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Abstract: The parameters of the discrete element simulation model for rice field soils serve as
valuable data references for investigating the dynamic characteristics of the walking wheel of high-
speed precision seeding machinery in paddy fields. The research specifically targets clay loam soil
from a paddy field in South China. Calibration of essential soil parameters was achieved using
EDEM_2022 software (and subsequent versions) discrete element simulation software, employing the
Edinburgh Elasto-Plastic Adhesion (EEPA) nonlinear elastic-plastic contact model. The tillage layer
and plough sub-base layer underwent calibration through slump and uniaxial compression tests, re-
spectively. Influential contact parameters affecting slump and axial pressure were identified through a
Plackett–Burman test. The optimal contact parameter combinations for the discrete element model of
the tillage layer and plough sub-base layer were determined via a quadratic rotational orthogonal test.
The accuracy of the discrete element simulation model’s parameters for paddy field soils was further
validated through a comparative analysis of the simulation test’s cone penetration and the field soil
trench test. Results indicate that the Coefficient of Restitution, surface energy, Contact Plasticity Ratio,
and Tensile Exp significantly influence slump (p < 0.05). Additionally, the Coefficient of Restitution,
Contact Plasticity Ratio, coefficient of rolling friction, and Tangential Stiff Multiplier significantly
impact axial pressure (p < 0.05). Optimal contact parameters for the plough layer were achieved with
a particle recovery coefficient of 0.49, a surface energy of 18.52 J/m2, a plastic deformation ratio of
0.45, and a tensile strength of 3.74. For the plough subsoil layer, optimal contact parameters were
a particle recovery coefficient of 0.47, a coefficient of interparticle kinetic friction of 0.32, a plastic
deformation ratio of 0.49, and a tangential stiffness factor of 0.31. Results from the cone penetration
test reveal no significant disparity in compactness between the actual experiment and the simulation
test. The calibrated discrete element model’s contact parameters have been verified as accurate and
reliable. The findings of this study offer valuable data references for understanding the dynamic
characteristics of the walking wheel of the entire machinery in high-speed precision seeding in
paddy fields.

Keywords: paddy field; clay loam; cone penetration test; discrete element method; parameter
calibration

1. Introduction

Rice cultivation constitutes approximately 25% of the total cultivated land dedicated
to food crops in this nation [1]. The mechanization of paddy fields plays a pivotal role
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in advancing the modernization of our agriculture [2]. Nevertheless, current operations
of paddy field machinery encounter challenges due to the resistance generated by mud
and the interaction between the driving wheels and the paddy field plough subsoil. These
factors result in soil pressure and shearing forces, potentially causing soil deformation and
failure. The muddy terrain presents a formidable obstacle for machinery, leading to issues
such as wheel slippage, head warping, and wheel entrapment in the mud, among other
failure phenomena.

In recent years, significant attention has been directed towards advancing agricultural
modernization. Consequently, the discrete element method has been employed to optimize
and analyze agricultural machinery and the interactions between particles in the law of
motion [3]. This method proves particularly advantageous and has been instrumental
in constructing a soil model for paddy fields, facilitating the design and optimization of
technical aspects related to paddy field machinery operation [4–6]. The discrete element
method is utilized to explore the interaction between paddy field operating machinery
and soil. Ensuring the reliability of the model necessitates precise calibration of simulation
parameters, with scholars recommending the implementation of both actual and simulation
tests for accuracy [7–11].

Shi et al. [12] combined the benefits of the Hysteretic Spring Contact Model (HSCM)
and the Linear Cohesion Model (LCM), utilizing the soil accumulation angle as the response
value to construct a model of farmland in the Northwest Dry Zone. Zhang et al. [13],
employing the Hertz-Mindlin (no slip) contact model, developed a discrete elemental
model of sandy soil, calibrating parameters through the angle of stacking test. Li et al. [14]
modeled clay-heavy black soil particles in the northeast region using the Hertz-Mindlin
with JKR contact model, with the simulated accumulation angle of soil particles serving as
the response surface. Xiang et al. [15] combined Hertz-Mindlin with JKR contact models,
calibrated parameters through stacking tests, and obtained accurate contact parameters
for the discrete element simulation model of southern clay loam soil. Zhou et al. [16],
selecting the Hertz-Mindlin model with JKR contact, calibrated parameters through a soil
slump test, and derived optimum contact parameters for discrete elements of soil with high
moisture content using the steepest-climbing test and central composite test. Xie et al. [17]
opted for the Edinburgh Elasto-Plastic Adhesion contact model, acquiring the best contact
parameter combinations for discrete elements in viscous and plastic deformation-prone soil
through the uniaxial confined compression test and the unconfined compressive strength
test, subsequently constructing a discrete element model of viscoelastic soil.

In summary, we propose the Edinburgh Elasto-Plastic Adhesion (EEPA) contact model,
incorporating soil elasticity and viscosity, building upon the work of Thakur et al. [18].
However, there is a notable lack of literature addressing the calibration of discrete elemental
parameters for the integration of cultivated and ploughed subsoil layers in paddy fields in
South China. To address this gap, our study employs a combination of physical tests and
discrete element simulation tests to calibrate parameters for clay loam soil with high water
content. The discrete element soil bed is established using the EEPA contact model, and the
particle contact parameters of the model are refined by comparing actual and simulated
results from the slump test and axial compression test. This calibration process leads to the
development of a discrete element simulation model specifically tailored for paddy field
soil. To validate parameter accuracy, cone penetration tests are conducted. Our objective is
to create a preliminary discrete element model of clay loam soil in paddy fields, providing
valuable data references for optimizing the structural design of lightweight power chassis
in paddy fields.

2. Materials and Methods
2.1. Soil Basic Parameters

Soil samples were selectively extracted from the experimental plot situated at the
teaching and research center of South China Agricultural University (SCAU). The analysis
of the soil texture identified it as clay loam, characterized by elevated levels of porosity,
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water content, and plasticity. A total of nine distinct soil sample groups were randomly
procured from the experimental field. The determination of moisture content, density, and
liquid-plastic limit of the soil samples was conducted using the drying method, ring knife
method, and liquid-plastic limit measurement, respectively. The outcomes of these analyses
are depicted in Figure 1.
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2.2. Contact Model Theory and Parameters to Be Calibrated

The clay present in paddy field planting exhibits robust adhesion and elasticity. The
Edinburgh Elasto-Plastic Adhesion (EEPA) non-linear elastic-plastic contact model, em-
ployed in the EDEM software, aptly captures the characteristics of soil particles both before
and after compaction. Post-compaction, the particles acquire a cohesive and deformable
nature yet retain a discrete state when in an uncompacted condition [19].

The normal spring force of the EEPA contact model, seamlessly integrated into the
EDEM_2022 software (and subsequent versions), is illustrated in Figure 2 and mathemati-
cally expressed by the following equation [18].
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The comprehensive standard normal force fn results from the combination of the hys-
teresis elastic force fhys and the normal damping force fnd. The particle overlap relationship
governing the normal contact force is expressed as follows [18]:

fn =
(

fhys + fnd

)
(1)

fhys =


f0 + k1δn i f k2

(
δn−δn

p

)
≥ k1δn

f0 + k2

(
δn − δn

p

)
i f k1δn > k2

(
δn − δn

p

)
> −kadhδn

f0 − kadhδn i f − kadhδn ≥ k2

(
δn − δn

p

) (2)

where u represents the unit normal vector from the contact point to the center of mass, f0
denotes the initial bond strength of the particles, k1 refers to the loading stiffness coefficient,
k2 is the unloading stiffness coefficient, δp represents the contact overlap of the particles,
and kadh is the coefficient of viscous strength.

fnd = βnvn (3)

βn =
√

4m∗k1

1+( π
lne )

2 (4)

m∗ = mi·mj/
(
mi + mj

)
(5)

where the normal velocity is represented by vn, the damping coefficient by βn, the contact
particle by m∗, and the coefficient of recovery by e.

Tangential damping is calculated by multiplying the interparticle tangential damping
coefficient βt with the relative tangential velocity vt. The t description of the tangential
damping coefficient can be found in reference [18].

βt =
√

4m∗kt

1+( π
lne )

2 (6)

The computation of the maximum tangential friction adheres to the Coulomb friction
criterion, with adjustments made to the tangential normal force based on the bonding force
specified in this equation:

fct ≤ u
(∣∣∣ fhys + kadhδn − f0

∣∣∣) (7)

where fct represents the maximum tangential friction and u denotes the friction coefficient.
In summary, when applying the EEPA contact model, the requisite input parameters

include the Coefficient of Recovery (e), coefficient of static friction (µs), coefficient of rolling
friction (µr), Constant pull-off force ( f0), surface energy (∆γ), Contact Plasticity Ratio (λρ),
Tensile Exp (Rm), Slope Exp (n), and Tangential Stiff Multiplier (Ktm). It is crucial to utilize
this set of parameters for the accurate implementation of the EEPA contact model. To
streamline calibration, the value of f0 is set to 0. The loading branch index can be either 1 or
1.5, with the latter being optional for a more precise representation of the nonlinear stress-
strain properties of the soil. Therefore, the selection of n is recommended to be 1.5 [19].

2.3. Characteristics of Soil Layers in Paddy Fields
2.3.1. Tillage Calibration Test

The angle of repose test is a common method for calibrating model parameters for
discrete elements [20–23]; However, its applicability is limited in soils with high water
content. Consequently, the slump test was chosen for its ability to provide a reliable
representation of the soil’s cohesion, friction properties, and mobility. The testing apparatus,
as illustrated in Figure 3, utilizes a slump barrel tester with a height of 300 mm, an upper
diameter of 100 mm, and a lower diameter of 200 mm. Tillage layer soil samples are placed
into the standard cone slump barrel according to the prescribed method and thoroughly
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scraped. The barrel is then lifted vertically, and the soil samples naturally slump due to
gravity. The downward slumping is measured, with this dimension (mm) serving as the
slump, indicating fluidity, where a larger slump signifies better fluidity.
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The simulation parameters for the slump test are detailed in Table 1, with the EEPA
contact model chosen for particle-particle contact. The particle-contact component is
selected as the Hertz-Mindlin (no slip) contact model to simplify the simulation, with
the contact component and particle viscosity factor excluded. The simulation generates
particles to fill a cylinder that is 300 mm in height and has an upper diameter of 100 mm and
a lower diameter of 200 mm. The cylinder is raised at a rate of 30 mm/s. The simulation
concludes once the particles cease movement, and the slump is determined by measuring
the cylinder’s height and calculating H = 300 − h.
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Table 1. Simulation test parameters.

Materials Parameter Unit Value Source

Tillage soil-soil
Poisson’ s Ratio (ν) 0.3 [9]
Solids Density (ρ) g/cm3 1.7 measurement

Shear Modulus (G) Pa 5.0 × 105 [9]

Plow subsoil—soil
ν 0.38 [24]
ρ g/cm3 2.2 measurement
G Pa 1.3 × 106 measurement

EquipMlaterial
ν 0.3 [25]
ρ g/cm3 1.2 [25]
G Pa 3.16 × 109 [25]

Tillage soil-soil
Coefficient of Restitution e To be calibrated

Coefficient of static friction (µs) To be calibrated
Coefficient of rolling friction (µr) To be calibrated

Plow subsoil—soil
e To be calibrated

µs To be calibrated
µr To be calibrated

Soil-EquipMlaterial
e 0.3 [15]

µs 0.6 [15]
µr 0.1 [15]

Contact model

Surface energy (∆γ) To be calibrated
Contact Plasticity Ratio (λρ) To be calibrated

Tensile Exp (Rm) To be calibrated
Tangential Stiff Multiplier (Ktm) To be calibrated

2.3.2. Calibration Test for Plough Base Layer

As the machine traverses the paddy field, it compacts the soil particles, inducing
plastic deformation and generating reaction forces toward the wheels. When subjected
to the uniaxial confined compression test, the soil undergoes elastic-plastic deformations,
resulting in an axial stress-strain curve that reflects the load-bearing characteristics of the
subsoil under the plough.

In the experiment, a soil specimen was placed into a 45 mm diameter cylinder and
tested using a WD-E precision micro-control electronic universal testing machine. The
pressure disc was connected to the pressure meter of the universal tester and subjected to a
constant downward load of 10 mm/s. The load pressure was recorded when the downward
compression depth reached 8 mm. Subsequently, the original sample was extracted, and
the axial stress-strain chart was generated using the universal testing machine (Figure 4a).
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For the axial compression simulation test, the simulation parameters are outlined in
Table 1. A cylindrical model with a height of 250 mm and a bottom diameter of 45 mm
(adjusted from the actual testing cylinder height of 100 mm) is simulated, as depicted
in Figure 4b. The loading rate is maintained at 10 mm/s, consistent with the actual
rate. The platen halts downward motion when the cylinder particles are compressed to
102 mm, and the axial stress-strain curves are obtained through the post-processing function
of EDEM.

2.4. Significance of DEM Parameters on Particle Response

Considering the characteristics of the EEPA contact model, the associated parameters
underwent screening via a Plackett–Burman test. Viscous and elastic-plastic indicators
were employed as response values during the simulation test. The levels of each of the
seven factors were established, as outlined in Table 2. Additionally, four virtual parameters
were included for blank control error analysis, with each parameter assuming both high
and low levels within its range of values.

Table 2. Parameters of the Plackett–Burman test.

Parameter Factors
Levels

−1 1

X1 Coefficient of Restitution 0.2 0.6
X2 coefficient of static friction 0.3 0.9
X3 coefficient of rolling friction 0.2 0.6
X4 surface energy 10 30
X5 Contact Plasticity Ratio 0.2 0.6
X6 Tensile Exp 1.5 4
X7 Tangential Stiff Multiplier 0.3 0.9

X8–X11 Virtual parameter — — — —

2.5. Center Composite Design Experiment

The Central Composite Design (CCD) employs a 2-level factorial design with extra
centroids and axial points to fit a quadratic model. The conventional CCD typically
comprises five levels for each factor, but this can be adjusted by selecting an axial distance
of 1.0, resulting in a centered composite design on the face with only three levels per
factor. Reproducing the centroid enhances the accuracy of predictive capabilities in the
vicinity of the factor space’s center. CCD experiments were conducted with the simulation
parameters to anticipate the correlation between the particles’ physical features and the
key factors influencing the Discrete Element Method (DEM) parameters. The simulation
setup remained consistent with the description in Section 2.3, and the coding tables for the
compression test factor levels are presented in Table 3, while the coding table for the axial
compression test factor levels is shown in Table 4.

Table 3. Factor level coding table for the quadratic orthogonal rotary combination test of the
tillage layer.

Levels X1 X4 X5 X6

γ 0.68 34.14 0.68 4.5
1 0.6 30 0.6 4
0 0.41 20 0.41 2.75
−1 0.22 10 0.22 1.5
−γ 0.14 5.86 0.14 0.98
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Table 4. Factor level coding table for the quadratic orthogonal rotary combination test of the plow pan.

Levels X1 X3 X5 X7

γ 0.68 0.68 0.68 0.95
1 0.6 0.6 0.6 0.9
0 0.41 0.41 0.41 0.6
−1 0.22 0.22 0.22 0.3
−γ 0.14 0.14 0.14 0.26

3. Results
3.1. Measurements of Soil Physical Parameters

The settlement test was replicated three times in Section 2.3.1 with a settlement (H)
of 140 mm, as illustrated in Figure 3a. Additionally, in Section 2.3.2, the axial pressure
was recorded at 180.24 N when the soil sample was compressed to 8 mm, as depicted
in Figure 4b. The outcomes of these two sets of tests serve as the target response values
calibrated to the simulation parameters.

3.2. Significance of the Effect of DEM Parameters on Particles

The results of the Plackett–Burman test were analyzed using Design-Expert_10 software
to generate Pareto plots and elucidate the impact of Discrete Element Method (DEM) param-
eters on the response values. A DEM parameter is deemed to have a highly significant effect
on the response value when its contribution surpasses the Bonferroni limit. Conversely, it
has almost no effect when its contribution falls below the t-value limit.

Figure 5 illustrates that the Coefficient of Restitution, Contact Plasticity Ratio, coefficient
of rolling friction, and Tangential Stiff Multiplier exhibit significance for axial compression.
Additionally, the Contact Plasticity Ratio is highly significant for deflection, while the
Coefficient of Restitution, surface energy, Contact Plasticity Ratio, and Tensile Exp are
significant for slump. The coefficient of static friction has a minimal effect on both axial
pressure and deflection. Consequently, the Coefficient of Restitution, Contact Plasticity
Ratio, coefficient of rolling friction, and Tangential Stiff Multiplier were utilized as indepen-
dent parameter variables to predict axial pressure variation. Moreover, the Coefficient of
Restitution, surface energy, Contact Plasticity Ratio, and Tensile Exp were used as single
parameter variables to predict changes in slump.
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3.3. Calibration Parameters
3.3.1. Tillage Parameters

Quadratic multiple regression analysis, conducted with Design Expert software, was
employed to generate response surfaces and contour plots (Figure 6) depicting the inter-
actions among parameters influencing the sink. In Figure 6a, the impact of the X1–X4
interaction on the sink is illustrated. The response surface curve for X1 is steeper than that
of X4, and the contour density along X1 is slightly higher than the density along X4. This
observation signifies that X1 has a more substantial effect on the sink.
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For the experimental results presented in Table 5, the regression equation was retained
using Design Expert software under the condition of non-significance (p > 0.05) in the
Analysis of Variance (ANOVA):

S = 134.61159 + 220.47096X1 + 2.60565X4 − 17.56948X5 + 10.48493X6
−10.52633X1X4 − 623.2684X1X5 + 21.09022X1X6 − 3.94737X4X5 + 0.2X4X6
−21.05263X5X6 + 67.54763X2

1

(8)

where S is the slump.

Table 5. Design and results of the quadratic orthogonal rotational combination test for the slump test.

No. X1 X4 X5 X6 Slump (mm)

1 0.22 10 0.22 1.5 195
2 0.6 10 0.22 1.5 185
3 0.22 10 0.6 1.5 190
4 0.6 10 0.6 1.5 155
5 0.22 30 0.22 1.5 200
6 0.6 30 0.22 1.5 180
7 0.22 30 0.6 1.5 230
8 0.6 30 0.6 1.5 40
9 0.22 10 0.22 4 200
10 0.6 10 0.22 4 195
11 0.22 10 0.6 4 160
12 0.6 10 0.6 4 145
13 0.22 30 0.22 4 205
14 0.6 30 0.22 4 195
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Table 5. Cont.

No. X1 X4 X5 X6 Slump (mm)

15 0.22 30 0.6 4 215
16 0.6 30 0.6 4 50
17 0.14 20 0.41 4 170
18 0.68 20 0.41 2.75 145
19 0.41 20 0.14 2.75 210
20 0.41 20 0.68 2.75 160
21 0.41 5.86 0.41 2.75 190
22 0.41 34.14 0.41 2.75 147
23 0.41 20 0.41 1 153
24 0.41 20 0.41 4.5 155
25 0.41 20 0.41 2.75 150
26 0.41 20 0.41 2.75 152
27 0.41 20 0.41 2.75 148

By solving Equation (8) with the measured S as the objective, 73 sets of solutions were
obtained. These solutions are essentially indistinguishable from each other. Utilizing the
desirability values as a reference, a set of parameters X1 = 0.49, X4 = 18.52 J/m2, X5 = 0.45,
and X6 = 3.74 is selected, as it has the desirability values closest to 1, indicating the highest
degree of reliability.

3.3.2. Parameters of the Plough Substrate

Quadratic multiple regression analysis, facilitated by Design Expert software, was
employed to create response surfaces and contour plots illustrating the interactions among
parameters influencing slump (Figure 7). For the experimental results detailed in Table 6,
the regression equation was retained using Design Expert software under the condition of
non-significance (p > 0.05) in the Analysis of Variance (ANOVA):

F = 440.9886 − 498.1707X1 − 293.14681X3 − 120.85088X5 − 116.49822X7
−70.34421X1X3 − 165.56581X1X5 − 58.54055X1X7 + 36.90254X3X5
−89.76986X3X7 − 137.86172X5X7 + 704.06121X2

1 + 704.06121X2
3

+83.69084X2
5 + 77.56852X2

7

(9)

where F is the axial pressure.
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Table 6. Design and results of quadratic orthogonal rotational combination tests for axial force tests.

No. X1 X3 X5 X7 Axial Force (N)

1 0.22 0.22 0.22 0.3 246.5
2 0.22 0.22 0.22 0.3 249.7
3 0.22 0.22 0.6 0.3 187.3
4 0.6 0.22 0.6 0.3 179.5
5 0.22 0.6 0.22 0.3 234.1
6 0.6 0.6 0.22 0.3 216.6
7 0.22 0.6 0.6 0.3 174.12
8 0.6 0.6 0.6 0.3 143.8
9 0.22 0.22 0.22 0.8 235.6
10 0.6 0.22 0.22 0.8 223.95
11 0.22 0.22 0.6 0.8 146.3
12 0.6 0.22 0.6 0.8 135.7
13 0.22 0.6 0.22 0.8 240.4
14 0.6 0.6 0.22 0.8 212
15 0.22 0.6 0.6 0.8 169.5
16 0.6 0.6 0.6 0.8 126.36
17 0.14 0.41 0.41 0.55 223.13
18 0.68 0.41 0.41 0.55 190.5
19 0.41 0.41 0.14 0.55 225.2
20 0.41 0.41 0.68 0.55 113.7
21 0.41 0.14 0.41 0.55 168.5
22 0.41 0.68 0.41 0.55 154.68
23 0.41 0.41 0.41 0.2 176.1
24 0.41 0.41 0.41 0.9 153.9
25 0.41 0.41 0.41 0.55 155.2
26 0.41 0.41 0.41 0.55 153.9
27 0.41 0.41 0.41 0.55 155.3

Several sets of solutions are obtained by solving Equation (9) with the measured F
objective. These solutions are almost indistinguishable from each other, and using the
desirability values as a reference, a set of parameters X1 = 0.47, X3 = 0.48, X5 = 0.32, and
X7 = 0.31 is chosen, as it possesses desirability values closest to 1, signifying the highest
reliability.

3.4. Simulation Verification of an Optimal Parameter Set

Discrete element simulation modeling was conducted using EDEM2021 software,
leveraging the outcomes of cohesion and elastic-plastic parameter calibration tests. To
assess the precision of the calibration results, slump and axial compression tests were
executed. The slump measured 143 mm, with a minimal error of only 2.14%, while the axial
compression registered 175.613 N, with an error of merely 2.57%. These results suggest
that a combination of significance analysis and the response surface method can effectively
optimize the physical parameters of soil particle simulation.

3.5. Simulation Results and Discussion
3.5.1. DEM Modelling

The soil layer in the paddy field is primarily divided into three layers, necessitating the
establishment of a three-layer DEM model. The tillage layer and the plough subsoil layer
directly interact with agricultural equipment and carriers. The tillage layer has a thickness
of 180–220 mm, the plough subsoil layer ranges from 60–100 mm, and the combined
thickness of the two layers is 240–320 mm. For ease of observing mechanical-particle
interactions, minimizing soil particle extrusion by the soil trough shell, and optimizing
computational efficiency, the soil trough dimensions were set to length: 3200 mm and
width: 1800 mm, as depicted in Figure 8. This configuration is designed to establish a DEM
model suitable for clay loam soils in South China.
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3.5.2. Testing for Model Validation

To further validate that the discrete element particle model, constructed after param-
eter optimization, accurately reflects the physico-mechanical parameters of actual field
soils, the cone penetration test is employed. Cone penetration is a highly intuitive indicator
of the overall mechanical properties of the soil. This test, in conjunction with soil trench
field tests and discrete element simulation tests [26], enables a comprehensive assessment.
Therefore, the relative error value between the measured value and the simulation result in
the cone penetration test is utilized to judge the accuracy of the discrete element particle
model (Figure 9).
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Compaction tests were conducted to validate the mechanical accuracy of the con-
structed discrete element model. A soil stiffness meter was utilized to measure the stiffness
at various soil depths (0–40 cm), with data collected from five points in the test field and
averaged. In EDEM, a 1:1 soil compactometer probe model was imported, and the probe
was positioned on the surface of the soil particles with a descent rate of 30 mm/s2. At the
conclusion of the simulation test, the total contact force between the probe model and the
soil particles in the vertical direction was exported to the post-processing module. The
comparison results revealed no significant difference in tightness, affirming the suitability
of this DEM model for the test field.
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4. Discussion

(1) The static and rolling friction coefficients between soil particles play a pivotal role
in shaping their behavior. Wang et al. [27] established a method for acquiring the coefficient
of static friction between particles and plates using a platform. However, determining the
static and rolling friction coefficients in particle-particle interactions through experimental
means poses challenges. To enhance simulation accuracy and alleviate computational
demands, a common strategy is to select a subset of crucial parameters. Su et al. [28] found
that the combination of factors is a significant parameter for designing experiments using
Plackett–Burman.

Initially, we employed the Plackett–Burman experiment to identify the noteworthy in-
fluencing factors. Subsequently, we determined specific parameter values using the Central
Composite Design (CCD) method. The study underscores that the rolling friction coefficient
between soil particles significantly impacts axial pressure, while none of the static friction
coefficients exert a notable effect. The parameters governing soil particle interactions were
discerned through a blend of experimental measurements and simulation optimization.

(2) The angle of repose test is a widely employed method for calibrating discrete
elemental model parameters [20–23]. Nevertheless, its applicability is constrained when
dealing with soils characterized by high water content, primarily due to inherent limitations.
Zhou’s [16] findings revealed that the slump test is an accurate calibration method for
soils with high water content. Consequently, we selected this test method for calibrating
soils with high water content in the till layer. However, in our approach, we chose the
EEPA contact model over the JKR contact model. The discrete element slump simulation,
calibrated through the Plackett–Burman test and the Central Composite Design (CCD),
exhibited a relative error of 2.14% compared to the actual test results. This confirms the
suitability of the obtained parameters for constructing the discrete element model. To
ensure accurate representation of soil particles, validation of the physical and mechanical
parameters of the model was conducted through cone penetration testing, performed
subsequent to the establishment of the DEM simulation model.

5. Conclusions

In this study, the parameters of the soil layer EEPA model were calibrated using
the Plackett–Burman test and the quadratic rotated orthogonal test. The results of the
calibration and validation tests were analyzed, leading to the following conclusions:

(1) The results of the Plackett–Burman test showed that the Coefficient of Restitution,
Contact Plasticity Ratio, coefficient of rolling friction, and Tangential Stiff Multiplier
in the contact model were significant for axial pressure. Contact Plasticity Ratio was
highly significant for deflection. The Coefficient of Restitution, surface energy, Contact
Plasticity Ratio, and Tensile Exp were significant for deflection. The coefficient of
static friction had almost no effect on axial pressure and slump.

(2) The regression model was solved and fitted to the measured values to give the
Coefficient of Restitution, Contact Plasticity Ratio, Tensile Exp, and surface energy of
0.49, 0.45, 3.74, and 18.52 J/m2, respectively; The Coefficient of Restitution, Contact
Plasticity Ratio, coefficient of rolling friction, and Tangential Stiff Multiplier were
0.47, 0.49, 0.32, and 0.31, respectively. The slump obtained through constructing the
discrete element soil model with the optimal parameter set exhibits a relative error
of 2.14% compared to the measured value, while the axial pressure demonstrates a
relative error of 2.57% from the measured value.

(3) The optimized discrete element model underwent cone penetration tests and vali-
dation through field trials. The results of the validation test revealed no significant
difference in soil particle compactness, indicating that the model can accurately simu-
late soil mechanical properties. This model serves as a valuable reference for further
research on the dynamic characteristics of the entire traveling wheel of high-speed
precision seeding machinery in paddy fields.
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This study makes a significant contribution to the ongoing research on constructing a
soil model for paddy fields and analyzing the kinetic characteristics of the entire walking
wheel of high-speed precision seeding machinery in paddy fields. Its specific emphasis lies
in investigating the mechanical characteristics and physical traits of soil particles during
the operational process of agricultural machinery. However, the primary focus of this
paper is on presenting a method for constructing a discrete element particle contact model
for soil and calibrating its parameters. It’s noteworthy that the model parameters exhibit
complexity and variability across different soil properties and water content conditions in
various regions. Therefore, reconstruction and calibration become essential, considering
factors such as soil type, particle size composition, and water content.
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