the weeding machine (xvehicle, yvehicle).
Our goal is to find the position of the weeding machine that minimizes hx.
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The navigation centerline is determined by the two crop rows to ensure that the
weeding position follows the trajectory. Moreover, the greater the lateral distance between
the two crop rows and the weeding shovel of the weeding machine, the lower the likelihood
of damage to the maize leaves and roots. If we aim to maximize the proximity of the
weeding machine’s travel path to the two crop rows to ensure that the weeding machine
is positioned as centrally as possible between the two rows of crops, we should use the
minimum value to represent the distance from the weeding machine’s travel path to the
closer side of the two crop rows. This ensures that the vehicle does not deviate too far
from the centerline and remains as close as possible to the middle of the two crop rows,
maximizing the distance between the weeding machine’s travel path and the two crop
rows. For the two crop rows (i = 1, 2), we can calculate the perpendicular distance (di) from
the weeding machine position to the crop rows, as shown in Formula (20). Our goal is to
find the vehicle position that maximizes min(d1d2).

di =
|mi · xvehicle − yvehicle + bi|√

1 + m2
i

(20)

where mi is the slope of the i-th crop row, and bi is the intercept of the i-th crop row.
We can define the angle between the weeding machine’s travel path and the fitted line

of the crop row as θ and set the angle threshold as θthreshold. When the angle θ between the
vehicle’s travel path and the fitted line of the crop row reaches the set threshold θthreshold,
we consider it as a curvature diagnosis, indicating the need for adjustment. The θ formula
is shown in (21):

θ = arctan
xh
y0

(21)

where y0 denotes the distance traveled by the weeding machine within the duration of the
information update.
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By comprehensively optimizing and considering three objectives, we can construct a
comprehensive optimization function F(xvehicle, yvehicle), as shown in Formula (22):

F(xvehicle, yvehicle) = αhx(xvehicle, yvehicle)− βmin(d1, d2)− γmax(0, |θ − θthreshold|) (22)

where hx(xvehicle, yvehicle) represents the perpendicular distance from the weeding ma-
chine’s travel path to the crop row; min(d1d2) represents the maximum distance from the
weeding machine’s travel path to the two crop rows; α, β, γ are parameters that balance the
three objectives.

This formula takes into account the minimization of hx and the maximization of the
distance from the vehicle’s travel path to the two crop rows, while considering the angle
threshold and the constraints on perpendicular distance. Through numerical methods, we
seek to find the vehicle position that maximizes F(xvehicle, yvehicle).

2.6. Data Collection and Preprocessing

In order to ensure the diversity of the dataset, the following factors were considered
in the collection process. Different fields: the experiment involves three fields and the
data were collected in 2022 from the fourth management area of Zhaoguang Farm in Beian
City, Heilongjiang Province. When using the images of the dataset for maize seedling
detection, the following factors were considered in the collection process in order to ensure
the diversity of the dataset. Different plot conditions: mainly for the maize seedling period
of the field scenes under the two sowing modes of no stubble stubble and stubble stubble,
different interference factors, such as precipitation/accumulation, missing/row, weeds,
canopy overlap, etc., affecting the detection are considered in the dataset. Weather factors
are also taken into consideration, as well as natural light changes and shadows. Different
physiological stages: the detection of maize seedlings is affected by the seedling growth
cycle. This experiment selects different stages of continuous cycles from three-leaf to five-
leaf stages. Unlike traditional seedling detection methods, the dataset does not contain
images of individual maize seedlings. In addition, each image contains at least two rows
of maize seedlings to improve robustness. The original dataset comprises 1500 images,
with distribution as follows under different lighting conditions: 500 images captured under
sunlight, primarily between 10 a.m. and 2 p.m.; 300 images taken under overcast conditions;
500 images acquired under strong light, mainly between 12 p.m. and 1 p.m.; and 200 images
collected under weak light, primarily between 9 a.m. and 10 a.m., as well as between 3 p.m.
and 4 p.m. Corresponding to different growth stages of the maize, the image count is
as follows: 500 images for the three-leaf stage, primarily captured between 15 May and
25 May; 500 images for the four-leaf stage, mainly taken between 26 May and 5 June; and
500 images for the five-leaf stage, primarily acquired between 6 June and 15 June.

When manually collecting images, due to inconsistent shooting angles and the original
image being too large, it would be too time-consuming to process the deep learning model,
which cannot meet the required real-time performance. And due to the small sample
dataset, the accuracy of target detection based on deep convolutional neural network is
significantly related to the scale of sample dataset. In order to ensure the natural feature
expression of the image and further improve the accuracy of the model, enlarging the
number of training images can not only meet the requirements of deep networks and
reduce the phenomenon of overfitting. Therefore, for the small-scale maize seedling image
of this experiment, affine transformation, rotation clipping, flipping, and adding Gaussian
noise are used to expand the dataset to 7000 images, further improve the model’s perception
of the image target position, and effectively extract features to optimize the performance
of the network model. Then, the images are scaled to 416 pixels × 416 pixels according to
the principle of proportional invariance. The original collected images and the enhanced
samples are shown in Figure 15, and the dataset is randomly divided into training set,
validation set, and test set according to the ratio of 8:1:1.
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Figure 15. Sample data of maize seedlings.

2.7. Experimentation and Analysis
2.7.1. Experimental Platform and Parameter Settings

In the process of model training, stochastic gradient descent (SGD) is used as the
optimizer, the momentum factor is set to 0.937, the initial learning rate is 0.01, and the
learning rate is adjusted by cosine annealing. The weight decay coefficient is set to 0.0005,
the batch size is set to 32, and the training epoch is set to 200. All experiments in this
experiment were conducted on the experimental platform of Table 2. When training a
deep learning model for small-scale data samples, introducing transfer learning can reduce
overfitting and speed up model convergence, improving training effect. Therefore, all the
models established in this paper are loaded with pre-trained weights based on the voc
2012 dataset in the training process.

Table 2. Experimental platform.

Name Device-Related Configuration

CPU 11th Gen Intel(R) Core(TM)i7-11700@2.50 GHz
Main memory 16 GB

GPU NVIDIA GeForce GTX 1080 Ti
GPU acceleration library CUDA11.0.3, CUDNN8.2.1

Operating system Windows 10 (64 bit)
Software environment Python 3.7, Pytorch 1.7.0

2.7.2. Model Evaluation Metrics

The experimental evaluation of the model’s overall performance involves the selection
of the following metrics: mean average precision (mAP) for object detection accuracy,
frames per second (FPS) for detection speed, precision-recall curve (P-R curve) for precision
and recall assessment, harmonic mean F1-score, floating point operations (FLOPs) for
computational complexity, and total training parameters (Params) for model size evaluation.

The precision (P) represents the proportion of true positive samples among all the
samples predicted as positive. The calculation formula is given by Formula (23):

P =
TP

TP + FP
× 100% (23)

where TP is the number of true positive samples; FP is the number of false positive samples;
FN is the number of false negative samples; N is the number of predicted classes.
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The recall (R) represents the proportion of samples predicted as positive among all the
true positive samples. The calculation formula is given by Formula (24):

R =
TP

TP + FN
× 100% (24)

The AP value is the area between the precision-recall curve and the coordinate axes.
The calculation formula is given by Formula (25):

AP =
∫ 1

0
P(R)dR (25)

Mean average precision (mAP) can comprehensively evaluate the localization and
classification effects of the model for multiple categories and multiple targets. Calculating
mAP requires calculating the AP (average precision) of each category in the recognition
task, and then taking its average, the formula of which is (26):

mAP = ∑
APi
N

(26)

where N is the total number of classes; APi refers to the AP value of the i-th class.
As precision (P) and recall (R) are complementary to each other, this paper evaluates

the experimental results by using the harmonic mean F1 value of the two, as given by
calculation Formula (27):

F1 =
2 × P × R

PR
(27)

FLOPs are the floating-point operations used to compute the network model, which
evaluate the time complexity of the model. The calculation formula is given by Formula (28):

FLOPs = 2 × (Cout × Hout × Wout × Cin + Cout ) (28)

Hout and Wout refer to the height and width of the output feature map; Cin and Cout
refer to the input and output channel numbers.

Params is the total number of parameters that need to be trained in the network
model, which corresponds to the consumption of hardware memory resources and is
used to evaluate the space complexity of the model. The calculation formula is given by
Formula (29):

Params = k2 × Cin × Cout + Cout (29)

where k is the convolution kernel size.

3. Results
3.1. Test Results of Various Backbone Networks

Based on the empirical data delineated in Table 3, a comprehensive analysis of
MolieNetv3 as the backbone network within the YOLOv5s framework has been conducted,
with a comparative scrutiny against other prevalent networks.

Table 3. Results of YOLOv5s different backbone networks.

Network Model Backbone Network F1-Score/% Params/106 FLOPs/109 mAP/% FPS/(frame·s−1)

YOLOv5s

CSPDarkNet-53 90.2 7.21 7.5 89.4 31
EfficientNet 88.3 3.62 7.1 86.2 35

DensenNet-169 87.4 14.2 33.1 86.9 17
ResNet-50 88.9 25.6 10.3 87.3 27

ShuffleNetV2 86.1 3.12 5.9 85.2 30
MolieNetv3 91.2 5.42 6.2 91.8 33
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Performance metrics reveal that MolieNetv3 achieved an F1-score of 91.2% and an
mAP of 91.8%. These figures surpass those of peer architectures such as CSPDarkNet-53,
EfficientNet, DensenNet-169, ResNet-50, and ShuffleNetV2, unequivocally demonstrating
MolieNetv3’s exceptional performance in object detection accuracy and reliability.

In terms of model scale and computational requisites, MolieNetv3’s parameteriza-
tion is a mere 5.42 × 106, significantly lower than that of CSPDarkNet-53 at 7.21 × 106,
DensenNet-169 at 14.2 × 106, and ResNet-50 at 25.6 × 106. This notable reduction in
model parameters affords MolieNetv3 a distinct advantage in terms of model lightweight-
ing. Additionally, MolieNetv3’s computational efficiency is highlighted by its FLOPs
count of 6.2 × 109, which is substantially more favorable when compared to the FLOPs of
CSPDarkNet-53, DensenNet-169, and ResNet-50.

On the front of resource consumption, the high efficiency of MolieNetv3 implies its
capability to deliver high-performance object detection in resource-constrained environ-
ments, such as edge computing devices or mobile platforms, without exerting excessive
pressure on the device’s battery life or computational resources.

3.2. Ablation Experiment

Based on the experimental results in Table 4, when MolieNetv3 is used as the backbone
network embedded in the YOLOv5s framework, the model maintains a parameter count
of 5.42 million, FLOPs of 6.2 × 109, mAP of 91.8%, and a model file size of 11.2 MB. Upon
introducing CBAM, the model’s parameter count and FLOPs remain unchanged, but the
mAP increases to 92.2%, with the model file size staying at 11.3 MB. With the addition
of DIoU-NMS, the parameter count and FLOPs remain unchanged, yet the mAP further
improves to 92.3%, while the model file size remains the same. Upon introducing Lsoft, the
parameter count and FLOPs decrease further to 3.21 million and 5.1 × 109, respectively,
while the mAP remains at 92.2%, and the model file size decreases to 7.5 MB.

Table 4. Ablation experimental results.

Model MolieNetv3 CBAM DIoU-NMS Lsoft Params/M FLOPs/109 mAP Model
File/MB

YOLOv5s

- - - - 7.21 7.5 89.4 14.5√
- - - 5.42 6.2 91.8 11.2√ √

- - 5.42 6.2 92.2 11.3√ √ √
- 5.42 6.2 92.3 11.3√ √ √ √

3.21 5.1 92.2 7.5

In summary, based on the experimental results in Table 4, it can be concluded that
in the YOLOv5s framework, utilizing MolieNetv3 as the backbone network and intro-
ducing components such as CBAM, DIoU-NMS, and Lsoft can significantly enhance the
performance metrics (e.g., mAP) of the object detection model, while effectively reducing
the model’s parameter count, FLOPs, and model file size. These results indicate that the
proposed YOLOv5s model based on MolieNetv3 demonstrates high performance and
efficiency in object detection tasks, making it suitable for deployment and application in
resource-constrained environments.

Based on the confusion matrix plots of YOLOv5s and YOLOv5-M3 in Figure 16, which
are used for classifying images into three categories: maize, weed, and background, the
following observations can be made:

For YOLOv5s (a): the diagonal elements indicate high correct prediction values for
each category: maize (0.89), weed (0.90), and background (0.72), suggesting good classifica-
tion performance. The off-diagonal elements, particularly background being predicted as
mazie (0.1) and weed being predicted as background (0.28), indicate misclassification errors.
The misclassification rate between mazie and weed is relatively low, but the misclassifica-
tion rate for background is high. For YOLOv5-M3 (b): the diagonal elements also show
high values, indicating good performance: mazie (0.91), weed (0.95), and background (0.75),
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which is better than that of YOLOv5s. The off-diagonal elements show misclassifications:
background being predicted as mazie (0.08) and weed being predicted as background (0.25),
similar to the issues in the left matrix, but with a slight decrease in the misprediction of
maize. Comparing the two, YOLOv5-M3 seems to perform slightly better overall, with
higher true positive rates (diagonal elements) and slightly lower misclassification rates. The
most significant difference is in the predictions involving the background category, where
YOLOv5s has a higher false positive rate for predicting background as maize compared to
YOLOv5-M3.
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3.3. Test Results of Different Network Models

After a comparative analysis of the test results of different network models in Table 5,
we can draw the following conclusions: in terms of precision, YOLOv5-M3 leads with a
result of 93.2%, indicating its superior capability in accurately identifying targets. Following
closely is YOLOv5s with a precision of 91.2%, while Faster-RCNN and SSD are at 85.1% and
86.9%, respectively. As for the recall rate, Faster-RCNN ranks first with 87.8%, suggesting it
performs best in minimizing the omission of true targets. YOLOv5-M3 follows with a recall
rate of 91.1%, with YOLOv5s and YOLOX slightly behind at 89.2% and 88.1%, respectively.

Table 5. Effect comparison of different network models.

Network Model Precision/% Recall/% F1-Score/% Params/106 FLOPs/109 mAP Model
File/MB FPS/(frame·s−1)

Faster-RCNN 85.1 87.8 86.4 136 18.5 86.9 89.3 0.45
YOLOv5s 91.2 89.2 90.2 7.21 7.5 89.4 14.5 23

SSD 86.9 85.7 86.3 33.2 8.9 86.3 92.1 11
YOLOX 89.2 88.1 88.6 8.93 4.5 88.7 17.1 50

YOLOv5-M3 93.2 91.1 92.1 3.21 5.1 92.2 7.5 39

The trade-off between precision and recall is reasonable, as a higher recall rate means
more weeds might be misidentified as seedlings, but it reduces the rate of missed seedlings.
In contrast, higher precision ensures fewer weeds are detected as seedlings. Considering
the large-scale field planting of maize, where the distance between two adjacent seedlings
does not have significant positional deviation, the accuracy of maize seedling detection
has a minimal impact on the extraction of guiding lines. However, a higher recall rate
could introduce errors in the guiding lines. Therefore, adjusting to reduce the recall rate
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minimizes the excessive deviation of the weeding machinery, avoiding damage to the root
system of maize seedlings.

The F1-score, a harmonic mean of precision and recall, takes into account both the
accuracy and robustness of the model. On this metric, YOLOv5-M3 also ranks first with a
score of 92.1%, demonstrating its superior overall performance. YOLOv5s has an F1-score
of 90.2%, higher than SSD and Faster-RCNN, which are at 86.3% and 86.4%, respectively.

In terms of the number of model parameters and computational complexity (FLOPs),
YOLOv5-M3 shows significant advantages with only 321 million parameters and
2.13 × 109 FLOPs, which is far less than the 13.6 billion parameters and 18.5 × 109 FLOPs
of Faster-RCNN. This indicates that YOLOv5-M3 maintains high precision while being
more lightweight and computationally efficient.

The mAP is an important indicator of the overall performance of a detection model.
YOLOv5-M3 leads with a score of 92.2%, indicating the highest average level of detection
accuracy across different thresholds. Regarding model file size, YOLOv5-M3 also shows a
significant advantage, with a size of only 8.5MB, which is very beneficial for deployment
on resource-constrained devices. Finally, in terms of frames per second (FPS), YOLOX
leads with a processing speed of 50 frames per second, indicating its strong capability in
real-time processing. YOLOv5-M3 also has a respectable processing speed of 39 frames
per second.

In summary, YOLOv5-M3 exhibits outstanding performance in precision, recall rate,
F1-score, model lightweightness, and processing speed. It is especially advantageous
in model efficiency and practicality, making it highly suitable for deployment in real-
world applications.

3.4. Improved Testing of YOLOv5s Network Model

The dataset also includes images of irregularly shaped maize seedlings or weeds. In the
collected images, the distribution of crops and weeds is shown in Figure 17, mainly divided
into four situations: weed-free areas, dense weed distribution, sparse weed distribution,
and maize seedling missing areas. To demonstrate the superiority of our proposed model
in detecting weeds and confirm the effectiveness of our improved YOLOv5-M3 network
model, four typical images were chosen from various environments where weeds are dense,
sparse, distant from crops, or multiple weed species coexist. A comparison was made with
four classic models, namely Faster-RCNN, SSD, and YOLOX, and the detection results are
presented in Figure 17b–e.

For YOLOv5s (a): the diagonal elements indicate high correct prediction values for
each category: maize (0.89), weed (0.90), and background (0.72), suggesting good classifica-
tion performance. The off-diagonal elements, particularly background being predicted as
mazie (0.1) and weed being predicted as background (0.28), indicate misclassification errors.
The misclassification rate between mazie and weed is relatively low, but the misclassifica-
tion rate for background is high. For YOLOv5-M3 (b): the diagonal elements also show
high values, indicating good performance: mazie (0.91), weed (0.95), and background (0.75),
which is better than that of YOLOv5s. The off-diagonal elements show misclassifications:
background being predicted as mazie (0.08) and weed being predicted as background (0.25),
similar to the issues in the left matrix, but with a slight decrease in the misprediction of
maize. Comparing the two, YOLOv5-M3 seems to perform slightly better overall, with
higher true positive rates (diagonal elements) and slightly lower misclassification rates. The
most significant difference is in the predictions involving the background category, where
YOLOv5s has a higher false positive rate for predicting background as maize compared to
YOLOv5-M3.
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3.5. Crop Row Fitting Accuracy

By identifying and extracting regions of interest (ROI) from field images, precise
location information of maize seedlings can be obtained, allowing for the extraction of
crop center point coordinates. Utilizing these coordinates, the least squares method is
applied to generate two fitting lines, with the median line serving as the desired navigation
line, which is essential for guiding agricultural machinery with precision. To validate the
adaptability of the least squares method in various weed environments, we selected four
typical weed distribution scenarios for testing the fitting accuracy. By comparing the angle
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error between manually annotated center points and the navigation line obtained from
least squares fitting, we can assess the fitting accuracy. Root mean square error (RMSE) is a
commonly used metric for measuring such errors, and a fitting is considered suboptimal
when the RMSE exceeds 5◦.

According to the data presented in Table 6, it is observed that in densely weeded envi-
ronments, the average angle error is 3.13◦, with a processing time of only 65 milliseconds.
This indicates that the least squares method can provide relatively accurate results at high
speeds, even in complex environments. When the weed distribution is sparse, the fitting
accuracy improves, with the average angle error reduced to 2.03◦ and the processing time
slightly decreasing to 62 milliseconds. Moreover, when weeds are distant from crops or
when multiple weed species coexist, the fitting accuracy is further enhanced, achieving an
average angle error of 1.32◦, and the processing time is reduced to 53 milliseconds.

Table 6. Fitting accuracy results of crop row navigation lines.

Four Situations Average Angular Deviation (◦) Execution Time (ms)

Maize seedling missing 3.13 51
Dense weed distribution 3.91 65
Sparse weed distribution 2.43 62

Weed-free 2.32 53

These data suggest that the least squares method not only performs excellently in
complex environments with dense weed distribution but also maintains efficiency and
accuracy in other weed conditions. Therefore, the least squares method is highly suitable
for agricultural machinery navigation tasks, as it can provide the precision required for
practical applications while ensuring speed. This offers robust technical support for auto-
mated machinery navigation in precision agriculture, contributing to improved operational
efficiency and refined crop management levels.

4. Discussion

The primary limitations of deep learning in plant detection include reliance on
substantial amounts of labeled data, poor performance in small sample learning, and
weak model generalization capabilities [43]. The depthwise separable convolutions
can effectively reduce model complexity while maintaining accuracy and increasing
detection speed, making it suitable for plant disease classification tasks [44]. The im-
proved YOLOv5-M3 model provides crucial support for the classification and localiza-
tion of these targets, which is vital for precision agriculture and crop management. The
model achieved an average detection accuracy of 91.4% and increased the frame rate to
39 frames per second, demonstrating its practical feasibility for real-time applications.
The method proposed in this paper, compared to the moving window scanning method
used by [18], utilizes an end-to-end deep learning framework, offering higher identifi-
cation efficiency without depending on the regularity of crop rows. Compared to the
Hough transform-based method proposed by [45], our method does not require a preset
starting point for crop rows and exhibits greater robustness, capable of identifying both
regular and irregular curved and straight crop rows. In contrast to the morphological
feature-based method proposed by [46], our approach does not depend on the physio-
logical structure of crops and is not limited to single plants, allowing it to process images
of entire rows of crops. Compared to the Xception model used by [47], the YOLOv5-M3
model employed in this paper has fewer parameters, faster recognition speed, and is
more suitable for real-time applications.

The incorporation of an attention mechanism in the feature extraction backbone net-
work of YOLOv4 facilitated the detection of weeds in carrot fields. However, YOLOv3/v4
is computationally intensive, resulting in slow recognition speeds and posing challenges
for deployment on embedded devices. In contrast, the YOLOv5 utilized in this study
has lower computational requirements and faster recognition speeds [48]. The CNN
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method relies on a large amount of annotated data, and its performance in small sample
learning is poor. The original YOLOv5 method performs poorly in recognizing small
samples and complex backgrounds [34]. This paper improves the learning ability of
small samples through data augmentation and incorporates modules such as CBAM
to enhance recognition capability, resulting in better recognition performance. In an
effort to balance precision and computational efficiency for embedded applications, this
research introduces the utilization of CBAM, which enhances feature extraction capabili-
ties, particularly beneficial for identifying small objects and complex backgrounds. The
model employs DIoU-NMS in lieu of the traditional NMS [49]. This approach considers
the distance between bounding box centers, which not only retains targets more effec-
tively but also distinguishes overlapping boxes with greater precision. This results in
improved accuracy and recall rates while minimizing the interference between objects
and reducing false positives. During the knowledge distillation process, the student
model learns from both the teacher model and the true labels, effectively preventing
the propagation of incorrect information from the teacher model and enhancing the
overall quality of the model [50]. In summary, the model design meticulously considers
the balance between lightweight efficiency and recognition accuracy, theoretically mak-
ing it more suitable for the dataset scenario at hand, thereby achieving commendable
detection results.

Building on the current research, future studies could focus on further enhancing the
real-time detection accuracy of the YOLOv5-M3 model, potentially by integrating additional
lightweight attention mechanisms or loss functions to boost performance. It is essential to
further investigate the adaptability and resilience of the algorithm under varying environmen-
tal conditions and weed densities. Additionally, future research could delve deeper into the
practical implications of error analysis on navigation lines, particularly in terms of fulfilling
agricultural tasks and the operational requirements of autonomous machinery.

5. Conclusions

The present study innovatively applies deep learning-based object detection methods
to the automatic weeding system for maize, aiming to improve identification accuracy and
ensure effective weed control while addressing the issue of mechanical weeding causing
damage to maize seedlings and roots.

(1) The improved YOLOv5s network model utilizes MobileNetV3 for feature extrac-
tion to enhance the lightweight approach of the original YOLOv5s and introduces the
lightweight attention mechanism CBAM and focal loss function to improve the feature
extraction capability of the detection model. During the knowledge distillation process,
in addition to learning from complex teacher network models, the lightweight model
is also compared with real labels, effectively preventing erroneous information from be-
ing distilled into the lightweight network from the teacher network, thus endowing the
lightweight model with stronger learning ability. The YOLOv5-M3 model significantly
reduces the missed detection rate, while also optimizing model size and detection speed to
enhance its generalization and robustness.

(2) The improved YOLOv5s network model provides technical support for the classifi-
cation and localization of maize seedling targets. Experimental results demonstrate that
the proposed model achieves an average detection accuracy of 92.2%, which is comparable
to the YOLOv5s network model, with an increased frames per second of 39.

(3) Comparative experiments with Faster-RCNN, SSD, YOLOv4, and YOLOX in terms
of detection accuracy, computational complexity, parameter quantity, and detection speed
validate the superiority and effectiveness of the YOLOv5-M3 model. The model’s strong
adaptability and anti-interference capability are verified under varying weed conditions.
The error analysis of the manually labeled centerline and navigation midline demonstrates
an error of less than 5◦, meeting the practical operational requirements.
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