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Abstract: In-field in situ droplet deposition digitization is beneficial for obtaining feedback on
spraying performance and precise spray control, the cost-effectiveness of the measurement system is
crucial to its scalable application. However, the limitations of camera performance in low-cost imaging
systems, coupled with dense spray droplets and a complex imaging environment, result in blurred
and low-resolution images of the deposited droplets, which creates challenges in obtaining accurate
measurements. This paper proposes a Droplet Super-Resolution Semantic Segmentation (DSRSS)
model and a Multi-Adhesion Concave Segmentation (MACS) algorithm to address the accurate
segmentation problem in low-quality droplet deposition images, and achieve a precise and efficient
multi-parameter measurement of droplet deposition. Firstly, a droplet deposition image dataset
(DDID) is constructed by capturing high-definition droplet images and using image reconstruction
methods. Then, a lightweight DSRSS model combined with anti-blurring and super-resolution
semantic segmentation is proposed to achieve semantic segmentation of deposited droplets and
super-resolution reconstruction of segmentation masks. The weighted IoU (WIoU) loss function is
used to improve the segmented independence of droplets, and a comprehensive evaluation criterion
containing six sub-items is used for parameter optimization. Finally, the MACS algorithm continues
to segment the remained adhesive droplets processed by the DSRSS model and corrects the bias
of the individual droplet regions by regression. The experiments show that when the two weight
parameters α and β in WIoU are 0.775 and 0.225, respectively, the droplet segmentation independence
rate of DSRSS on the DDID reaches 0.998, and the IoU reaches 0.973. The MACS algorithm reduces the
droplet adhesion rate in images with a coverage rate of more than 30% by 15.7%, and the correction
function reduces the coverage error of model segmentation by 3.54%. The parameters of the DSRSS
model are less than 1 M, making it possible to run it on embedded platforms. The proposed approach
improves the accuracy of spray measurement using low-quality droplet deposition image and will
help to scale-up of fast spray measurements in the field.

Keywords: droplet deposition measurement; image processing; super-resolution; semantic segmentation

1. Introduction

Precision agriculture, arising from the need to mitigate the environmental impact
and enhance agricultural input efficiency, necessitates the meticulous control of pesticide
application. This places significant demands on the spraying quality of land sprayers and
drones. In order to carry out high-quality spraying operations, on the one hand, new types
of sprayers with higher performance have been developed [1], and on the other hand, it
is necessary to monitor the quality of the spraying in real time, in particular to monitor
droplet deposition on the leaves of the plant in a comprehensive manner. The monitoring
measurements can then be utilized as feedback data to support the adjustment of the
sprayer’s spraying parameters accordingly, which serves as the key to reducing pesticide
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application and improving overall efficiency. To ensure the real-time and convenient
monitoring of plant droplet deposition, it becomes essential to enhance the automatic
digitization of measuring droplet deposition on plant leaves. Furthermore, it is crucial that
we reduce the time delay associated with individual measurements and develop rapid in
situ measurement techniques. These endeavors have emerged as a focal point of research
in this field [2–6].

Indicators for measuring spray quality include droplet coverage, droplet density, Vol-
ume Median Diameter (VMD), Number Median Diameter (NMD), etc. Calculating these
indicators requires counting the number of droplets and the volume or diameter of each
individual droplet. However, in recent years, as drones and sprayers have widely used pre-
cise nozzles for high-quality pesticide application operations, the droplets from agricultural
sprayers are generally relatively dense, and the evaluation needs to be completed with the
help of sophisticated test strips or devices. Currently, the spray measurement method with
the widest range of applications and the most mature technology is the water-sensitive
paper method (WSP). The process of implementing this method includes steps such as
placement, spraying, recycling, scanning, and analyzing. In the early application of the
WSP method, scanning and analyzing needed to be performed in the laboratory, and trans-
ferring the water-sensitive paper consumed a lot of time. Zhu et al. used a portable business
card scanner, a portable computer, and a customized software package called DepositScan
version 1.2 to form a system which digitized the method to a certain extent and greatly
improved the speed [7]. However, the above method still relies on the manual operation of
WSP, such as placing and retrieving and discrete digitalization, and the consumption of
WSP still restricts the sustainability of this method. The consumption of water-sensitive
paper during large-scale droplet measurement brings excessive economic costs.

Recently, machine vision has been utilized in spray measurement to acquire the
details of droplets deposited by agricultural sprays. Wang et al. designed a new piece
of machine vision-based droplet collection equipment, using recyclable and erasable oil
paper instead of WSP [4]. The device is less disturbed by the environment and can realize
automatic control and the automation of spray deposition image shooting. The collected
images are segmented by a watershed algorithm to achieve droplet segmentation. Based
on the above equipment, Wang, et al. proposed a droplet detection model based on
SSD_MobileNet, which reconstructed the droplet outline based on the detection results,
further improving the statistical accuracy of the droplet parameters [8]. Yang, et al. used
the deep learning semantic segmentation model Deeplab V3+ to realize the segmentation of
deposited droplets, ensuring the accuracy of droplet segmentation [6]. This study considers
clusters of adherent droplets and independent droplets as two different object categories.
The neural network is used to find the concave points in the adherent droplets, and the
concave segmentation algorithm is used to individually separate the adherent droplet
clusters. The rate of recognizing adhesion pits reaches 95%, which can effectively identify
and segment most of the adhered droplets, thus effectively improving the accuracy of the
spray measurement.

When droplets are deposited on WSP and erasable oil paper, they are in an absorption
and diffusion state, which is completely different from the form of droplets deposited
on leaves. The area which is stained by the deposition of spray on WSP and erasable oil
paper is larger than the area covered on the leaf surface. Under a high-intensity spray,
it is easy for the overlap of stained patches to occur, affecting the measurement results.
Using a non-water-absorbent material as the surface for the deposition of the droplets
can simulate the hemispherical state of droplets when deposited on leaves. Vacalebre,
et al. studied the wetting characteristics of acrylic material surfaces. It was found that the
acrylic surface treated with a specific method can obtain strong hydrophobicity and a stable
WCA (wetting angle) [9]. The volume of a droplet can be calculated from its deposition
area using the known wetting agent angle [10]. According to the above principle, an
Optical Droplet Edge Imaging (ODEI)-based automatic spray measurement method has
been designed. Its measurement accuracy is directly related to the performance of the
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camera equipped with the measurement device, but high-performance cameras are not
conducive to their promotion in scalable application. However, the limitations caused by
camera performance in a low-cost imaging system, coupled with dense spray droplets and
a complex imaging environment, result in blurred and low-resolution images of deposited
droplets, which makes obtaining accurate measurements challenging. How to achieve
precise measurements by leveraging low-cost cameras becomes a practical research topic.

In recent years, deep learning has made great progress in the fields of image super-
resolution reconstruction and deblurring. Image deblurring models such as DeblurGAN [11,12]
can repair image blur, and its effect is better than traditional methods such as Wiener filter-
ing and deconvolution; Quan, et al. proposed using a linear mixture of a series of Gaussian
blur kernels to approximately express out-of-focus blur, and built the end-to-end deep learn-
ing model GKMNet to correct de-focus blur with remarkable results [13]. Super-resolution
reconstruction models such as SRGAN [14] can reconstruct image details when enlarging
the image, and its effect is far better than traditional methods based on interpolation. The
deep learning segmentation model can consider the semantic information of pixels when
segmenting images and identify light spots as being parts of droplets, which is better
than traditional methods. Some research combines super-resolution ideas with semantic
segmentation methods to improve segmentation accuracy [15].

This paper reconsiders the method of processing images of droplet deposition acquired
by low-cost cameras, merging deblurring, super-resolution, and image segmentation to
build an end-to-end spray image processor that meets the requirements of rapid in situ
spray measurement for scalable application. The specific contributions of this paper
are as follows:

1. A droplet image semantic segmentation model is built to output a super-resolution
segmentation mask to accurately express the deposited area of individual droplets.

2. The weighted IoU loss function is applied to improve the statistical independence of
droplets in super-resolution semantic segmentation.

3. The concave segmentation method is applied for complex droplet adhesion clusters
segmentation, including annular type and multiple adhesion.

2. Materials and Methods
2.1. Characteristics of Deposited Droplet Images

A portable in situ droplet deposition measurement device was developed to validate
the ODEI method. The process of collecting droplet deposition images in the crop canopy
using the in situ measurement device is shown in Figure 1. The user controls the acrylic
collector to eject to collect spraying droplets with the embedded system, then retracts
the collector to capture images. The image processing program embedded in the device
analyzes the image and measures the parameters of droplets. In order to measure the
deposition of droplets on both sides of the crops’ leaves, an LED surface light source is
placed above both sides of the collector to obliquely illuminate the front and back sides
of the collector where the droplets have been collected. The reflector reflects the images
of the front and back sides of the collector to the camera to record a digital image. The
optical principles of the device are shown in Figure 2. In practical applications, if the
device can be equipped with a camera with lower specifications, the application cost of
the method can be reduced, which is conducive to the promotion of scalable application.
However, the limitations caused by camera performance in a low-cost imaging system,
coupled with a dense spray of droplets and a complex imaging environment, result in
blurred and low-resolution images of deposited droplets, which challenges the accurate
measurements. The specifical characteristics of low-quality images are as follows:

(1) The fog droplet deposition image obtained shows a phenomenon of blurry edges and
clear middle.

(2) The blurring at the edge of the image leads to the dissolution of the droplet boundaries
in the edge area, and adjacent non adhesive droplets are prone to displaying adhesive
properties in the blurred image.
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(3) The relatively low resolution cannot accurately show the contour of the edge small
droplets, resulting in insufficient accuracy in the statistics for the droplet deposition area.

(4) The ODEI method forms high brightness spots in the center of the deposited droplets,
which makes droplet segmentation more difficult.

(5) The surface of the collector shows dirt and scratches after many measurements,
resulting in a decrease in the quality of the images collected.
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Figure 2. Optical principle of image acquisition device for spray deposition.

The key to spray deposition image processing is to identify individual droplets, cal-
culate their deposition area, convert the deposition area into volume, and then calculate
VMD, NMD, and other droplet parameters. As in the device shown in Figure 2, under
the illumination of the white LED surface light source, the droplets form an image in the
camera as a black ring with a white spot in the center, and the non-droplet area forms an
image in the camera with a white background. Calculating the area of individual droplets
requires segmenting them from the digital image. Under ideal conditions, the white spot is
wrapped by the shadowed edge of the droplet. Although the color and brightness of the
white spot and the white background are very close, segmented individual droplets can be
achieved by filling them after threshold segmentation, as shown in Figure 3a. However,
limited by the performance bottleneck of the camera and some environmental factors, the
collected images may be blurry and have insufficient resolution. Severe blur may cause
the white spot to deviate from the droplet edge, causing the threshold segmentation and
filling method to be ineffective, as shown in Figure 3b. Therefore, accurately obtaining the
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area of deposited individual droplets in low-quality deposition images is a challenging
task. Insufficient resolution can also lead to inaccurate statistical results for the droplet
deposition area. If the number of pixels constituting the droplet is too small, it is hard
to accurately characterize the deposition boundary of the droplet, as shown in Figure 3c.
Droplet adhesion is another problem that makes droplet area statistics difficult. If the
droplets that successively fall on the collector come into physical contact, they will merge
into a single droplet and form an elliptical deposition surface under the combined action of
surface tension and adhesion. If two droplets are not in physical contact but are very close,
image blurring may lead to the edges of the droplets dissolving (blur, spread) and invading
each other, forming a connected domain in the image, as shown in Figure 3d, ultimately
making it difficult to segment individual droplets. In summary, processing low-quality
deposition images is a complex task, and droplet segmentation algorithms need to have
the ability to identify individual droplets.
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2.2. Workflow of Droplet Deposition Low-Cost Measurement

The method proposed in this study aims to construct an image processing process
to achieve the measurement of parameters based on low-quality droplet deposition im-
ages. Super-resolution semantic segmentation based on deep learning is the core of this
method. Datasets, model structures, loss functions, and droplet segmentation algorithms
are improved to improve the method’s processing capabilities for spray deposition images.
The workflow of the method is shown in Figure 4. The blue and green arrows in the figure
indicate two processes: the training process and the working process.

Training stage: (1) In order to train the model, image reconstruction-based data
augmentation methods were used to create the DDID. The samples included use low-
quality images as model input and high-resolution segmentation masks as segmentation
annotations. (2) In order to solve the blur problems, insufficient resolution, and imaging
adhesion in low-quality droplet deposition image segmentation, a lightweight super-
resolution semantic segmentation model DSRSS was constructed to output super-resolution
segmentation masks to represent the size and boundaries of individual droplets. (3) In order
to improve the droplet independence rate in the DSRSS’s output results, a weighted IoU
loss function was applied to optimize the category weights, finally achieving high-quality
droplet segmentation.
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Working stage: (1) The device collects droplet deposition images and performs pre-
processing, including image cropping and distortion correction. (2) The preprocessed
image was input into the DSRSS, and through the model’s inference computation, a super-
resolution segmentation mask end-to-end model was output. (3) The super-resolution
segmentation mask is processed with a concave point segmentation algorithm to further
improve the independence of droplet segmentation. (4) Droplet measurement indicators,
such as coverage rate, droplet density, and VMD, are calculated from the segmentation
mask after concave point segmentation.

2.3. Construction of Deposition Droplet Image Dataset
2.3.1. Feasibility of Droplet Deposition Image Generation

In order for the model to learn richer morphological patterns of deposited droplets,
the annotated GT (ground truth) of the sample must represent the deposition surface of all
droplets as accurately as possible, which requires the high-quality image used to annotate
the segmentation mask to have a sufficiently high resolution and clarity. An ideal dataset
creation method is to use a high-performance camera and a low-performance camera
to capture images at the same location. Segmentation masks are annotated with high-
quality images taken by high-performance cameras, and they are combined with images
taken by low-standard cameras to form training sample pairs. However, it is difficult to
capture images with a highly consistent field of view because two cameras with different
specifications will generate pose errors, perspective errors, and distortion correction errors
during the shooting process, not to mention that the water droplets will evaporate and
move during the image switching process. It is difficult to meet these requirements with
directly captured images.

According to capillary and wetting phenomena [10], when a droplet with a diameter
smaller than the capillary length of the liquid is deposited on a flat solid surface, its water
contact angle is constant and appears as a spherical crown with a consistent shape. That
is to say, within a reasonable particle size range, taking high-definition images of large
droplets and reducing their resolution will result in images that will be highly consistent
with directly captured images of small droplets. Therefore, it is feasible to use the data
augmentation method of image reconstruction to construct a training data set.
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2.3.2. High Quality Image Samples Generation

A large droplet shape dataset containing 67,829 samples was established as the candi-
date units for generating image samples by extracting individual droplets from high-quality
deposition images captured with a high-specification camera. The droplet morphology
database includes the grayscale magnification of the droplet region pixels relative to the
background pixels in the region and the local segmentation mask of the droplet individual,
as shown in Figure 5. The original position of droplets on the collector were also recorded in
the database to preserve any correlation with droplet morphology and position. Individual
droplets in these databases were used as the foreground during sample generation, with
the background coming from empty collector images captured using the ODEI device.
During the sample image generation process, individual droplets are scaled to random
sizes and attached to the background image according to their original positions recorded
in the database, without overlapping each other. Considering that the droplets tilted onto
the collector and the droplets which were fused due to physical contact deposit in a long
elliptical shape, random shear transformation was also performed on individual droplets.
At the same time, the same transformation is applied to the corresponding segmentation
mask, and the resulting image sample pair is shown in Figure 6.
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2.3.3. Quality-Degrading Operations for the Simulation of Low-Quality Image Acquisition

Low image quality is the result of multiple factors, the most important factors are
insufficient COMS sensor performance, which leads to detail loss, and low-performance
ultra-wide-angle lenses, which cause spherical aberration. The low-quality images in the
dataset are generated from high-quality images through a series of operations, including re-
ducing resolution, adding noise, and applying various fuzzy transformations. Among them,
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reducing the resolution is used to simulate the insufficient resolution of low-performance
cameras, image noise (including salt and pepper noise and Gaussian noise) and Gaussian
blur are used to simulate the loss of image details, and radial blur which gradually increases
from the center to the edge of the image is used to simulate spherical aberration, resulting
in image margin blurring. Therefore, stains and scratch textures were randomly added to
the low-quality images to simulate real images collected by the device in field applications.

Since scratches are physically present textures on the collector, the scratch simulation
in the generated image is directly performed on the high-resolution image background,
prior to the attachment of droplets. The scratch simulation has actually been completed in
the generated image shown in Figure 6a. Spherical aberration is caused by the abnormal
refraction of light by the lens, which occurs before the imaging of CMOS sensors, so
the application of radial blur is immediately followed by scratch simulation. Gaussian
blur, adding noise, and reducing resolution are all implemented to simulate image detail
loss. However, Gaussian blur reduces the effect of salt and pepper noise, and reducing
resolution weakens the effect of Gaussian blur. Therefore, the order of executing these three
steps is: reducing resolution, Gaussian blur, and adding noise. The simulation process
for the low-quality images is shown in Figure 7, and a comparison between the generated
low-resolution images and real low-quality images is shown in Figure 8.

Agriculture 2024, 14, x FOR PEER REVIEW 9 of 24 
 

 

 

Figure 7. The simulation process for low-quality images. 

   
(a) Real low-quality image (b) Generated simulated low-quality image 

Figure 8. Low quality image samples. (The part in the dotted box is the area shown in Figure 7). 

In order to meet the needs of model training, validation, and comparison, each group 

of samples in the dataset also contains additional sub items, which come from the inter-

mediate process of dataset generation. Finally, a total of 2000 groups of training samples 

were generated, of which 1600 groups were used as the training set and 400 groups were 

used as the validation set. In this paper, the above dataset was named DDID (deposited 

droplet image dataset). 

  

Figure 7. The simulation process for low-quality images.



Agriculture 2024, 14, 106 9 of 23

Agriculture 2024, 14, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 7. The simulation process for low-quality images. 

   
(a) Real low-quality image (b) Generated simulated low-quality image 

Figure 8. Low quality image samples. (The part in the dotted box is the area shown in Figure 7). 

In order to meet the needs of model training, validation, and comparison, each group 
of samples in the dataset also contains additional sub items, which come from the inter-
mediate process of dataset generation. Finally, a total of 2000 groups of training samples 
were generated, of which 1600 groups were used as the training set and 400 groups were 
used as the validation set. In this paper, the above dataset was named DDID (deposited 
droplet image dataset). 

  

Figure 8. Low quality image samples. (The part in the dotted box is the area shown in Figure 7).

In order to meet the needs of model training, validation, and comparison, each group of
samples in the dataset also contains additional sub items, which come from the intermediate
process of dataset generation. Finally, a total of 2000 groups of training samples were
generated, of which 1600 groups were used as the training set and 400 groups were used as
the validation set. In this paper, the above dataset was named DDID (deposited droplet
image dataset).

2.4. Droplet Super-Resolution Semantic Segmentation (DSRSS) Method
2.4.1. Structure of the DSRSS

In the field of deep learning image segmentation, researchers use large-scale natural
image datasets to verify the versatility and generalization ability of the model. The scale
of SOTA models is getting larger and larger, including an increasing number of special
structures, which also puts forward increasing requirements for computer performance.
Compared with natural image datasets, the information contained in spray deposition
images is relatively simple. Applying large models to solve the segmentation of droplet
images will cause computer hardware resources to be wasted and is not conducive to cost
control. Due to the above reasons, this study built a lightweight CNN model to meet the
requirements for application in embedded systems.

The idea of super-resolution was used to solve the problem of insufficient resolution
of small droplets. DSRSS is a super-resolution semantic segmentation model used for
dealing with low-quality droplet deposition images. The length and width of the output
segmentation mask are four times that of the input image, which can more accurately
express the morphology of the outline of the droplets. In common super-resolution image
reconstruction tasks [14,16], the deep learning model learns the prior knowledge contained
in large-scale datasets during training and applies it to the restoration of image details such
as color and texture, which places higher requirements on the number of parameters in the
model. The super-resolution semantic segmentation task does not consider complex image
details and only focuses on outputting more accurate segmentation masks. It has lower
requirements for the number of model parameters and is conducive to lightweighting
the model.

DSRSS adopts an encoder–decoder structure, which is widely used in semantic seg-
mentation models, such as U-Net [17] and its derivative models, SegNet [18], DeepLab
V3+ [19], etc. The function of the encoder is feature extraction, and the decoder generates
a segmentation mask based on the features. Under the guidance of the training data, the
decoder can learn some prior knowledge and act on image reconstruction.

DSRSS is a fully convolutional network that does not contain fully connected layers [20].
It uses standard 2D convolution operations as convolutional layers, and batch normalization
and swish [21] function activation are performed after each convolutional layer. On the
encoder side, the activation function is followed by a pooling operation with a kernel size
of 2 × 2, and on the decoder side; a bilinear interpolation up-sampling operation with a
factor of 2 × 2 is performed before each convolutional layer. The cross-layer connection
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structure in U-Net was referenced. The feature map obtained by each down-sampling in
the encoder is concatenated with the feature map of the same level in the decoder. In the
test, this structure can significantly improve the IoU of the model output.

The structure of the DSRSS model has been determined through a large number of
experiments, with its depth and width at relatively optimal values. Cross layer connection
structure is also essential. The down-sampling level must reach at least 3 to ensure the
high performance of the model. If the down-sampling level is lower than 3, errors in the
segmentation of droplet spots are prone to occur. To achieve 4× super-resolution output,
the number of up-sampling operations should be 2 more than the number of pooling
operations. The width of the model also has a great impact on the performance of the
model, but the larger the scale of the model, the higher the requirements for hardware
performance. The final model structure adopted is shown in Figure 9. On this basis, the
benefits of continuing to increase the width of the model are no longer clear.
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2.4.2. Loss Function and Metrics

The independence of individual droplets and the accuracy of segmentation areas are
the two most important criteria in measuring the quality of DSRSS segmentation, and the
loss function determines the model’s optimization goal. Semantic segmentation does not
pay attention to the independence of individual droplets, and its optimization is usually
directed towards improve the accuracy of segmented regions. In order to enable the model
to take into account the independence of individual droplets, specific metrics and loss
functions were applied.

Three normalization metrics, including the recognition rate, independence rate, and
correction rate, of individual droplets were used to characterize the independence of
individual droplets. The calculation method is: (1) Search for contours in the segmentation
mask output by the model to obtain a list of predicted droplets. (2) Search for contours
in GT to obtain a list of target droplets. (3) Traverse the target droplet list, count the
proportion of individuals that only intersect with one predicted droplet and this intersecting
predicted droplet has no other intersecting droplets as the independence rate, and count the
proportion of individuals that intersect with any predicted droplet as the recognition rate.
(4) Traverse all predicted droplets and count the proportion of individuals that intersect
with any target droplet as the accuracy rate. The three quantity standards can be expressed
in Equation (1). 

Tr =
Ntrue

Nt

Ir =
Nindep

Nt

Cr =
Ntrue

Np

(1)
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where, Tr denotes the recognition rate, Ir denotes the independence rate, Cr denotes the
correct rate, Nt denotes the number of target droplets, Np denotes the number of predicted
droplets, Ntrue denotes the number of correctly recognized droplets, and Nindep denotes the
number of droplets without adhesion.

The IoU is often used as one of the evaluation criteria for semantic segmentation and
is also used to define the loss function. The IoU loss function optimizes the intersection
area and union area ratio of the target area and the prediction area toward 1, so that the
segmentation map output by the model is as consistent as possible with GT. The IoU loss
function and its difference set form a two-category segmentation which can be expressed
by Equation (2).

LIoU = 1−
At ∩ Ap

At ∪ Ap
=

(A t\Ap)+(A p\At)

At ∪ Ap
(2)

where At denotes the target area, Ap denotes the prediction area, and LIoU denotes the
loss value.

In the segmentation mask output by the model, the droplet adhesion points are
composed of very few pixels. However, the segmentation of these pixels determines the
model’s ability to segment individual droplets, so their segmentation should be of higher
priority. This special priority can be reflected in the loss function. Since the adhesion points
between droplets are only included in the difference set At\Ap between the prediction area
and the target area, reducing the proportion of this difference set in the loss function can
adjust the sensitivity of the model to droplet adhesions. So, two weight values α and β
were added into Equation (2), and the loss value is represented by the symbol LIoU . The
modified loss function was named WIoU, as shown in Equation (3).

LWIoU =
α ∗ (A t\Ap

)
+β ∗ (A p\At)

At ∪ Ap
(3)

The imbalance of weights α and β will change the optimization direction of the model,
improve the independence rate, and lead to a decrease in IoU metric. Precision and Recall
can reflect the above influence. These two evaluation indicators can be represented with
Equation (4), and the meaning of the symbols is the same as Equation (1).

Precision =
At ∩ Ap

Ap

Recall =
At ∩ Ap

At

(4)

The IoU can be regarded as a combination of Precision and Recall. Theoretically, the
larger the weight α and the smaller the weight β in Equation (3), the higher the Precision
of the model and the lower the probability of adhesion; however, the Recall will decrease.
Therefore, there must be an optimal combination of α and β that can balance the indepen-
dence of the droplets and the accuracy of the segmentation area to achieve the optimal
segmentation effect.

The sum of a total of six indicators including IoU, Precision, and Recall, which charac-
terize the accuracy of the region, and Tr, Ir, and Cr, which characterize the independence
of the droplets, represented by the symbol M, was used as the criterion for judging the
quality of the model segmentation effect to estimate the optimal weight coefficients α and
β, as shown in Equation (5).

M = IoU + Precision + Recall + Tr + Ir + Cr (5)

2.5. Multi-Adhesion Concave Segmentation (MACS) Algorithm

The output of the DSRSS model does not contain individual information, and addi-
tional algorithms are required to extract individual droplets and calculate their parameters.
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Although the droplet independence rate in the DSRSS model’s output is already very high
after WIoU loss function optimization, it cannot reach 100%, especially when processing ex-
tremely low-quality images. Therefore, when extracting individual droplets, it is necessary
to further segment the adherent droplets.

Contours were used to represent individual droplets, and the roundness of the contour
is used to determine whether there is adhesion in the extracted droplet patches. Contours
with a roundness greater than or equal to the threshold are judged as independent droplets,
otherwise they are judged as adherent droplets. The formula for calculating roundness is
shown in Equation (6).

R =
4πA

L2 , 0 < R < 1 (6)

where A denotes the area of the segmented patch, L denotes the perimeter of the segmented
patch, and R denotes the roundness of the segmented patch.

The algorithm for separating adherent droplets is the concave point method, which
has many implementation methods. The most critical step in the concave point method is
to locate the concave points in the image. In the high-resolution segmentation mask output
by the DSRSS model, the adhesion point of the droplet has a sharp contact angle, so the
concave point of the adhesion point can be regarded as a corner point and located through
the contour corner detection algorithm. Another key step in the concave segmentation
method is the pairwise matching of concave points. Since the deposition bottom surfaces
of droplets are all approximately elliptical, the slope of a straight line passing through a
pair of concave points must be between the slope of the straight line connecting the deepest
point of the concave point and its two adjacent points before and after it. The distance
between two concave points of the same adhesion is shorter than the distance from them to
other concave points that satisfy the slope condition. Based on the above principles, the
pseudo code of Concave Segmentation is shown in Algorithm 1.

Figure 10 shows the segmentation process for a complex adhesion cluster. After
segmentation, the contour list of individual droplets can be directly obtained using the
findContours and contourArea functions in OpenCV. Then, the deposition area of individ-
ual droplets in the contour list can be calculated and converted into volume. Further
calculations can produce complex droplet measurement indicators such as VMD and NMD.
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Algorithm 1 Concave Segmentation algorithm

Input: Droplet adhesion patch image Iadherent
Output: Droplet individual patch image Iindividual
# Search for contours in droplet patch images
Lcontours ← findContours(Iadherent)
# Obtain corner point list using contour corner detection
Lcorners ← detectCorners (Lcontours)
# Locate the corner point and its two adjacent points before and after in the outline, and obtain
3 coordinate arrays.
Lcorner_locs, Lprev_locs, Lnext_locs ← getLocations (Lcorners)
# Concave point pairing.
completed_pnts← [] # Record the paired droplets
Iindividual ← Iadherent
for corner_loc_1, prev_loc_1, next_loc_1 ∈ (Lcorner_locs, Lprev_locs, Lnext_locs) do

if corner_loc_1 ∈ completed_pnts then
continue

min_dist_corner_loc = null
min_distance←∞
for corner_loc_2, prev_loc_2, next_loc_2 ∈ (Lcorner_locs, Lprev_locs, Lnext_locs) do

if corner_loc_2 ∈ completed_pnts then
continue

dintance← getDistance(corner_loc_1, corner_loc_2)
if dintance < min_distance then

if line_through_triangle(corner_loc_1, prev_loc_1, next_loc_1,
corner_loc_2, prev_loc_2, next_loc_2) then

min_dist_corner_loc← corner_loc_2
min_distance← dintance

if min_dist_corner_loc is not null then
completed_pnts← completed_pnts ∪ corner_loc_1
completed_pnts← completed_pnts ∪ min_dist_corner_loc
line(Iindividual, corner_loc_1, corner_loc_2)

return Iindividual

2.6. Droplet Segmentation Area Correction and Deposition Parameter Acquisition

Calculating VMD and NMD requires traversing individual droplets, so identifying
individual droplets is the most basic prerequisite for calculating these two indicators. When
the independence rate is regarded as the most important metric in the model, the accuracy
of the droplet segmentation area may not be in the optimal state, resulting in statistical
deviations in VMD, NMD, and global coverage. Therefore, it is necessary to correct the
inaccurate segmentation area results.

The semantic segmentation model is equivalent to a function that implements mapping
the image to the segmentation mask. It contains the rules for segmenting droplets with the
model, which will be reflected in the segmentation results of the model. Finding this rule
can correct the segmentation area of individual droplets, and improve the effectiveness of
spray evaluation indicators such as VMD, NMD, and global coverage to a certain extent.

In the practical application of the method, the predicted area of the droplets is the only
known quantity. If there is a mapping relationship between the predicted area Apred of the
droplet and the real area Atrue of the droplet, deviation correction can be directly imple-
mented through this relationship. According to experimental statistics, this relationship is
not a fixed ratio, but changes with the size of the droplet. The smaller the size of the droplet,

the greater the ratio γ=
Apred

Atrue
. When the droplet reaches a certain level, γ approaches a

certain value. In addition, if the relationship between Apred and Atrue is directly fitted, the
deviation in the area of small droplets will be ignored. The range of the area ratio γ’s value
is [0, 1], which is more accurate for small droplets when fitting the relationship and is more
suitable as the dependent variable in the relationship function. If γ= fγ(Apred) is used to
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represent the mapping function from the predicted area of the droplet to the area ratio γ,
the deviation value can be expressed by Equation (7).

δ =
Apred

fγ

(
Apred

) − Apred (7)

The individual area of droplets corrected by Formula (6) is used to calculate droplet
deposition parameters, including droplet density (Dt), droplet coverage (Dr), VMD, NMD,
etc., which can be represented by Equations (8)–(11).

Dt =
n

Simg
(8)

where n denotes the number of droplets in the sample, and Simg denotes the total area of
the spray deposition image.

Dr =
∑n

i=1

(
Ai

fγ(Ai)

)
Simg

(9)

where n denotes the number of droplets in the sample, Ai denotes the predicted area of the
i-th droplet, fγ denotes the correction formula from the predicted area to the real area, and
Simg denotes the total area of the spray deposition image.

VMD =
3

√
6 ∗ fvd(Lads)

π
(10)

where, Lads denotes an array of area values sorted from small to large for all droplets in
a single image sample, while fvd denotes a function that includes logical judgment. It
converts the input ordered area array into a volume sequence and calculates the volume of
the droplet when the cumulative values of the elements in the volume sequence from small
to large reach 50% of the total volume sequence.

NMD =
3

√
6 ∗ fnd(Lads)

π
(11)

where Lads denotes the area values of all droplets in a single image sample sorted from
small to large, while fnd denotes the volume calculated from the median element of the
area array.

3. Results and Discussion
3.1. Results
3.1.1. Semantic Segmentation Result of DSRSS Model

In order to determine the optimal α and β in the WIoU loss function, the model was
trained on the DDID under different α and β values. The convergence curve of the model
is shown in Figure 11. The performance indicators that the model can achieve when
training for 100 epochs are shown in Figure 12. Each subgraph represents the optimal
values that the model can achieve for each metric when training for 100 epochs under a
pair of parameters α and β. The more balanced these optimal values are, the larger the
area of the corresponding hexagonal shape enclosed by the points, indicating the better
performance of the model. Figure 12 shows that the overall performance of the model
reaches its optimum when α and β are 0.775 and 0.225, respectively. At this time, the IoU,
recognition rate Tr, independence rate Ir, and correct rate Cr of the model are relatively
high, and Precision and Recall are relatively balanced.
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After determining the optimal α and β, the DSRSS model was trained more fully. The
IoU, Precision, Recall, Tr, Ir, and Cr change curves of the model are shown in Figure 13.
It shows that the convergence of IoU, Precision, and Recall is very smooth, while the
convergence of Tr, Ir, and Cr is more turbulent, and the independence rate oscillates far
more than other indicators. Therefore, the independence rate is used as the only indicator
of the optimal weight value. In 1000 epochs of training, the independence rate of the model
on the verification set reached 0.998, the recognition rate and correct rate both reached
close to 1.0, and the IoU reached 0.973. Figure 14 shows the model’s segmentation effect
on the DDID verification sample. The comparison of the sample image with the colored
segmentation mask shows that the segmentation of the edge of droplet is accurate, but the
droplet independence needs to be improved.
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3.1.2. Adhesion Segmentation Result of MACS Algorithm

In order to verify the effect of the MACS algorithm, samples with poor quality, dense
droplets, and severe adhesion were selected from the validation dataset set for testing. An
example of the selected image sample is shown in Figure 15a. The results show that the
auxiliary segmentation algorithm can further improve the independence rate of droplet
segmentation. The average independence rate of 22 samples increased by 15.7%, as shown
in Figure 15b.
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3.1.3. Result of Droplet Segmentation Area Correction

The droplet areas predicted by the model for the validation dataset and the ratio of
these predicted areas to the corresponding labeled areas were counted. After removing
incorrectly segmented droplets and adherent droplets, a total of 98,795 pairs of original data
were obtained. The distribution of the predicted droplets was divided into 256 intervals,
and all data in each interval were averaged, resulting in a total of 256 pairs of mean sample
data. Using 256 pairs of mean data, the conversion formula Equation (12) was fitted. The
R2 value of Equation (12) and 256 mean sample points reached 99.07. The distribution of
original sample pairs, the distribution of mean sample pairs, and the graph of Equation (12)
are shown in Figure 16.

γ =
1(

1 + 24.0717268−Apred
0.133783199)73.9259088 − 0.0196201541 (12)
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In order to verify the effect of Equation (12) in global indicator statistics, the validated
samples were selected to calculate three coverage rates. They are the ground truth coverage,
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the coverage directly calculated from the model output, and the model’s output coverage
corrected by Equation (12). Each group of data were arranged from large to small according
to the ground truth coverage, and the line chart drawn is shown in Figure 17. The correction
function reduces the coverage error from 4.67% to 1.12%, showing that the correction
function can improve the global statistical indicators.
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3.1.4. Result of Real Sample Processing

Finally, we input the real droplet deposition images captured by the device into
the model, and the segmentation mask obtained after inference is shown in Figure 18.
Perceptually, the segmentation performance of the model is significantly better than that
of the adaptive threshold segmentation (ATS) method. The vast majority of droplets are
effectively segmented, including those that are adhered during threshold segmentation,
and the obtained edges are smoother than threshold segmentation, filling almost all droplet
bright spots. The above advantages are also reflected in the spray parameters; Table 1
shows the spray parameters calculated based on the segmentation masks output by the two
methods, including the coverage, droplet number, droplet density, and VMD. Comparing
the segmentation boundaries of droplets in the two segmentation masks in Figure 18, the
coverage obtained by our method is closer to the real situation, and due to the higher
droplet independency rate, our method outputs a higher droplet density and a smaller
value VMD value.
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Table 1. Comparison of spray parameters between DSRSS and ATS methods.

Segmentation Method Coverage Rate Number of Droplets Droplet Density (n/mm2) VMD (µm)

ATS 0.220 835 202 98.1
Our method 0.176 1044 252 76.8

3.1.5. Ablation Experiment of the Structure of the DSRSS Model

To verify the necessity of each component in the model, ablation experiments were per-
formed. Figure 19 shows the performance of the model under four conditions: unchanged,
downsampling reduced by one level, halved width, and cross layer connection removed.
CLearly, the default structure model has the better performance.
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3.2. Discussion
3.2.1. Rationality of Semantic Segmentation

From the perspective of the form of the task, target detection, instance segmentation,
and semantic segmentation based on deep learning can all be applied to the segmenta-
tion and statistics of droplet images, replacing some processes in spray measurement
work, as shown in Figure 20. The colored parts in the figure represent the work that the
corresponding method can accomplish.
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Among the above three types of methods, the instance segmentation algorithm can
directly output the mask of individual droplets and realize the direct calculation of the
deposition area, which seems to be the most reasonable choice. However, instance segmen-
tation of both small objects and dense objects is extremely challenging. Perhaps because
the droplets of high-quality spray are too small and too dense, in our tests, several instance
segmentation models failed to show an acceptable segmentation accuracy, as shown in
Figure 21.
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Figure 21. Performance of four instance segmentation methods in droplet segmentation. (a) YOLACT [22].
(b) YOLOv8 [23]. (c) FastSAM [24]. (d) SAM [25].

Since the segmentation task only needs to segment a single type of object, all other
areas in the image except the droplets are considered as background. First, we performed
semantic segmentation on the image, obtained the segmentation mask, and then segmented
the individual droplets through an additional process, which is equivalent to using the
instance segmentation task on a single type of object. Moreover, DSRSS already has a
certain ability to focus on individual droplets. If the image is enlarged so that the size of
the droplets is far beyond the reasonable range, and then input into the model, the result
shown in Figure 22 is obtained. This shows that the display model is able to “consciously”
reconstruct the shape and contour of the droplet from the blurred image based on the prior
knowledge it learned.

Agriculture 2024, 14, x FOR PEER REVIEW 21 of 24 
 

 

 
Figure 20. The role of three types of depth learning methods in spray measurement. 

Among the above three types of methods, the instance segmentation algorithm can 
directly output the mask of individual droplets and realize the direct calculation of the 
deposition area, which seems to be the most reasonable choice. However, instance seg-
mentation of both small objects and dense objects is extremely challenging. Perhaps be-
cause the droplets of high-quality spray are too small and too dense, in our tests, several 
instance segmentation models failed to show an acceptable segmentation accuracy, as 
shown in Figure 21. 

    
(a) (b) (c) (d) 

Figure 21. Performance of four instance segmentation methods in droplet segmentation. (a) YO-
LACT [22]. (b) YOLOv8 [23]. (c) FastSAM [24]. (d) SAM [25]. 

Since the segmentation task only needs to segment a single type of object, all other 
areas in the image except the droplets are considered as background. First, we performed 
semantic segmentation on the image, obtained the segmentation mask, and then seg-
mented the individual droplets through an additional process, which is equivalent to us-
ing the instance segmentation task on a single type of object. Moreover, DSRSS already 
has a certain ability to focus on individual droplets. If the image is enlarged so that the 
size of the droplets is far beyond the reasonable range, and then input into the model, the 
result shown in Figure 22 is obtained. This shows that the display model is able to “con-
sciously” reconstruct the shape and contour of the droplet from the blurred image based 
on the prior knowledge it learned. 

 
Figure 22. The segmentation effect of the model when the droplet size is too large. Figure 22. The segmentation effect of the model when the droplet size is too large.

3.2.2. Computing Power Requirements for the DSRSS Model

The number of parameters in the DSRSS model is less than 1 M. Since it is a fully
convolutional network, it can accept inputs of different sizes. Since the encoder part
of the model contains three times of downsampling, the length and width of the input
image are required to be an integral multiple of eight. The computational complexity and
RAM requirements of the model are positively correlated with the input size. Tests were
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conducted on several computer hardware and the RAM capacity consumed by inferring
single images of different sizes was recorded, the amount of computation, and the inference
speed on different computing hardware. The results are shown in Table 2. Since the spray
quality evaluation work does not require absolute real-time performance, its inference
speed is tolerable on typical devices.

Table 2. Performance of models on different hardware platforms under different input sizes.

Input Size
(Pixels)

RAM
Consumption

(GiB)

Calculation
Quantity

(GFLOPS)

Inference Speed (FPS)

Nvidia Tesla
P40

Nvidia GTX
1660Ti Max-Q

Intel Core
i7-9750H

Intel Xeon
E3-1245V5

64 × 64 0.4 0.99 51.3 46.1 28.6 24.3
128 × 128 0.5 3.95 49.8 40.4 12.5 11.5
256 × 256 0.7 15.8 42.3 37.2 4.16 3.86
384 × 384 1.0 35.6 34.9 26.0 2.03 1.88
512 × 512 1.3 63.2 24.8 16.3 1.12 1.08

4. Conclusions and Future Work

The paper provides a lightweight end-to-end DSRSS model and a MACS algorithm to
improve the accuracy of semantic segmentation in droplet deposition images and achieve
precise and efficient multi-parameter measurement of droplet deposition with low-quality
droplet deposition images for a scalable low-cost spraying measurement system for use
in field scenarios. Based on DSRSS, MACS, and droplet area correction, a complete image
processing procedure for droplet deposition images in a low-cost spray measurement
system has been established. The main conclusions are as follows.

(1) When the two weight parameters α and β in WIoU are 0.775 and 0.225, respectively,
the rate of independent droplet segmentation when using the DSRSS on the DDID
reaches 0.998 and the IoU reaches 0.973.

(2) The MACS algorithm can reduce the adhesion rate of droplet deposition images with
a coverage exceeding 30% by 15.7%, and the area correction function can reduce the
area segmentation error in the DSRSS by 3.54%.

(3) The quantity of parameters in the DSRSS is less than 1 M, and it can reduce RAM re-
quirements through image input blocking, thus being able run on embedded platforms.

(4) Based on the exact test metrics obtained from the test dataset and the visualization of
segmentation in real droplet deposition images, the comprehensive performance of
this method is much better than that of the adaptive threshold segmentation method,
as its droplet boundary segmentation is more accurate and the accuracy of droplet
area estimation is higher.

This work can be used as a solution for high-speed in situ spray measurement, and
provides a reference for the segmentation of low-quality dense object images. The complex-
ity of the in situ measurement environment, device aging, and wear, especially the aging of
the light source and the wear of the droplet collector, as well as the residue on the droplet
collector after long-term use, will all affect the actual effectiveness of the method. As the
next step, we plan to further improve the robustness of the method and make it suitable for
more complex application scenarios.
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