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Abstract: Typhoons, which are a common natural disaster in Korea, have seen a rapid increase in
annual economic losses over the past decade. The objective of this study was to utilize historical
crop insurance records to predict fruit drop rates caused by typhoons from 2016 to 2021. A total of
1848 datasets for the fruit drop rate were generated based on the impact of 24 typhoons on 77 cities
with typhoon damage histories. Three different types of measures—the average value, the maximum
or minimum value, and the value at a specific point during the typhoon—were applied to four
meteorological factors, yielding a total of twelve variables used as model inputs. The predictive
performance of the proposed models was compared using five evaluation metrics, and SHAP analysis
was employed to assess the contribution of predictor variables to the model output. The most
significant variable in explaining the vulnerability to typhoons was found to be the maximum wind
speed. The categorical boosting model outperformed the other models in all evaluation metrics,
except for the mean absolute error. The proposed model will assist in estimating the potential crop
loss caused by typhoons, thereby aiding in the establishment of mitigation strategies for the main
crop-producing areas.

Keywords: crop insurance data; fruit drop rate; machine learning; typhoon

1. Introduction

According to the United Nations (UN) global assessment report on natural disas-
ters, both the extent of economic losses caused by natural disasters and the number of
affected people are rapidly increasing [1]. The World Meteorological Organization (WMO)
reported that a total of 11,072 natural disasters occurred globally from 1970 to 2019, of
which 711 occurred in the 1970s, compared to 3536 in the 2000s. In particular, typhoons
have caused significant damage, affecting 39% of individuals and contributing to 54% of
property damage.

Thermal energy from the sun is the primary cause of changes in Earth’s weather, and
because the Earth is spherical, an imbalance in thermal energy exists between low and high
latitudes. Convective clouds form in the sea near the equator, where the sun’s elevation
angle is high, resulting in the accumulation of a significant amount of energy. These clouds
gather and develop into a massive low-pressure system, ultimately evolving into a typhoon.
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The typhoon receives evaporated vapor from the sea and maintains its strength as it moves
to high latitudes. Among tropical cyclones, the WMO classifies a typhoon as having a
maximum wind speed of 33 m/s or more near the center, a strong tropical storm (STS) with
25 to 32 m/s, and a tropical storm (TS) with 17 to 24 m/s. However, in Korea, any tropical
cyclone with a maximum wind speed of 17 m/s or more is called a typhoon [2].

The intensity of typhoons has increased in recent decades. According to the National
Typhoon Center, “very strong” typhoons with a maximum wind speed of over 44 m/s
accounted for half of the typhoons that hit South Korea over the 10-year period from 2009
to 2018. In addition, the annual number of “super strong” typhoons, with a maximum
wind speed of 54 m/s or more, has increased from less than two in the 1990s and early
2000s to three or four, and even as many as seven in recent years. Typhoons mainly affect
Korea between July and October, causing damages such as flooding, landslides, damage to
agricultural facilities, reduced crop yields, and the deterioration of farm quality. Typhoon
Rusa, which occurred in August 2002, resulted in the highest daily precipitation recorded in
Gangneung-si, reaching 870.5 mm. This extreme weather event caused extensive damage,
estimated at approximately 5.2 trillion won (KRW). In addition, Typhoon Maemi in Septem-
ber 2003 caused massive property damage, estimated at approximately 4.2 trillion won
(KRW). The summer of 2003 had the worst harvest on record due to heavy rain, frequent
abnormally low temperatures, and typhoon damage.

Research related to the impacts of typhoons on agriculture is crucial because typhoons
not only affect the supply and demand for crops, but also impact the incomes of farmers.
The authors of [3] attempted to estimate the economic losses caused by typhoons that
occurred in Zhejiang Province, China from 1971 to 2008 by analyzing the occurrence of
typhoons and environmental factors. An artificial neural network, an algorithm inspired
by neural networks found in biology, was utilized to account for the intricate nonlinear
relationship between evaluation factors and typhoon damage. A self-organizing radial
basis neural network model was used in study [4] to predict the economic losses in the
rice industry in Taiwan caused by typhoons. Typhoon characteristics and meteorological
data were utilized to select the optimal network, resulting in prediction results that closely
matched the actual losses. Another study established a loss assessment model for crop
losses as well as the number of deaths, disappearances, and destroyed houses due to
typhoons in Taiwan from 1965 to 2004 [5]. The model accurately estimates the expected
losses by incorporating factors such as the maximum daily rainfall, the maximum central
wind speed, the lowest central pressure, the radius of class-seven winds, and the typhoon-
affected period. The impact of typhoons on agricultural losses in Taiwan from 2006 to
2019 has also been investigated, including the role of flood protection infrastructure [6].
The occurrence of natural disasters was found to have a high correlation with agricultural
production. Extreme rainfall was found to cause the greatest agricultural damage, whereas
there was a spatial difference in the agricultural losses caused by typhoons across var-
ious regions. The study [7] analyzed the impact of typhoons on rice loss in Philippine
provinces. The ratio of the damaged area to the total area was used to determine rice loss.
Additionally, a total of 14 geographical and typhoon characteristics were considered as
explanatory variables.

Providing predictive results before the typhoon arrives is important as it allows for
the establishment of preventive measures in response to the typhoon. In addition, due to
the intensity, path, and regional characteristics of typhoons, detailed research is required on
the degree of damage, as these factors can lead to variations in damage between adjacent
areas. However, collecting detailed data on typhoon damage is difficult from both human
and economic perspectives. Since 2001, crop insurance for apples and pears has been
implemented in South Korea. This serves as a highly reliable source of data because it
confirms the extent of damage for each farm, and compensation is only provided after a fair
and objective investigation and evaluation of the damages. However, apart from a few prior
studies, limited research has been undertaken on the fruit drop rate using crop insurance,
such as the ones conducted by the authors of the present study [8,9]. The characteristics of
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typhoons (e.g., the path, central atmospheric pressure, maximum wind speed, etc.) were
used in [8] to predict the fruit drop rate of astringent persimmon caused by typhoons
from 2016 to 2019. AutoML in the H2O library was utilized for this prediction, and the
root-mean-square error (RMSE) and mean absolute error (MAE) were used to compare
the predictive performance of multiple models. Extreme gradient boosting (XGBoost) was
found to produce the best prediction performance of these models. The drop rate of pears
caused by typhoons from 2016 to 2021 was studied in [9]. The study compared the distance
from the center of a typhoon to the affected area with the strong wind radius in order
to determine the time of impact during the typhoon. Additionally, the study presented
methods for selecting representative values for various typhoon characteristics.

Despite previous research using crop insurance data to determine the fruit drop rate
caused by typhoons; determining the susceptibility of the main crop-producing areas based
solely on typhoon attributes is limited because the degree of their impact varies greatly
between regions. To overcome this limitation, the present study analyzed the fruit drop
rate due to typhoons according to region by utilizing meteorological information from
weather stations installed across the country. When utilizing meteorological information,
determining the most suitable representative measure is crucial in explaining the fruit drop
rate. Therefore, three representative measures were selected for testing meteorological data:
the average value; the maximum or minimum value; and the value at a specific time point
during the progression of the typhoon.

The PyCaret library was used to compare different machine learning models for
predicting fruit drop rates by region. It is possible to compare several models to identify
meteorological factors that have a strong impact on the fruit drop rate and to determine the
expected fruit drop rate based on available meteorological information across the country.

2. Materials and Methods
2.1. Materials
2.1.1. Crop Insurance Data

Actual data on the fruit drop rate were calculated using historical damage records for
crop insurance provided by Nonghyup Property and Casualty Insurance Co., Ltd. (Seoul,
Republic of Korea), in cooperation with the Ministry of Agriculture, Food and Rural Affairs
in Korea. Insurance data from apple orchards were utilized due to apples accounting for
the largest cultivation area among fruit crops in Korea, and the fact that their harvest season
coincides with the period when typhoons most commonly make landfall on the Korean
Peninsula. Between 2016 and 2021, a total of 89,007 cases related to typhoon damage
were examined across different regions, considering historical damage records. The crop
insurance records list the types of fruit, the date of the damage, the total number of dropped
fruits, and the total number of set fruits. The drop rate of apples is calculated by dividing
the total number of dropped apples by the total number of set apples in the area.

2.1.2. Typhoon Data

Among a total of 155 typhoons that occurred from 2016 to 2021, information on the
path (i.e., latitude and longitude) and the radii of strong winds for 24 typhoons that affected
the Korean Peninsula (referred to hereafter as impact typhoons) were collected from the
Korea Meteorological Administration (KMA) database. Additionally, based on the Disaster
Annual Report produced by the Korean Ministry of the Interior and Safety, attribute values
for the typhoons were collected only for the period during which typhoon damage occurred
on land rather than the period from occurrence to extinction of the typhoon (Table A1).

2.1.3. Meteorological Data

The KMA operates the Automated Synoptic Observing System (ASOS) and Automatic
Weather Station (AWS) to provide meteorological information. The ASOS detects local mete-
orological phenomena through automatic and visual observations and is currently installed
at 103 meteorological offices across the country. The AWS is installed at 510 observatories
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nationwide, encompassing major observation points and mountainous areas, where basic
atmospheric variables are automatically measured.

After typhoon landfall, vulnerability to typhoons, which varies significantly by region,
may be better explained by utilizing meteorological data from specific areas affected by
typhoons at a specific time point rather than relying on the overall attribute values of
typhoons. Meteorological data were collected from the ASOS and AWS, which are close
to the observed typhoon’s location at a specific time point, in order to provide a more
accurate representation of the meteorological conditions in those areas. Typhoons are
known to have a close relationship with both wind speed and precipitation [10]. The
strong winds can cause water stress due to forced transpiration, stripping, and injuring
plant organs. Continuous flooding caused by excessive precipitation can lead to decreased
photosynthesis and respiration [11]. Atmospheric pressure and air temperature were also
considered. The study [12] illustrates the inverse relationship between surface pressure
and sustained wind speed for numerous tropical cyclones. The average temperature and
maximum temperature exhibited a negative correlation with typhoon damage and flooded
area [13]. Additionally, an increase in temperature reduces the amount of moisture present
in the atmosphere, leading to a decrease in relative humidity [14].

2.2. Methods
2.2.1. Model Selection and Description

This study used PyCaret for regression and prediction analysis. PyCaret is an efficient
end-to-end machine learning and model management tool with a quick learning time.
The low-code library is easy to use for running models and is highly productive, thanks
to the inclusion of several frameworks [15]. PyCaret can run a variety of models for
classification, regression, clustering, and natural language processing. By optimizing
evaluation scores through hyperparameter tuning and ensemble techniques, it can also
enhance the performance of these models [16]. It also has the advantage of being able to
run several models at the same time and compare their performances in a table.

Random forest (RF), extra tree (ET), gradient boosting machine (GBM), light gradient
boosting machine (LightGBM), extreme gradient boosting (XGBoost), adaptive boosting
(AdaBoost), and categorical boosting (CatBoost) were selected as representative machine
learning models, and their results were compared using the mean absolute error (MAE),
mean squared error (MSE), root-mean-squared error (RMSE), root-mean-squared log error
(RMSLE), and coefficient of determination (R2) as the evaluation metrics.

Random Forest (RF)

RF is a non-parametric ensemble model that generates individual tree predictors by
creating randomly independent bootstrap samples from the entire training dataset [17,18].
At each node of all trees, the best split is adopted from a subset of randomly selected
input variables. Random selection of input variables reduces the correlation between
unpruned trees and suppresses bias [19]. The prediction of each tree being independent,
along with these characteristics, limits the error when generalizing to a large number of
trees, preventing over-fitting [20]. The final predicted value of the RF model is determined
by taking the average of the predicted values from k individual trees. This approach enables
the generation of smooth functions that help reduce sample variance [21].

Extra Tree (ET)

ET, based on RF, is a tree-based model. RF divides nodes through an optimization
process, while ET trains predictors after a node split using randomly selected features with
all cutoffs. The bias in ET can be reduced by learning using all of the data, unlike in RF
where bootstrap samples are used [22]. One advantage of random splitting is its low risk of
over-fitting and reduced variance.
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Adaptive Boosting (AdaBoost)

AdaBoost is a sequential ensemble model that combines several weak learners ran-
domly to create a powerful learner [23]. In AdaBoost, weights indicate the relative impor-
tance of an instance and are used to calculate errors for the data. False predictions are highly
weighted and the weights are updated with the corrected errors and predictor reliability,
which is recalculated after each iteration [24]. The greater the loss, the greater the weight,
which in turn increases the probability of selecting the corresponding instance to train
subsequent primary learners. By repeating this process, the final output provides ensemble
predictions by calculating the weighted median values for the individual models [25].

Gradient Boosting Machine (GBM)

GBM is a method that sequentially adds and combines new models to reduce residuals
and improve the accuracy of the resulting estimates. The negative slope of the loss function
associated with the entire ensemble is consistent with the goal of reducing the loss function,
thus ensuring a high correlation with a new learner:

−gm(xi) = −
[

∂L(yi, F(xi))

∂F(xi)

]
F(x)=Fm−1(x)

If the model is created sequentially through fitting the gradient to the residuals, the
residuals will gradually decrease, ultimately leading to the development of a predictive
model that effectively explains the training set [26]. In regression, optimization is mainly
performed using the mean squared error as the loss function [27]. However, GBM can
experience over-fitting where the use of too many iterations complicates the model and
causes it to closely fit the training data, ultimately increasing the expected loss.

Extreme Gradient Boosting (XGBoost)

XGBoost is a technique developed from the existing GBM model that not only offers
high predictive performance, but also demonstrates high learning and search speeds,
thanks to its parallel and distributed computing process [28]. The loss function regulates
the prediction performance based on the error, while the normalization function reduces
complexity and over-fitting [29].

Light Gradient Boosting Machine (LightGBM)

LightGBM is a model that utilizes gradient-based one-side sampling (GOSS) and
exclusive feature bundling (EFB) to reduce computational complexity and the time required
to obtain information from all possible split points for high-dimensional data [30]. GOSS
reduces the sample size by retaining data instances with large absolute slope values and
randomly removing data instances with small slopes. This approach allows for obtaining
more information compared to simply extracting data without considering the slope. EFB
groups mutually exclusive variables together to reduce the number of variables. The
feature space of high-dimensional data is very sparse, and the features within that space
are mutually exclusive, which accelerates the training process without reducing accuracy.

LightGBM uses a leafwise partitioning scheme to split nodes, effectively creating a
deep asymmetric tree. It continuously segments nodes with the maximum loss and the
highest information gain. Despite its ability to reduce computational costs [31], it should
be noted that LightGBM can still lead to over-fitting.

Categorical Boosting (CatBoost)

GBM is susceptible to over-fitting due to biased gradient estimates, while the pre-
diction model obtained after several boosting stages exhibits a target leakage problem
caused by shifting not only the learning sample, but also the test sample. CatBoost was
designed to solve these problems [32]. Mj, a model employed in CatBoost, learns through
examples with an order of up to the j-th random permutation with models M1, · · · , Mn.
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To calculate the residuals from the j-th sample, the unbiased gradient of Xj is estimated
using the trained model Mj−1 without gradient estimation for the j-th sample. Then, the
residuals are calculated from the predictions. The ordered boosting method prevents target
leakage during sequential learning of the trees.

rt(xj, yj
)
= yj −Mt−1

j−1
(
xj
)

Random sampling of permutations during the learning process, for use in multi-model
training, helps prevent over-fitting and reduces variance [33].

2.2.2. Evaluation Metrics

The use of a single evaluation metric is generally limited in predicting learning model
errors as it emphasizes only specific aspects of the error characteristics [34]. Thus, in the
present study, the MAE, MSE, RMSE, RMSLE, and R2 were calculated to evaluate the
performance of the tested models.

Mean Absolute Error (MAE)

The MAE is the average of the absolute value of the error, which is the difference
between the actual value and the predicted value. The predicted value and the unit of error
are the same, and all errors are equally weighted, making them robust even in the presence
of outliers. If the importance of outliers is not high and a close-fitting model is targeted, it
is an appropriate indicator.

MAE =
1
N

N

∑
i=1
|yi − ŷi|

Mean Squared Error (MSE)

Unlike the MAE, the larger the error, the more weight it is given, so this metric is
sensitive to outliers. Avoiding under-predictions is important when dealing with outliers.

MSE =
1
N

N

∑
i=1

(ŷi − yi)
2

Root-Mean-Squared Error (RMSE)

The RMSE is less sensitive to outliers than MAE and more sensitive than MSE when
applying routes. As with the MAE, the predicted value and the unit for the error are the
same. The MAE, MSE, and RMSE depend on the scale, so if the size of the error is the same
for each model, the error ratio may not be the same. The RMSLE is the most useful metric
when the relative ratio of the error is important.

RMSE =
√

MSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2

Root-Mean-Squared Log Error (RMSLE)

The RMSLE measures the relative error between the actual value and the predicted
value using a ratio. It is more robust to outliers than the RMSE because it assigns a log
function to the actual and predicted values. The RMSLE imposes a higher penalty by
using the logarithm function when the predicted value is lower than the actual value.
Therefore, the model tends toward over-prediction because it imposes a greater penalty for
underestimation.

RMSLE =

√√√√ 1
N

N

∑
i=1

(log(yi + 1)− log(ŷi + 1))2
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The MAE, MSE, RMSE, and RMSLE commonly range between 0 and +∞, where a
higher value signifies worse performance of the model, with 0 representing a perfect fit.
However, the use of these metrics, each of which returns a single value to represent model
performance, does not provide sufficient information on the regression performance in
relation to the distribution of the actual values.

Coefficient of Determination (R2)

In contrast to the other metrics, R2 has a higher score when the predicted values are
closer to the actual values [35]. R2 is calculated as a function of the total variation of the
actual values, considering the regression line and the mean. It indicates how close the
values predicted by the model are to the actual values; scores closer to 1 represent a better
performance.

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2

2.2.3. Shapley Additive Explanations (SHAP)

Understanding the influential factors and effects involved is crucial for accurately
interpreting the predictive outcomes of models. Analyzing the significance of individual
features offers insights into potential enhancements of the model and aids in understand-
ing the modeling process, ultimately improving the reliability of the results. However,
interpreting complex ensemble and machine learning models is usually challenging.

To address this issue, SHAP has been designed to assign importance values to specific
predictions for each feature. Additive feature attributes are utilized to approximate an
interpretable and simple explanatory model in order to accurately determine SHAP values.
The explanatory model is a linear function of the binary variable z′ ∈ {0, 1}M, where M
represents the number of simplified input features:

g
(
z′
)
= ϕ0 +

M

∑
i=1

ϕiz′i.

The expansion model based on SHAP values is the only model that satisfies the three
properties of additive feature attributes: local accuracy, missingness, and consistency [36]:

ϕi( f , x) = ∑
z′⊆x′

|z′|!(M− |z′| − 1)!
M!

[
fx
(
z′
)
− fx

(
z′\i

)]
,

fx(z′) = f (hx(z′)) = E[ f (z)|zS] ≈ f
([

zS, E
[
zS
]])

,

where |z′| is the number of non-zero entries in z′, and z′\i denotes that z′i = 0. The
contribution ϕi of each feature to the model output in SHAP is assigned according to their
marginal contribution [37,38]. Therefore, the SHAP value is directly proportional to the
importance of the model’s variables, allowing for the visualization and weighting of the
most significant variables.

3. Analysis Framework

Figure 1 displays an overview of the steps in the analysis framework.
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3.1. Transformation of Historical Damage Records from the Orchard to the City Level

Meteorological information was utilized in the present study to determine the impact
of typhoons in various regions. Because meteorological observations from weather stations
were only available at the city level, crop insurance data were also combined at the city
level, even though historical insurance claim records were based on individual orchards.

The fruit drop rate was calculated by dividing the total number of dropped apples by
the total number of apples set. Data were collected from 77 cities that had apple orchards
with historical damage records for the period of 2016–2021, resulting in a total of 1848
datasets across the 24 impact typhoons that occurred in Korea during this period. If cities
did not have historical damage records for a particular typhoon, the fruit drop rate would
be set to 0.

3.2. Matching Process between Cities and Weather Stations

The closest meteorological station to the city with historical damage records was deter-
mined to associate the impact of individual typhoons with meteorological data. During the
analysis period, meteorological data from the ASOS and AWS were utilized, and weather
stations with missing values were excluded from the matching process. Four meteorologi-
cal factors related to typhoon (i.e., air temperature, atmospheric pressure, precipitation, and
wind speed) were used as explanatory variables, as mentioned in Section 2.1.3. After per-
forming exploratory data analysis, outliers such as negative values in atmospheric pressure
data were removed. Additionally, linear interpolation was utilized to fill in missing values
for meteorological data during the typhoon period. This was conducted by extrapolating
from the previous and subsequent time points.

3.3. Selection of Representative Measures for the Meteorological Variables

Various meteorological data were available for the period when a typhoon affected the
main apple-producing areas. However, the fruit drop rates were calculated based on the
cumulative damage after the typhoon had passed. Therefore, it was necessary to determine
a representative measure from the available meteorological data that could reliably reflect
the fruit drop damage while constructing a prediction model based on meteorological data
for fruit drop rates.

The representative measure employs three approaches to differentiate the cumulative,
instantaneous, and time point effects of each meteorological variable:

• Approach 1: The use of the average value for the meteorological variables.
• Approach 2: The use of the maximum or minimum value for the meteorological variables.
• Approach 3: The use of the value for the meteorological variables at a specific time

point during the typhoon progression.

The average is commonly used to identify cumulative effects over a period. However,
since it is difficult to show instantaneous effects with the average, an approach using the
maximum or minimum value as a representative measure was introduced. Each meteo-
rological variable was determined in the direction of increasing damage. The maximum
precipitation and wind speed, as well as the minimum air temperature and atmospheric
pressure were utilized. The third approach involved utilizing meteorological data at a
specific time point when the fruit-producing area was affected by the typhoon. This is
because it was believed that among the different time points of the typhoon, there might
be a specific point in time that had the most significant impact on the affected area. For
example, collecting meteorological data at the point when the strong wind radius was the
largest or when the typhoon was the closest to the affected area may more accurately reflect
vulnerability to a typhoon. To calculate the lowest value, subtract the radius of the strong
wind from the distance between the typhoon center and the main producing area:

argmin(Di,t − Ri,t),
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where Di,t and Ri,t represent the distance from the typhoon center to the affected area and
the radius of strong wind, respectively, at the t-th time point of the i-th typhoon.

A total of twelve variables were employed as input variables, including the four
meteorological variables used to explain typhoon damage. These three approaches were
applied for the selection of representative values.

3.4. Model Fitting

The 1848 datasets were randomly divided into training and test sets in a 6:4 ratio, and
the model architecture was trained using 5-fold cross-validation. All analyses were con-
ducted using Python (version 3.8.5) and the PyCaret library (version 2.3.10) [39]. To assess
the impact of predictor variables in the proposed model, we utilized the TreeExplainer
from the SHAP library (version 0.40.0) [40,41].

4. Results
4.1. Exploratory Data Analysis

The mean and standard deviation of the twelve explanatory variables and the one
dependent variable used for model fitting are summarized in Table 1. An analysis of
variance (ANOVA) was conducted to determine whether there were differences in the
average values of the three representative measures used for each of the four meteorological
factors. The ANOVA confirmed that there was a difference in means among the three
approaches (p < 0.001).

Table 1. Summary of all variables 1.

Variables

Selection Criteria for the Representative
Measure p-Value 2

Approach 1 Approach 2 Approach 3

Input

Air temperature 23.61 (3.90) 18.78 (4.70) 23.39 (3.83) <0.001
Atmospheric pressure 994.60 (12.76) 985.57 (14.53) 987.33 (14.83) <0.001

Precipitation 0.64 (0.73) 9.58 (10.32) 2.27 (5.41) <0.001
Wind speed 1.90 (0.79) 5.42 (2.21) 3.19 (2.39) <0.001

Output Fruit drop rate 0.02 (0.06) -
1 Mean (standard deviation). 2 As determined using ANOVA.

4.2. Variable Importance in the Proposed Model Based on SHAP Values

A SHAP analysis was conducted, using 5-fold cross-validation, to assess the contri-
bution of predictor variables to the output of the optimized model. The SHAP values
determine the impact of each variable on the model output by comparing the extent to
which the absence or presence of a particular variable changes the output of the model.

The importance of the maximum wind speed (Approach 2) in terms of the model
output was highlighted via the SHAP analysis, as indicated in Table 2, as it resulted in
the highest mean absolute SHAP value among all models. Although there were minor
differences between the proposed models, the wind speed and atmospheric pressure using
approaches 2 and 3, respectively, were found to be the most important meteorological
variables in explaining fruit drop rates.

4.3. Differences in Selection Criteria for Representative Values for Each Meteorological Factor

A total of twelve input variables were utilized in the models, resulting from the com-
bination of three selection criteria and four meteorological factors. The feature importance
analysis showed that the variables having the greatest impact on the model output differed
in terms of the measure used to represent the data. Therefore, the approach with the
highest SHAP value was investigated to determine the optimal selection criteria for each
meteorological factor (Table 3). For most meteorological factors except wind speed, the
representative values derived from Approach 3 produced the highest SHAP values in the
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proposed models. Approach 2, using the maximum value as the model input, provides
the best explanation for vulnerability to typhoons in terms of wind speed. These results
indicate that the generalization of the fruit drop rate prediction model can be facilitated
by using extreme values or values at a specific time point, rather than average values, as
model inputs.

Table 2. Variable importance based on mean absolute SHAP value.

Model 1
Variable Importance Ranking 2,3

1 2 3 4 5

RF
Wind speed

(A2)
Atmospheric
pressure (A3) Precipitation (A3) Atmospheric

pressure (A2) Wind speed (A3)

0.008 0.006 0.005 0.004 0.004

ET
Wind speed

(A2)
Atmospheric
pressure (A2) Wind speed (A3) Atmospheric

pressure (A3) Precipitation (A3)

0.013 0.005 0.005 0.004 0.004

AdaBoost
Wind speed

(A2)
Atmospheric
pressure (A3)

Precipitation
(A3)

Atmospheric
pressure (A2)

Wind Speed
(A3)

0.019 0.005 0.004 0.003 0.002

GBM
Wind speed

(A2)
Atmospheric
pressure (A3)

Atmospheric
pressure (A2)

Wind speed
(A3)

Atmospheric
pressure (A1)

0.008 0.007 0.007 0.006 0.005

XGBoost
Wind speed

(A2)
Atmospheric
pressure (A3)

Atmospheric
pressure (A1) Wind speed (A3) Atmospheric

pressure (A2)
0.012 0.008 0.006 0.006 0.006

LightGBM
Wind speed

(A2)
Atmospheric
pressure (A3)

Wind speed
(A3)

Atmospheric
pressure (A2)

Atmospheric
pressure (A1)

0.011 0.009 0.007 0.006 0.006

CatBoost
Wind speed

(A2)
Atmospheric
pressure (A2) Wind speed (A3) Atmospheric

pressure (A1)
Atmospheric
pressure (A3)

0.011 0.008 0.004 0.004 0.004
1 RF: Random forest; ET: Extra tree; AdaBoost: Adaptive boosting; GBM: Gradient boosting machine; XGBoost:
Extreme gradient boosting; LightGBM: Light gradient boosting machine; CatBoost: Categorical boosting. 2 A1:
Approach 1—average value; A2: Approach 2—Maximum or minimum value; A3: Approach 3—Meteorological
data at a specific time point. 3 The numbers below the meteorological variables represent the mean absolute SHAP
value (unitless).

Table 3. Approach with the highest SHAP value for each meteorological variable using the pro-
posed models.

Model 1
Meteorological Variable 2,3

Air Temperature Atmospheric Pressure Precipitation Wind Speed

RF A3 (0.002) A3 (0.006) A3 (0.005) A2 (0.008)
ET A3 (0.002) A2 (0.005) A3 (0.004) A2 (0.013)

AdaBoost A1 (0.002) A3 (0.005) A3 (0.004) A2 (0.019)
GBM A3 (0.002) A3 (0.007) A3 (0.003) A2 (0.008)

XGBoost A3 (0.003) A3 (0.008) A3 (0.003) A2 (0.012)
LightGBM A1 (0.004) A3 (0.009) A3 (0.004) A2 (0.011)
CatBoost A2 (0.003) A2 (0.008) A3 (0.003) A2 (0.011)

1 RF: Random forest; ET: Extra tree; AdaBoost: Adaptive boosting; GBM: Gradient boosting machine; XGBoost: Ex-
treme gradient boosting; LightGBM: Light gradient boosting machine; CatBoost: Categorical boosting. 2 Approach
(mean absolute SHAP value). 3 A1: Approach 1—Average value; A2: Approach 2—Maximum or minimum value;
A3: Approach 3—Meteorological data at a specific time point.
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4.4. Comparison of Model Performance

Five evaluation metrics, including MAE, MSE, RMSE, RMSLE, and R2, were employed
to compare the accuracy of the proposed fruit drop rate forecasting models.

The CatBoost outperformed the other models for all evaluation metrics, except for
the MAE (Table 4). The hyperparameters tuned for the selected CatBoost model were
iterations = 120, learning_rate = 0.3, depth = 8, random_strength = 0.7, min_data_in_leaf = 1,
and eval_metric = ‘RMSE’.

Table 4. Comparison of the performance of the proposed models on a test set using six evaluation
metrics 1.

Model 2
Evaluation Metric

MAE MSE RMSE RMSLE R2

RF 0.0224 0.0020 0.0444 0.0395 0.3547
ET 0.0217 0.0018 0.0428 0.0381 0.3978

AdaBoost 0.0247 0.0021 0.0462 0.0411 0.3008
GBM 0.0209 0.0018 0.0428 0.0380 0.3995

XGBoost 0.0227 0.0019 0.0437 0.0389 0.3747
LightGBM 0.0215 0.0020 0.0442 0.0395 0.3578
CatBoost 0.0215 0.0018 0.0425 0.0378 0.4071

1 The best result for each evaluation metric is highlighted in bold. 2 RF: Random forest; ET: Extra tree; AdaBoost:
Adaptive boosting; GBM: Gradient boosting machine; XGBoost: Extreme gradient boosting; LightGBM: Light
gradient boosting machine; CatBoost: Categorical boosting.

5. Discussion

This study analyzed the drop rate in apples due to typhoons using historical damage
records from crop insurance for the period 2016–2021. Prediction models were used to
determine the impact of typhoons, considering regional variations. Explanatory variables,
including air temperature, atmospheric pressure, precipitation, and wind speed, were
obtained from nationwide weather stations. Before establishing a model for accurately
predicting typhoon damage based on meteorological data, it was necessary to carefully
select the optimal measure of meteorological data that reflects typhoon damage. In this
study, three measures were compared to determine the most suitable model input: the
average value of the variable, the maximum or minimum value of the variable, and the
value observed at a specific time point. The models’ predictive performance was found to be
better when applying these three approaches on a case-by-case basis for each meteorological
variable (Table 4) compared to using only one approach for all variables (Tables A2–A4).

SHAP analysis was also conducted to assess the contribution of the predictor variables
to the model’s output. Furthermore, the proposed models were compared in terms of their
predictive performance using various evaluation metrics. According to SHAP values, the
maximum wind speed was found to have the highest contribution to the output in all
models (Table 2). During the progression of the typhoon, it was confirmed that using the
maximum or minimum value (Approach 2) or the value at a specific time point (Approach 3)
of meteorological variables as input to the predictive model helped improve predictions, in
contrast to using the average value (Approach 1).

Although CatBoost outperformed the other tested models in terms of all evaluation
metrics except for MAE, it still produced an MAE of 0.0215 and RMSE of 0.0425. This
prediction error was most likely due to the fact that the difference between apple varieties
and windbreak facilities at individual orchards, which can affect the fruit drop both directly
or indirectly, was not reflected in the prediction model. In addition, if the prediction model
incorporates more information about the farms and includes more typhoon cases, it will be
possible to generate more accurate predictions.
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6. Conclusions

Research related to typhoon damage is important because typhoons are a major cause
of premature fruit drop, leading to significant financial losses for fruit farms. Numerous
studies have been conducted to examine the relationship between typhoon damage and
various factors, but only a few exist that predict the expected damage. Providing predic-
tive results before the typhoon arrives is important because it helps establish preventive
measures in response to the impending typhoon. The WMO announced that the means
to prevent disaster damage are forecasting and management capabilities. In the case of a
tropical cyclone, it is said that issuing an alert 24 h before its occurrence can reduce the
damage by 30 percent.

This study is the first attempt to predict the apple drop rate using meteorological
data. Determining the extent of regional impact can be challenging, although typhoon
characteristics (such as path and central pressure) or the Saffir–Simpson Hurricane Scale
are suitable for describing the intensity of a typhoon. We analyzed the relationship between
typhoon damage and meteorological variables using data obtained from weather stations
installed across the country. Using meteorological data, it is possible for the proposed
model to present the expected apple drop rate for each region when a typhoon occurs.

Typhoons usually affect Korea between July and October. This period overlaps with
the harvest season for fruits, making it crucial not only for farmers as producers, but also for
consumers and countries responsible for supply and demand policies. Therefore, the results
derived from the fruit drop rate prediction model can be used as a basis for preparing a
supply demand control strategy. The model estimates potential fruit crop losses caused
by typhoons. Furthermore, these results are expected to be an effective way to reduce the
damage caused by natural disasters in main crop-producing areas.
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Appendix A

Table A1 shows the period from occurrence to extinction of 24 impact typhoons from
2016 to 2021, out of the 155 typhoons that made landfall on the Korean Peninsula, as well
as the period when typhoons actually caused damage to the main producing areas. It also
includes information on the amount of damage and the apple drop rate caused by each
typhoon. The amount of damage was collected by the Disaster Yearbook (2016–2021). The
Saffir–Simpson Hurricane Scale (SSHS) is a classification criterion for hurricanes based
on the intensity of sustained winds [42]. The SSHS classifies hurricanes as Categories 1–5,
Tropical Storms (TS), and Tropical Depressions (TD). The higher the category number, the
stronger the winds, followed by TS and TD.

Tables A2–A4 show the results of comparing the performance of models applied with
three approaches—average value, maximum or minimum value, and observed value at a
particular time point—for each meteorological variable.
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Table A1. Period of existence and risk of the 24 impact typhoons from 2016 to 2021.

Year Typhoon SSHS 1 Period of
Existence

Period of
Risk

Amount
of Damage 2

Fruit
Drop Rate 3

2016
Malakas 4 09.13–09.20 09.17–09.21 - 0.000 ± 0.003
Chaba 5 09.28–10.06 10.03–10.06 214,465 0.016 ± 0.004

2017
Nanmadol TS 07.02–07.05 07.02–07.05 - 0.000 ± 0.000

Noru 4 07.21–08.08 08.05–08.08 - 0.000 ± 0.000
Talim 4 09.09–09.18 09.16–09.18 - 0.000 ± 0.000

2018

Prapiroon 1 06.29–07.04 06.30–07.04 6416 0.000 ± 0.000
Rumbia TS 08.15–08.18 08.15 - 0.000 ± 0.000
Soulik 3 08.16–08.25 08.22–08.25 9251 0.032 ± 0.060
Trami 5 09.21–10.01 09.29–10.01 - 0.000 ± 0.002

Kong-Rey 5 09.29–10.07 10.04–10.07 54,949 0.037 ± 0.068

2019

Danas TS 07.16–07.20 07.19–07.20 3419 0.001 ± 0.005
Francisco 1 08.02–08.06 08.06 42 0.000 ± 0.002
Lekima 4 08.04–08.12 08.07–08.12 - 0.001 ± 0.005
Krosa 3 08.06–08.16 08.14–08.17 241 0.000 ± 0.000

Lingling 4 09.02–09.08 09.06–09.07 33,396 0.114 ± 0.095
Tapah 1 09.19–09.23 09.21–09.23 7977 0.070 ± 0.088
Mitag 2 09.28–10.03 10.01–10.04 167,704 0.024 ± 0.040

2020

Jangmi TS 08.09–08.10 08.09–08.10 - 0.000 ± 0.000
Bavi 3 08.22–08.27 08.25–08.27 1122 0.017 ± 0.038

Maysak 4 08.28–09.03 09.01–09.03 221,419 0.108 ± 0.104
Haishen 4 09.01–09.07 09.04–09.07 0.054 ± 0.076

2021
Lupit TS 08.04–08.09 08.06–08.08 - 0.000 ± 0.001
Omais TS 08.20–08.24 08.22–08.24 21,086 0.003 ± 0.020

Chanthu 5 09.07–09.18 09.15–09.17 - 0.000 ± 0.001

1 SSHS: Saffir–Simpson Hurricane Scale. 2 Unit: 1 million won (KRW). 3 Mean ± standard deviation.

Table A2. Comparison of the models with meteorological variables from Approach 1 applied as
model inputs (test set) 1.

Model 2
Evaluation Metric

MAE MSE RMSE RMSLE R2

RF 0.027 0.003 0.050 0.045 0.190
ET 0.026 0.002 0.047 0.043 0.265

AdaBoost 0.028 0.002 0.049 0.044 0.209
GBM 0.026 0.002 0.048 0.043 0.256

XGBoost 0.026 0.002 0.047 0.043 0.264
LightGBM 0.027 0.002 0.049 0.044 0.214
CatBoost 0.025 0.002 0.048 0.043 0.237

1 The best result for each evaluation metric is highlighted in bold. 2 RF: Random forest; ET: Extra tree; AdaBoost:
Adaptive boosting; GBM: Gradient boosting machine; XGBoost: Extreme gradient boosting; LightGBM: Light
gradient boosting machine; CatBoost: Categorical boosting.

Table A3. Comparison of the models with meteorological variables from Approach 2 applied as
model inputs (test set) 1.

Model 2
Evaluation Metric

MAE MSE RMSE RMSLE R2

RF 0.024 0.002 0.047 0.042 0.271
ET 0.024 0.002 0.046 0.041 0.301

AdaBoost 0.024 0.002 0.047 0.042 0.279
GBM 0.023 0.002 0.047 0.042 0.278

XGBoost 0.024 0.002 0.047 0.042 0.282
LightGBM 0.024 0.002 0.047 0.042 0.273
CatBoost 0.025 0.002 0.047 0.043 0.266

1 The best result for each evaluation metric is highlighted in bold. 2 RF: Random forest; ET: Extra tree; AdaBoost:
Adaptive boosting; GBM: Gradient boosting machine; XGBoost: Extreme gradient boosting; LightGBM: Light
gradient boosting machine; CatBoost: Categorical boosting.
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Table A4. Comparison of the models with meteorological variables from Approach 3 applied as
model inputs (test set) 1.

Model 2
Evaluation Metric

MAE MSE RMSE RMSLE R2

RF 0.022 0.002 0.046 0.041 0.310
ET 0.022 0.002 0.046 0.041 0.295

AdaBoost 0.023 0.002 0.048 0.043 0.248
GBM 0.024 0.002 0.047 0.042 0.276

XGBoost 0.022 0.002 0.046 0.041 0.316
LightGBM 0.023 0.002 0.047 0.041 0.273
CatBoost 0.021 0.002 0.045 0.040 0.323

1 The best result for each evaluation metric is highlighted in bold. 2 RF: Random forest; ET: Extra tree; AdaBoost:
Adaptive boosting; GBM: Gradient boosting machine; XGBoost: Extreme gradient boosting; LightGBM: Light
gradient boosting machine; CatBoost: Categorical boosting.
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