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Abstract: The increase in intensity and frequency of drought due to global climate change has
increased the urgency of developing crop cultivars suitable for dry environments. Drought tolerance
is a complex trait that involves numerous physiological, biochemical, and morphological responses.
A better understanding of those mechanisms is critical to develop drought tolerant cultivars. In
this study, we aimed to understand the morphophysiological changes at the shoot and root levels
in response to drought stress of ten oat genotypes with diverse root morphological characteristics.
Twenty-one-day old plants were subjected to drought stress in a greenhouse by withholding water
for two weeks. Several characteristics including chlorophyll content, relative water content (RWC),
stomatal conductance, stomata number, shoot dry weight (SDW), root dry weight (RDW), root-to-
shoot biomass ratio (RSR), root length, root area, and root volume were measured on well-watered,
and drought-stressed plants. Grain yield was evaluated by continuing the drought treatment with
a drying and rewatering cycle every 15 days until physiological maturity. The water regime had
a significant impact on all traits evaluated. A significant interaction between genotype and water
treatment was observed for RWC, chlorophyll content, stomatal conductance, stomata number, and
grain yield but not for root traits, suggesting that the root system of all genotypes responded similarly
to drought stress. Hayden, the cultivar with the lowest reduction in grain yield from the drought
treatment, was among the genotypes with the lowest reduction in RWC and chlorophyll content
but with a sharp decrease in stomata number, thus indicating that regulating the plant water status
and maintaining the photosynthesis level are important for oat plants to maintain grain yield under
drought stress. The size of the root system was not correlated with grain yield under drought, but the
RWC and grain yield were significantly correlated under drought, thus suggesting that maintaining
the RWC is an important characteristic for oat plants to maintain yield under drought stress.

Keywords: oat; drought tolerance; roots; stomata; relative water content

1. Introduction

Oats (Avena sativa L.) are classified as whole grains and are rich in healthy nutrients
such as beta-glucan, lipid, protein, minerals, and polyphenols [1]. The regular consumption
of oat beta-glucan has been shown to lower cholesterol, prevent type II diabetes, stimulate
the immune system, and positively affect the function of the intestinal flora [2–4]. The
demand for food products containing oats, such as oatmeal, breakfast cereals, cereal bars,
and oat milk, is steadily rising as consumers gain awareness of oat health benefits globally.
The global market revenue of oats in 2018 was 4.9 billion US dollars and it is projected to
reach 8.37 billion US dollars by 2028 [5].

Oats are grown worldwide and adapted to a wide range of soil types, although the
production is concentrated between latitudes 35–65◦ N and 20–46◦ S [6]. Oats thrive in
cool environments with ample moisture, and the optimum growth temperature is between
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68 and 70◦ F [7]. In North America, Canada is the largest oat producer, with a production of
5.2 million tons in 2022 [8]. Canada is also the largest exporter of oats globally, accounting
for 60% of oat global exports, with the majority being exported to the US [9]. In the US, oats
are primarily produced in the Northern Plains (North Dakota, Minnesota, South Dakota,
and Wisconsin) with spring planted cultivars, but the US domestic production of oats is
lower than the domestic consumption. The US is the largest importer of oats globally,
importing approximately 1.5 million metric tons in 2022 [10].

Oat production is significantly reduced under drought stress [11,12]. With global
warming and climate change, drought is expected to become more frequent and more
severe [13], including at higher latitudes where the majority of oat production occurs. In
2021, drought affected the major oat growing regions of Canada and the United States. The
drought stress severely affected oat grain yield, significantly reducing oat production in
North America and resulting in a sharp increase in oat price [14]. The US oat production
was estimated at 613,799 metric tons in 2021, which is 39% lower than in 2020 [14]. Similarly,
Canada’s oat harvest in 2021 was around 4,143,919 metric tons which is approximately 15%
lower than the previous year [15].

Drought stress in plants is known to decrease photosynthesis rate, transpiration rate,
and stomatal conductance [16], and to reduce leaf area and post-anthesis green leaf area
duration due to accelerated leaf senescence [17]. Oat yield parameters such as grains per
panicle and 1000-grain weight are decreased with drought stress [16]. The intensity of the
stress depends on the growth stage of the plant. In oats, yield reduction due to drought
compared to well-watered conditions was reported to be 31% when severe drought stress
was imposed at jointing and 69% when imposed at heading [17]. A study by Mahadevan
et al. [11] has shown that oats are more vulnerable to drought stress from stem elongation to
10 days after anthesis and that the yield response is mediated primarily through a reduction
in grain number instead of grain weight.

As the climate becomes hotter, and drought becomes more frequent and severe, there
is an urgent need to develop high-yielding varieties of oats adapted to North America that
use water more efficiently [18]. Increasing our understanding of the mechanisms of drought
tolerance in plants is critical to develop drought-tolerant cultivars. Drought tolerance is
a highly complex process involving physiological, biochemical, and morphological traits
both below and above ground levels [19].

The roots are the first organ sensing soil moisture depletion and initiate a signaling
cascade that leads to the overall plant’s response to drought stress [20]. In oats, root
response to drought evaluated on drought-resistant and susceptible cultivars showed an
increase in root length, branching rate, root surface area, and length of fine roots in drought-
tolerant genotypes [19]. Although valuable results were previously reported, highlighting
shoot and root responses to drought in contrasting oat genotypes, only two genotypes were
considered [19]. Plants have evolved multiple mechanisms to respond to drought stress [21],
and different genotypes may show different mechanisms for drought tolerance. The study
of drought stress tolerance in US oat germplasm is limited. Evaluating the response of
diverse US spring oat genotypes to drought stress would be valuable for developing oat
cultivars with improved drought tolerance adapted to the US.

Greenhouse experiments are common for drought studies; however, the plant growth
medium and drought imposition methods should be carefully chosen to mimic field
conditions as closely as feasible. When carefully planned, correlations between drought
response under greenhouse and field conditions have been reported [22]. The objectives of
this study were to evaluate the change in the morphological and physiological traits of oats
under drought stress and to determine root architectural components that contribute to the
ability of oats to cope with drought.
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2. Materials and Methods
2.1. Plant Materials

Ten oat cultivars with variation in root architectural traits at the seedling stage were
selected from a panel of 285 spring oat genotypes from US breeding programs. The panel
was evaluated for root morphological characteristics at the seedling stage (average primary
emergence angle, average length of all roots, average length of lateral roots, average length
of primary roots, number of lateral roots, number of primary roots, lateral root density,
total length of lateral roots, total length of primary roots, total root length, maximum
depth of root, maximum width, of root, convex hull area, and width to depth ratio). A
cluster analysis was conducted to select a sub-set representing the diversity in root system
architectural traits from the panel. The sub-set included cultivars ‘Clintford’ [23], developed
by Purdue University; ‘Gopher’, ‘Deon’, and ‘MN Pearl’, released in 1923, 2013, and 2018,
respectively, by the University of Minnesota; ‘Goliath’, ‘Hayden’ [24], and ‘Saddle’, released
in 2012, 2014, and 2017 by South Dakota Agricultural Experiment Station; ‘Kame’, released
in 2005 by the University of Wisconsin; and ‘SD140327’, an experimental breeding line
developed by South Dakota State University. In addition, the cultivar ‘Checota’ [25],
released by Oklahoma Agricultural Experiment Station, was included as a drought-tolerant
check cultivar based on previous reports [12,26]. Variability in root system architecture
traits was considered in selecting cultivars for this study because the literature suggests that
some root characteristics can improve productivity under limited water availability [27].

The seeds were first pregerminated for two days in germination paper. The pregermi-
nated seeds were transferred in topsoil in 10 cm × 10 cm × 35 cm tall tree pots (Stew and
Sons, Inc., Tangent, OR, USA) at the rate of one plant per pot. Each pot was filled with
4 kg topsoil at field capacity (the soil was soaked with water and the excess water was
allowed to drain for 48 h). The tall pots were chosen so as to limit interference with root
development, and topsoil was selected as growing medium to mimic field conditions [28].
A total of 10 plants were grown per genotype per water regime treatment. The experi-
ment was repeated twice. Each repetition of the experiment included a total of 200 plants
(10 genotypes × 2 water regimes × 10 replications). The plants were grown for 21 days in
well-watered conditions by watering all pots every three days in a greenhouse maintained
at 24 ◦C with a 16 h photoperiod. After 21 days, the well-watered (control) plants were
watered every third day and the drought treatment plants were no longer watered. Gradual
soil drying by withholding watering was chosen as the drought imposition method to
impose water deficits in the pots that more closely mimic the situation in the field [28].
After 15 days, shoot and roots were harvested from 5 plants per genotype for each water
regime group for a total of 100 plants. The shoot dry weight (SDW) was determined after
drying the shoot at 60 ◦C for 72 h. The roots were cleaned from the soil and scanned
before drying for root dry weight (RDW) determination. To determine the grain yield, the
drought treatment was continued on the remaining 100 plants (five plants per genotype for
each water regime) with a drying and rewatering cycle every 15 days until physiological
maturity. The experiment was conducted with a completely randomized design. Each
single plant (planted in an individual pot) was an experimental unit.

2.2. Root Morphology

The roots were cleaned and scanned with an Epson flatbed scanner (Epson America,
Inc., Los Alamitos, CA, USA). The scanned root images were run through WhinRhizo
(V 5.0, Reagent Instruments, Quebec City, QC, Canada) to measure root length, root area,
and root volume.

2.3. Relative Water Content (RWC)

Relative water content was measured according to the method described by Smart
and Bingham [29]. Relative water content was determined on the mid-leaf section of the
youngest mature leaf. A 5 cm long leaf section was cut and weighed immediately to
determine the fresh weight (W). The leaf samples were hydrated with deionized water
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for 24 h in a closed Petri dish. The leaf samples were taken out of the Petri dishes and
were well dried of any surface moisture using a paper towel and weighed to determine the
turgid weight (TW). The samples were then oven-dried and weighed to determine the dry
weight (DW). One measurement was made per plant for each genotype in each treatment.

RWC (%) =
W − DW

TW − DW
× 100

W—Sample fresh weight
TW—Sample turgid weight
DW—Sample dry weight.

2.4. Chlorophyll Content

The chlorophyll content was measured using CCM-200 plus Chlorophyll Content
Meter (Opti-Sciences, Inc., Hudson, NH, USA). The youngest fully expanded leaf from
each plant was chosen for measuring chlorophyll content. One measurement was made
on every plant in each treatment (5 measurements per genotype per treatment per run of
the experiment).

2.5. Stomatal Conductance

The stomatal conductance was measured using a portable SC-1 leaf porometer (Decagon
Devices, Pullman, WA, USA). The fully expanded youngest leaves from each plant were
chosen for measuring stomatal conductance. A stomatal conductance reading was taken in
3 random plants from each treatment (3 readings per genotype per treatment per run of the
experiment).

2.6. Stomata Number

Stomata number was determined using the leaf imprints technique on the youngest
fully expanded leaf, according to the method described by Hilu and Randall [30]. A thin
layer of nail polish was applied to the leaf surface. One leaf imprint was made from every
plant in the experiment. The nail polish was allowed to dry and the thin film of nail polish
on the leaf was peeled off using a clear scotch tape. The nail polish film with the imprint of
the leaf was mounted on a microscope slide and observed under a light microscope (ATC
2000, Leica, Buffalo Grove, IL, USA). The area of the field of view was determined using a
stage micrometer, and the stomata were counted in a field of view with an area of 2.01 mm2.
Three readings were taken at random spots from each imprint, and the average number of
the three readings was used as stomata number for each leaf.

2.7. Statistical Analysis

Statistical analysis was done with the R programing language (V 4.1.2) [31]. Multiple
comparisons between treatment means were performed with the least significant difference
using the agricolae package (version 1.3-5) in R (V 4.1.2) [32]. The LSD.test function from
the agricolae package returns the multiple comparison of treatment means and grouping of
treatments by adjusting p-values for multiple comparison. The standard analysis of variance
was performed for the traits that were normally distributed. For the traits that were not
following a normal distribution, non-parametric statistics were used to determine the effects
of the genotype, drought treatment, and their interactions. The nonparametric analysis of
variance was conducted using the ARTool Package in R [33]. The ARTool Package performs
aligned rank transformation for nonparametric factorial analysis of variance. The linear
correlation between traits was analyzed based on Pearson correlation coefficient, and the
correlation plots were generated using the performance analytics package in R, where
the correlation coefficient is shown along with scatter plots for each correlation and the
statistical significance of the correlation.
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2.8. Drought Tolerance Indices

Four drought tolerance indices were measured for each genotype based on the control
and drought stress yield per plant. The drought tolerance indices are as listed below [34–37].

Stress tolerance index (STI) =
(Yc × Ys)

(Ymc)2

Drought resistance index (DRI) =

[
Ys × Ys

Yc

]
Ymc

Yield index (YI) =
Ys

Yms

Yield stability index (YSI) =
Ys
Yc

where Ys is the average seed yield of the genotype under drought-stressed conditions, Yc is
the average seed yield of the genotype under well-watered conditions, Ymc is the average
seed yield of all genotypes under well-watered conditions, and Yms is the average seed
yield of all genotypes under drought-stressed conditions.

3. Results

The water regime had a significant impact on all traits evaluated. The drought treat-
ment resulted in plants with lower SDW, RDW, root length, root area, root volume, RWC,
chlorophyll content, stomata number, and grain weight per plant compared to the well-
watered treatment. The root-to-shoot ratio (RSR), however, was on average higher for the
drought-stressed plants. The genotype had a significant effect on all traits evaluated except
for stomatal conductance. The ten oat genotypes were selected to be representative of
cultivars adapted to the spring oat region of the US and to maximize variability in root
morphological characteristics. While the selection was based on phenotyping data collected
on roots at the seedling stage, the selected genotypes also varied significantly for shoot and
root traits at the adult plant stage. A significant genotype by water regime interaction was
observed for RWC, chlorophyll content, stomatal conductance, grain yield, and stomata
number, indicating a differential response among the 10 genotypes to drought stress. The
analysis of the variance table is available in the Supplementary File, Table S1. There was no
significant interaction, however, between genotype and water regime for SDW and root
traits (RDW, RSR, root length, root area, and root volume).

Shoot dry weight (SDW) is an estimation of above-ground biomass production. The
10 oat genotypes were significantly different for SDW (Figure 1A) under both water treat-
ments. SDW was on average 29.6% lower under drought stress than under well-watered
conditions (Figure 1A). There was no significant difference among genotypes for the reduc-
tion in SDW in response to the drought treatment (Figure 1B).

Similarly, genotypes were significantly different for RDW under both water treatments
(Figure 2A). All genotypes had lower RDW under water deficit. The intensity of RDW
reduction was not significantly different among genotypes (Figure 2B).

While there was no significant difference among genotypes for their response in
SDW and RDW (Figures 1B and 2B), a differential response to drought treatment was
observed among genotypes for RSR (Figure 3B). Checota and Gopher were the only culti-
vars that showed a significant increase in RSR under the drought conditions compared to
the well-watered conditions (Figure 3A,B). Unlike Deon and Hayden, in which drought
stress reduced the size of the above- and below-ground biomass proportionally, for Go-
pher and Checota, drought stress resulted in a larger decrease in SDW than in RDW
(Figures 1B and 2B).
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The genotypes varied widely in root system characteristics. Total root length ranged
from 2506 cm (SD140327) to 4387 cm (MN Pearl) under well-watered conditions (Figure 4A)
and from 2097 cm (SD140327) to 2981 cm (Saddle) under drought conditions. Root length
was significantly lower under drought stress for all genotypes except SD140327, but the
% change in root length between the two water treatments was not significantly different
among genotypes (Figure 4B). Similarly, all genotypes had significantly lower root area
under the drought treatment except for SD140327 (Figure 5A). The % change in root
area between the two water treatments was not significantly different among genotypes
(Figure 5B).
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Several genotypes (Clintford, Hayden, Kame, MN Pearl, and Saddle) had signifi-
cantly lower root volume under the drought treatment than under well-watered conditions
(Figure 6A). The % change in root volume between the two water treatments was sig-
nificantly different among genotypes, with the highest being observed in Saddle (35.7%)
(Figures 6B and 7).
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There was no significant difference in RWC between oat genotypes under well-watered
conditions. A significant decrease in the RWC in response to drought stress was observed
in all genotypes except for SD140327 (Figure 8A). The change in RWC between the two
treatments was significantly different among genotypes. The strongest decrease in RWC
was observed in Saddle (23%) (Figure 8B). On the other hand, the decrease in RWC was
<10% for other genotypes (SD140327, Hayden, Goliath, Deon, and Clintford) (Figure 8B).
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Drought stress did not affect chlorophyll content similarly for all genotypes. The
chlorophyll content was significantly reduced (close to a 25% reduction) in some genotypes
(Checota, Clintford, Gopher, and SD140327) but not in others (Deon, Goliath, Hayden,
Kame, MN Pearl, and Saddle) (Figure 9B).
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The 10 genotypes were significantly different for stomatal conductance under both
well-watered and drought conditions. Drought stress significantly reduced stomatal con-
ductance in all genotypes (Figure 10A), but the percentage of reduction varied signifi-
cantly among genotypes, ranging from 55.7% for SD140327 to more than 82.0% in Saddle
(Figure 10B).
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Stomata numbers varied greatly under well-watered conditions, with Hayden and
Checota showing a significantly higher number of stomata compared to Clintford, Deon,
Gopher, Kame, Saddle, and SD140327 (Figure 11A). Under drought conditions, a significant
decrease in stomata number was observed in seven genotypes (Checota, Deon, Hayden,
Kame, MN Pearl, Saddle, and SD140327). The decrease in stomata number was, however,
not significant in Clintford, Goliath, and Gopher. Hayden showed the greatest decrease in
stomata number with 33%, followed by Saddle (24.5%) and Checota (22.6%) (Figure 11B).
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Seed weight per plant varied greatly among genotypes, ranging from 2.4 to 4.6 g/plant
under well-watered conditions, with the highest seed weight for Goliath, Deon, and
Hayden, and the lowest for Gopher and Clintford (Figure 12A). All genotypes showed a
significant decrease in seed weight under drought stress. There was a significant difference
among the genotypes for the percent reduction in seed weight in response to drought stress.
The greatest reduction in seed weight was observed in Saddle (45.5%), Goliath (45.2%),
and Deon (42.3%), while the smallest was observed in Hayden (22.2%) (Figure 12B). The
reduction in seed weight in response to water deficit was intermediate for Checota.
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Several drought tolerance indices were calculated (Table 1). Hayden consistently showed
the highest drought tolerance among the ten genotypes evaluated based on the four indices
calculated. Inversely, Saddle and Gopher consistently ranked as least drought-tolerant.

Table 1. Drought tolerance indices (DTI) of ten oat genotypes evaluated under control and drought
stress conditions.

Genotype
Stress
Tolerance
Index

Yield Index
Drought
Resistance
Index

Yield
Stability
Index

Mean
DTI

Checota 0.70 1.05 0.46 0.67 0.72

Clintford 0.39 0.81 0.38 0.71 0.57

Deon 0.94 1.12 0.41 0.56 0.76

Goliath 0.92 1.09 0.39 0.54 0.74

Gopher 0.32 0.72 0.32 0.69 0.51

Hayden 1.14 1.44 0.73 0.78 1.02

Kame 0.59 1.00 0.47 0.72 0.70

MN Pearl 0.76 1.14 0.54 0.73 0.79

Saddle 0.50 0.80 0.28 0.54 0.53

SD140327 0.47 0.82 0.33 0.62 0.56

When considering the entire dataset, most evaluated traits were positively correlated
with one another. The strongest correlations were observed between root and shoot dry
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weight (r = 0.85) and among root traits (r = 0.70–0.94) (Figure 13). The grain weight per plant
was most correlated with stomatal conductance (r = 0.55) and was significantly correlated
with all other traits measured (except for the root-to-shoot ratio) (Figure 13). When the
correlations among traits were evaluated for each water treatment separately, however,
different correlation patterns were observed. Seed weight per plant was only weakly
correlated with chlorophyll content (r = −0.23), stomata number (r = 0.21), RDW (r = 0.18),
and RSR (r = 0.17). Chlorophyll content and relative water content were not significantly
correlated with any other variables under well-watered conditions (Figure 14), and stomatal
conductance was only significantly correlated with chlorophyll content (r = 0.28). Under
drought conditions, however, RWC was significantly negatively correlated with SDW
(r = −0.68), RDW (r = −0.59), and chlorophyll content (r = −0.35), and weakly positively
correlated with grain yield per plant (r = 0.24) (Figure 14). RWC was the only variable
significantly correlated with seed weight per plant under drought conditions (Figure 15).
While under well-watered conditions chlorophyl content was only significantly correlated
to stomatal conductance and seed weight, under drought conditions it was significantly
correlated to SDW (r = 0.51), stomata number (r = −0.40), RWC (r = −0.35), RDW (r = 0.25),
and RSR (r = −0.23).
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A correlation analysis was also performed between drought tolerance indices and
percentage change in traits in response to drought (Figure 16). Although the correlation was
low (r < 0.4), some of the tolerance indices were significantly correlated with the response in
several traits. The percent change in relative water content was negatively correlated with
the yield index and drought resistance index. The percent change in chlorophyll content
was negatively correlated with the yield index and stress tolerance index. This means that
the more the drought resulted in a decrease in RWC and chlorophyll content, the less the
plants were able to tolerate the drought. Inversely, the change in stomata number was
positively correlated with the yield index, drought resistance index, and stress tolerance
index (Figure 16). This means that plants with a larger reduction in stomata number as a
result of drought stress were better able to tolerate the drought stress.
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4. Discussion

In this study, we investigated the impact of drought stress on the physiological and
morphological parameters of ten US oat genotypes. We found that high relative water
content under drought is necessary for maintaining yield under drought. We observed
a differential response of oat cultivars to drought stress for multiple physiological pa-
rameters, including relative water content, stomatal conductance, stomata number, and
chlorophyll content.

With an increase in the occurrence of drought throughout the world and in North
America, improving drought tolerance in oats is an urgent need. Drought tolerance is a
complex quantitative trait controlled by several small-effect genes, confounded by different
plant phenology [38,39]. Many traits can be affected by drought, and thus evaluating
diverse morphological and physiological root and shoot traits in multiple genotypes under
drought stress is necessary to understand plant response to drought.

All oat genotypes tested in this study showed a significant reduction in SDW in
response to drought treatment. A reduction in SDW is common for plants facing drought
stress because of a reduction in photosynthetic capacity [40]. A decrease in photosynthesis
can be due to the biochemical decline of the photosynthetic process or due to stomatal
closure which reduces the CO2 entry into the leaf [41]. Drought-tolerant cultivars typically
show a smaller reduction in SDW under drought compared to susceptible cultivars [42,43].
In our study, the decrease in SDW was not significantly different among genotypes.
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We observed a significant decrease in RDW in seven out of ten cultivars. Both a
decrease [44] and an increase [45] in RDW have been reported under drought in the
literature. Fang et al. [46] summarized the contrasting arguments about the importance
of the root system for grain yield under drought. One argument is that a relatively large
root system is essential for a crop to absorb more soil water and relieve drought stress. The
alternative view is that reducing root biomass increases the availability of photosynthate for
above-ground parts including grain yield. In our study, cultivars with larger root system
did not show higher yield under drought.

The root-to-shoot biomass ratio can account for the size of the root system relative
to plant size. The size of the root system is an important factor in the acquisition of soil
resources but only when considered with whole-plant size [47]. In our study, two genotypes,
including the drought-resistant check Checota, showed a significant increase in RSR. The
other eight genotypes did not show significant differences in RSR under drought conditions.
This suggests that the genotypes have different strategies in allocating photosynthates to
root and shoot. A higher RSR was reported as a factor in drought tolerance, and selecting
genotypes with higher RSR in a greenhouse was considered a viable method for improving
field drought tolerance in tall fescue [48].

In our study, Saddle and MN Pearl showed a relatively larger root system (higher RDW,
root area, root volume, and root length) compared to other genotypes. While all cultivars
except SD140327 showed reduced root length under drought, no significant difference was
observed for % change in root length and area among cultivars, but we observed significant
differences for the change in root volume. A reduction in root length, root area, and RDW
in response to drought has been reported in oats, and oat cultivars tolerant to drought
have been reported to exhibit a smaller reduction in root length, root area, and root weight
compared to susceptible cultivars [19]. Contrary to the other genotypes, SD140327, which
had the smallest root system (smallest root length, area, and volume) did not show any
significant reduction in root characteristics under drought conditions. However, the seed
production was significantly reduced under drought for this genotype. The root system of
this genotype may have less plasticity than other genotypes because of its small size. A
decrease in root length under drought has also been reported in both winter and spring
wheat. Drought tolerance in winter wheat is associated with a deeper root system and in
spring wheat with a well-branched shallow root system [49]. In our study, a larger root
length, root area, and root volume were associated with seed weight when correlations were
analyzed across both treatments but not when evaluated within treatments, suggesting that
the total root length, root area, and root volume did not contribute to a higher yield under
drought in our study. A strong positive correlation between SDW and RDW was observed,
and a similar result was reported by Tolley et al. [50]. The correlation coefficient between
SDW and RDW was 0.85 under well-watered conditions but 0.61 under drought, suggesting
that oat genotypes had different ability to allocate photosynthates into root and shoot under
drought conditions. Further investigation into the distribution of roots into upper and lower
soil levels may reveal the relative importance of shallow versus deeper root system in oats.
A higher root biomass and root length density in the subsoil layer are thought to be possible
features for wheat adaptation to water stress, as they boost the subsoil water extraction
capacity for grain filling and increased grain yield [51]. However, the ten oat genotypes
evaluated in this study did not show a significant difference in root biomass reduction in
response to drought. Although the ten evaluated oat cultivars differed significantly for
root traits at the seedling and adult stages, the effect of drought on root traits in this study
was similar among the ten cultivars (no genotype by treatment interaction). It is possible
that a longer drought duration and/or a larger soil volume may have resulted in variation
in root trait responses to drought among the cultivars. A field study would be valuable
to fully determine if a genotype-specific response in root traits under drought exists in
oats and if some root characteristics should be targeted for improving tolerance to drought.
In oats, Wen et al. [52] reported that drought-tolerant oat genotypes could allocate more
biomass into root and grain, and had higher chlorophyll content and better root structure
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than drought-sensitive genotypes. The stimulation of root branching and fine root growth
has been reported to mediate the capacity of drought-tolerant oats to cope with water
stress [19]. During drought stress, the RWC decreases. Maintaining RWC under drought
stress is considered a drought tolerance character [53,54]. The osmotic adjustment or the
accumulation of solutes in response to drought is well recognized to play a role in plant
adaptation to drought [55]. In our study, the highest decrease in RWC was found in Saddle,
which also showed the highest decrease in seed yield in response to drought. RWC was the
only trait significantly associated with seed weight per plant under the drought treatment
in our study. As opposed to Saddle, SD140327 and Hayden showed a smaller decrease in
RWC in response to the drought treatment. Gong et al. [56] reported that drought-tolerant
oat genotypes maintained a significantly higher RWC and osmotic potential in roots and
leaves. While it is difficult to find a single trait responsible for yield advantage in different
crops under drought conditions, Blum [55] reported that osmotic adjustments can sustain
yield under drought in many crops. The variability in RWC under drought conditions
suggests that oat genotypes have different abilities to produce soluble sugars for osmotic
adjustment under drought.

Drought has an impact on leaf chlorophyll content, and we observed a significant
effect of oat genotype, water regime, and their interaction on chlorophyll content. Similar
results were reported in wheat and maize [57,58]. Although Saddle showed no reduction in
chlorophyll content under drought compared to the control treatment, it showed the highest
reduction in seed weight. The reduction in seed weight produced per plant in Saddle might
be due to the decrease in photosynthesis as a result of the reduced entry of CO2 into the leaf
due to rapid stomatal closure and not to biochemical decline in photosynthesis (reduced rate
of enzyme functions in Calvin cycle). This is supported by the largest reduction in stomatal
conductance between the two treatments for the cultivar Saddle. Saddle also showed a
large reduction in stomata number under drought conditions, thus decreasing the amount
of CO2 flow into the leaf. A rapid increase in abscisic acid, leading to a rapid reduction in
stomatal conductance, was reported in drought-sensitive oat cultivar ‘Flega’ [59]. Flexas
and Medrano [41] suggested that stomatal closure is the earliest response and primary
limitation to photosynthesis at moderate drought stress. A decrease in plant photosynthesis
will also impact root growth and the allocation of photosynthates to the root. One of the
first responses of plants to drought is to close the stomata to reduce transpiration. Stomata
are small apertures that open and close to absorb photosynthetic carbon dioxide and to
limit water loss through transpiration. Both an increase and a decrease in stomata number
in response to drought have been reported [42,60,61]. We observed a significant decrease in
stomata number under drought in seven out of ten cultivars, with Hayden showing the
highest decrease. A decrease in stomata number is one of the morphological responses of
plants to drought [62], and a decrease in stomatal density is shown to improve drought
tolerance in barley [63]. Similarly, reduced stomata numbers can improve drought tolerance
and reduce water use in rice [64]. Thus, reducing stomata numbers may also help oat plants
with water conservation and drought tolerance.

Although stomata numbers can impact transpiration, the degree of stomatal opening
is also an important factor that determines the resistance of CO2 and water vapor between
the leaf and the atmosphere. The increase in stomata number under drought can be accom-
panied by a decrease in stomatal aperture [42], and smaller stomata are more dynamic in
opening and closing and thus regulating transpiration more efficiently [65]. The decrease in
overall plant growth under drought can be attributed to a decrease in stomatal conductance
that limits CO2 entry into the leaf. Thus, having an optimal number of stomata that can
open and close more dynamically in response to environmental cues such as light and
drought can help oat cultivars optimize the leaf stomatal conductance and thus optimize
water use and photosynthesis under drought. Further studies on the size of stomata and
how responsive the stomata are to the drought-induced abscisic acid might help better
understand the role of stomata in drought tolerance in oats. Since the plant can produce
abscisic acid under drought to initiate stomatal closure, the sensitivity of stomata to abscisic
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acid can determine the effectiveness of stomata in controlling gaseous exchanges. The
response of stomata to abscisic acid controls the stomatal pore, and drought-resistant plants
have stomata which are more responsive to abscisic acid [42]. The cultivar Checota was
included in this study as a resistant check based on previous reports of its drought toler-
ance in field evaluation under rainfed and irrigated conditions [12,26]. In our greenhouse
study, Checota was intermediate for reduction in grain yield under drought conditions
compared to other cultivars. It showed a sharp decrease in chlorophyll content, a relatively
small decrease in RWC, a decrease in stomatal conductance, and a significantly higher
decrease in stomata number than some of the other genotypes. Checota also showed a
strong increase in RSR. Like Checota, Hayden was among the genotypes with the highest
decrease in stomata number and in stomatal conductance. But unlike Checota, Hayden
maintained its chlorophyl content. Hayden, which had the lowest reduction in grain yield
from the drought treatment, was able to maintain RWC relatively well in comparison to
other cultivars. Hayden also showed a higher drought tolerance compared to all other
genotypes based on all four drought tolerance indices. These results are consistent with
our observations in multi-environment trials in the Northern Great Plains, where Hayden
is able to outyield other adapted cultivars under moderate drought conditions and exhibits
stable yield performance in the absence of crown rust infection. On the other hand, the
cultivar Saddle had the largest decrease in grain weight produced per plant. As opposed to
Checota and Hayden, Saddle showed a large reduction in RWC when subjected to drought
stress. But the change in stomata number and stomatal conductance of Saddle in response
to drought was not significantly different than that of Hayden and Checota. As Hayden,
Saddle maintained its chlorophyll content under drought. In multi-environment trials,
however, Saddle has displayed unstable performance, exhibiting high yield in optimal
environments but low performance under stressed environments. In this study, the relative
water content was the only trait significantly correlated with yield under drought. Thus,
our results suggest that selecting genotypes that are able to maintain relative water content
under drought can help oat breeders develop cultivars which are less susceptible to drought
stress and more stable in the changing climate. Hayden can be used as parent in crossing
where it can provide both yield and drought tolerance characteristics to its progeny. A
significant negative correlation between changes in RWC and chlorophyll content under
drought and yield indices indicates that maintaining these traits under drought is impor-
tant for drought tolerance. Similarly, a positive correlation between changes in stomata
number and yield indices suggest that a reduction in stomata number is important for
drought tolerance.

Although drought-tolerant oat cultivars have been shown to exhibit higher root length,
surface area, and root branching [19], the size of the root system did not seem to provide
a yield advantage under drought conditions in our study. Further studies with a longer
drought duration and the evaluation of root density distribution at various soil depths
may provide additional insight into the role of roots in drought tolerance in oats. Our
results show the importance of evaluating a large number of genotypes to understand
the mechanisms involved in drought tolerance to develop oat cultivars able to maintain a
high yield under moderate drought stress. Although the field phenotyping of roots has
limitations, a field experiment may be necessary to study the importance of roots in drought
tolerance and further confirm the findings of this study.
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