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Abstract: Photosynthesis is one of the key issues for vertical cultivation in plant factories, and
efficient natural sunlight utilization requires predicting the light falling on each seedbed in a real-
time manner. However, public weather services neither provide sunshine data nor meet spatial
resolution requirement. Facing these short-term and small-area weather forecasting challenges,
we propose a cross-scale approach to infer seedbed-sized areas of sunshine from the city-level
public weather services, and then design a seedbed rotation scheduling system for optimal natural
sunlight utilization. First, an end-edge-cloud coordinated computing architecture was employed
to concurrently aggregate the multi-scale data from weather satellites to sunshine sensors in the
plant factory. Second, the small area of sunshine deterministically depends on the meteorological
data given a fixed environment, and this correlation was described by a hybrid mapping model,
which combined the long short-term memory (LSTM) and gradient boosting decision tree (GBDT)
algorithms to form the LSTM-GBDT hybrid prediction algorithm (LGHPA). By training the LGHPA
with historical local sensory sunshine and the city-scale meteorological data, the hourly sunshine on
a seedbed can be predicted from the public weather forecasting service. Finally, a dynamic seedbed
scheduling scheme was constructed to provide uniform solar energy absorption according to the
one-hour-ahead radiation estimation. Experiment results show that the hourly sunshine prediction
error was less than 18.44% over a seasonal period and the deviation for different solar absorption
by seedbeds with rotation capability is less than 7.1%. Consequently, it was demonstrated that the
application of short-term, small-area sunshine forecasting improved the performance of seedbed
rotation for uniformly absorbed solar radiation. The proposed method verifies the feasibility of
precisely predicting small-area sunshine down to the seedbed scale by leveraging a model-based
approach and a cloud-edge-end merged cybernetic computing paradigm.

Keywords: end-edge-cloud; machine learning; seedbed rotation; optimal scheduling; regional
sunshine prediction

1. Introduction

Plant factories mostly use multi-layered vertical cultivation systems that are suitable
for automatic scheduling [1]. The key issue of optimal seedbed rotation scheduling is
the regional sunshine forecast down to a 10 m seedbed scale. It is a new fundamental
scientific challenge since the goal of most previous research was to predict the weather from
minutes to weeks ahead from a temporal perspective. Still, less effort has been made for its
spatial counterpart. Existing methods contain some deficiencies when dealing with this
emerging issue.

For example, numerical weather prediction (NWP) pertains to solving hydrodynamics
and thermodynamics describing the weather evolution process by numerical calculations.
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There are difficulties in finding actual conditions of the atmosphere under certain initial
and boundary limits, and predicting the atmospheric changes and weather phenomena in
a certain future period [2]. Due to the complexity of NWP, a large number of computing
resources and dedicated supercomputers are required. This method is usually only used
in professional meteorological agencies. Over the years, machine learning (ML) has been
widely used in sunshine prediction [3,4]. However, comprehensive ML-based prediction
models need large amounts of data for training [5]. Expensive solar illuminometers and ad-
vanced meteorological data acquisition systems are only deployed in professional weather
services. It is not practical to obtain historical irradiance data for plant factories. On the con-
trary, the weather forecasting services provided by meteorological agencies are becoming
more accurate. Descriptive weather summary and weather forecast data such as tempera-
ture, dew temperature, humidity, and wind speed, can be easily obtained from the internet,
however, sunshine data is often not available [6]. Moreover, the geographic grid resolution
of weather forecasts is about 5 km, which limits its application in a single plant factory.
Various research on sunshine forecasting methods has been reported; it can be classified
into physical models and statistical methods. Physical models are based on the physical
state and dynamic motions of the atmosphere, also known as Numerical Weather Prediction
(NWP) models [7], which were believed to be the most appropriate for day-ahead and
multi-day forecast horizons [8]. However, NWP models are severely affected by weather
factors, such as overcast conditions, cloud evolution, and optical properties in the forecast
area [9]. Additionally, the application of such physical models is limited by computational
complexity in practical applications [7]. Statistical models are classified into mathematical–
statistical models and machine learning algorithms. Mathematical statistical models mainly
include regression analysis [10], time series analysis [11], wavelet analysis [12], and others.
In practical applications, the prediction accuracy of the mathematical–statistical method
is not as high as that of the NWP model due to parameter changes over time. Typical
machine learning algorithms include the artificial neural network (ANN) [13], support
vector machine (SVM) [14], and heuristic intelligent optimization algorithm [15]. Machine
learning does not perform well in long-term prediction. However, it seems to work better
for short-term sunshine predictions under unstable sky conditions [9].

The ANN, which is one of the most widely used methods for sunshine prediction,
has strong nonlinear function estimation, pattern monitoring, and data sorting ability [16].
Koshy George used feedforward neural networks with a single hidden layer, and presented
an online sequential learning algorithm for time series [17]. Yao et al. used and compared
BP, GA-BP, and POS-BP neural network algorithms to construct a short-term prediction
model for PV output in sunny, cloudy, and rainy weather conditions [18]. ANNs solve
a variety of prediction problems and can quickly adapt to various real-world models.
However, there are still some shortcomings: (a) a large amount of training data is required
for ANNs, and the training duration increases significantly with the increased complexity
of the neural network; (b) the reliability of the neural network model depends largely on the
topology and parameter selection [19]. A prediction model based on weather classification
and SVM was proposed to overcome these limitations. Wang et al. developed a prediction
model based on environmental factors and SVM optimized by a genetic algorithm (GA-
SVM) to improve the accuracy of short-term power forecasting for PV systems [20]. SVM
requires fewer input data compared to ANNs. However, it is hard to train and difficult to
handle large-scale training samples. A robust expanded extreme learning machine (EELM)
is proposed to accurately predict the solar power for different time horizon and weather
condition [21]. A machine learning model based on kernel principal component analysis
(PCA)—XGBoost is proposed to improve the accuracy of one-hour-ahead solar power
forecasts that achieve good forecasting results for a short-term period [22].

Although ANNs perform excellently in the field of sunshine prediction. It is difficult
to fully capture the complex relationships between sunshine and meteorological data,
especially temporal relationships. The complex relationships between meteorological
data, including linear, nonlinear, and temporal relationships have been analyzed [23].
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A comprehensive prediction model for short-term accurate prediction of sunshine was
proposed [24]. It uses K-means++ to output different data clusters and establishes a
comprehensive prediction model based on LASSO regular regression analysis and LSTM
for each data cluster. However, the direct result of classification modeling is that each
training process will lose a large amount of effective information, which is extremely
unfavorable for the mining of meteorological data. A deep learning model based on LSTM
with attention mechanisms is proposed and trained, and results show that the proposed
model achieves better results than others but the transformation performed on the data
degrades the prediction ability of the models as the representation interval increases [25].
Five machine learning (ML) models which include linear regression, decision tree, random
forest, gradient boosting regressor, and support vector regression were evaluated and the
results show that gradient boosting performs best with the maximum R2 and decision tree
performs best with the minimum MAE and MSE [26]. A deep learning model based on
gradient-boosted trees (GBT) was proposed and test results show the minimum estimation
error of both RMSE and MAE [27].

In conclusion, research has shown that the hybrid model has high research value
and good performance, so we consider constructing a new lighting prediction model
according to the advantages and characteristics of different models. Conventionally it is
mission impossible to precisely predict hourly sunshine shedding through a greenhouse
roof window even with the weather forecast data available. The technical challenges are
two-fold. First, we needed to align a measured local sunshine dataflow along with the
city weather forecast to establish closely correlated datasets for prediction model training
and updates. Meanwhile, a prediction result will be given to the local node for scheduling
seedbed rotation in real time. Second, computational architecture was used to reveal the
latent time-varying, nonlinear patterns between the local sunshine and the city datasets.

Therefore, to obtain sufficient accuracy and single-day regional sunshine predictions,
a sunshine prediction method is proposed here that combines weather forecast data and
regional meteorological data. Regional meteorological data of high spatial resolution was
added to the acquired professional weather forecast data to correct the deviation between
the weather forecast and regional prediction. An optimal seedbed rotation scheduling
model was also developed based on the sunshine forecast. The development of sensors,
automation equipment and internet of things (IoT) technology has provided feasibility for
the intelligent operation of plant factories. We utilized the greenhouse logistics system to
implement rotation between two-layer seedbeds.

The optimal seedbed rotation schedule integrates the historical daily sunshine data
and regional prediction results, as well as the seedbed station information, and then
coordinates the seedbed rotation. The workflow of these robotic services consists of data-
hungry, delay-sensitive tasks. Therefore, they were deployed in the end-seedbed control
actuator. Generally, the end does not have sufficient computational power and storage
capabilities. Tasks in sunshine prediction are usually inter-dependent, data heterogeneous,
and computationally intensive. Although existing cloud computing improves computing
performance and resource utilization in the centralized computing mode, the centralized
transmission of massive data is prone to delay, and users have to directly bear the impact
of cloud computing faults [28]. It is thus beneficial to arrange the allocation of computing
resources reasonably. A two-layer architecture (cloud-end) can hardly support all the
communication and data processing requirements. Then, the scalability, latency, and
response time would be affected [29]. Aiming at the above problems, the concept of
cloud-edge-end architecture was introduced. Edge computing is an extension of the cloud
computing paradigm, providing data, computation, storage, and application services to
end-users on a so-called edge layer. It is aware of the combined resource pool composed of
both local and virtual resources to facilitate task allocations [30]. The contributions of this
research include:

(1) Aiming to solve the uneven distribution of sunshine in plant factory-based stereo-
scopic cultivation, we propose a novel method that provides uniform sunshine
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reception for each seedbed layer by seedbed sequential rotation and establish an
optimal seedbed rotation scheduling algorithm (SROSA) based on high-precision
sunshine prediction.

(2) To solve the delay-sensitive and computationally intensive coupling problems faced by
seedbed scheduling tasks, a cloud-edge-end-based optimal seedbed rotation schedul-
ing architecture is proposed.

(3) For the problem of low spatial resolution in weather forecasts and the lack of sun-
shine prediction data, the weather forecast data and regional meteorological data are
combined to establish the long short-term memory (LSTM) and gradient boosting
decision tree (GBDT) hybrid prediction algorithm (LGHPA), to realize high-precision
regional prediction.

2. Materials and Methods

This chapter is structured as follows: In Section 2.1, an overview of cloud-edge-end
architectures is presented. In Section 2.2, the sunshine prediction model is described. In
Section 2.3, the seedbed scheduling model and algorithm are presented.

2.1. Overview of Cloud-Edge-End Architectures

It is practically difficult to forecast the hourly sunshine shedding through a greenhouse
roof window because only city-scale data are available from public weather satellites.
Therefore, the end-edge-cloud architecture proposed for seedbed scheduling is shown in
Figure 1. Plant factories can execute seedbed scheduling tasks according to the calculated
sunshine from weather forecast services.

2.1.1. Cloud Computing

In the cloud layer, supercomputers perform complex numerical calculations. In
April 2019, China’s Meteorological Administration launched a new generation of high-
performance computer systems, called Pi ShuGuang, for operational applications. This
new system has a computing power of 8189.5 trillion floating-point operations per second
and a storage capacity of 23,088 TB. This high-performance computer system has been
used in many business and scientific research tasks, including the national high-resolution
wind and solar energy multi-source numerical forecasting integration business, global
atmospheric reanalysis product development, and many others. In the key areas, the
spatial resolution of the weather forecast has reached a grid accuracy of 5 km. Although
the cloud carries out complex and huge calculations, it provides many weather-related
services for civilian applications. However, long-term sunshine prediction is difficult due
to the complicated relationship between sunshine and meteorological, terrestrial, and
extraterrestrial variables. Numerical calculations also do not directly provide sunshine
prediction at the required spatial scale. Nonetheless, we can use other weather forecast
data to complete the construction of our sunshine prediction model by subscribing to free
public APIs from the cloud server.

2.1.2. Edge Computing

In the edge computing environment, applications and service functions are placed in
edge nodes that can reduce latency and onward network traffic. The service latency can be
reduced by placing the applications and service functions near to the end-users. Instead
of traversing to the central cloud resources over the high-latency WAN, edge nodes can
instantly respond to the user request with minimum network latency [31].

The task of this layer was to perform sunshine prediction calculations and seedbed
scheduling decisions. The sunshine prediction model is a computationally intensive, data-
hungry task. It obtains the cloud weather forecast data through the weather forecast API
and local weather sensor data through communication with the gateway in the END layer.
Firstly, we deployed the sunshine prediction model to the plant factory central control
server, which created a database that aggregates local and cloud resources. Next, the model
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acquired the data directly from the database, and the predicted results were transmitted
to the seedbed scheduler. The seedbed scheduler is a latency-sensitive application, which
needs to continuously acquire local illumination data and illumination predictions to
dynamically execute the seedbed scheduling plan. Finally, the scheduling command was
sent to the gateway.
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2.1.3. End Computing

The task of this layer was to collect local meteorological data and transmit it to the
edge layer in real time. A sensor network and coordinator (gateway) based on ZigBee
wireless technology were deployed in this layer. The goal of the sensor network was to
collect meteorological data such as local sunshine intensity, temperature, and humidity,
and send it to the gateway at regular intervals. The gateway was responsible for data
forwarding to the edge layer and management of the wireless sensor network.

2.2. Sunshine Prediction

We established a comprehensive model that takes into account the linear, nonlinear,
and temporal relationships in meteorological and sunshine data. We also used the LSTM al-
gorithm to detect long-term dependencies. LSTM is an improved recurrent neural network
(RNN) that solves the problem of gradient disappearance. It has proven to be very success-
ful in mining temporal relationships. Additionally, we used the gradient boosting decision
tree (GBDT) to mine implicit relationships in meteorological data. Then, the K-means
algorithm was utilized to cluster similar weather data, the weighted average integration
was applied to the prediction results of each data cluster, and the optimal weight was
found. Finally, the LSTM and GBDT hybrid prediction algorithm (LGHPA) were integrated
with LSTM and GBDT without loss of data information, which significantly improved the
prediction accuracy.

2.2.1. Data Exploration and Sunshine Model

We collected historical statistical meteorological data from 1990 to 2010 in the Shanghai
region of China in the Meteonorm Global Climate Database. It includes 21 meteorological
elements such as illumination time, cloud coverage, wind speed, total horizontal radiation,
relative humidity, and air pressure. These data were recorded at hourly intervals. At the
same time, we obtained hourly weather forecast data for 14 meteorological factors from
20 July 2018 to May 2019 in the plant factory location, Minhang District, Shanghai, via the
internet interface. The rest of the data were taken as testing data during this period. We
built a wireless sensor network for local data acquisition recording temperature, humidity,
and solar radiation every 3 min. Real-time environment data was transmitted to the server
through ZigBee wireless sensing technology. The data acquisition platform is shown in
Figure 2. We averaged this part of the data in hours to correspond to the timestamps of
other meteorological data and added the time feature, month and hour, to the data set.
Missing data in datasets were represented by NaN. Solar radiation was labeled as the target,
and other meteorological elements were labeled as the Feature_ii = 0, 1, . . . , 38. We used
Python to build and train the model.
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Sunshine is generally considered to be related to meteorological variables such as tem-
perature, humidity, and precipitation. We explored and analyzed the data, results indicate
the relationship is very complicated and can be decomposed into the linear relationship,
nonlinear relationship, and temporal correlation.

1. Linear component IA. There are positive and negative correlations between sunshine
and some meteorological data, as shown in Figure 3a. The x-coordinate is the time,
and the y-coordinate is the equal scale value of each weather element. There is the
same or opposite trend between them. The linear relationship between sunshine and
meteorological variables is

IA = θTX + ε, (1)

where θ is the parameter vector of the model, including the bias term θ0 and the
feature weights θ1 to θn. θT is the transposition vector of θ, X is the weather variable
vector, ε is the error term of the linear model.
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2. Nonlinear component IB. In Figure 3b, Feature_0 and Feature_1 represent the month
and hour. It can be seen that sunshine presents a strong seasonality and has a strong
regularity in the distribution of the day. The uneven distribution is also presented in
Feature_3 and Feature_4. The nonlinear relationship between sunshine and meteoro-
logical variables is

IB ∼ P(X) + µ, (2)

where P(·) is a nonlinear function, µ is the disturbance term.
3. Temporal components I(t, ∆t). Meteorological data are often recorded as time series

and meteorological characteristics tend to be time-delayed. Figure 3c shows that
sunshine always decreases to different degrees before and after rain, and then returns
to a strong level some time after rain, as indicated by the mark. The position of the
numbers marked in the Figure 3c indicates rainfall here. The temporal correlation
between them is

I(t, ∆t) = f (X(t), X(t− ∆t), . . .) + ε(t), (3)

4. The comprehensive sunshine model is the integration of the above components

I = IA + IB + I(t, ∆t). (4)

2.2.2. LSTM and GBDT Hybrid Prediction Algorithm (LGHPA)

According to the data features, we can separately obtain the linear components,
nonlinear components and time series components of the meteorological data through
the LSTM and GBDT models, where the LSTM unit is a prediction model for inferring
temporal components of the solar intensity and GBDT unit is an integrated learning model
for estimating the nonlinear and linear components. Then, we combined the prediction
results with a weighted average K-means algorithm, which is applied to aggregate weather
data clusters of similar weather and chose different weighting coefficients for each cluster.
Figure 4 shows the LSTM unit. Figure 5 shows the prediction network model based
on LSTM. Figure 6 shows the GBDT model. And Figure 7 shows the general workflow
for LGHPA.
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Figure 4. LSTM unit.

First, divide input data into a training set T = {X, Y}T and verification set
E = {X, Y}E. Then, train the LSTM model to learn the temporal and linear relationships
between meteorological data and sunshine. The meteorological data of the previous 48 h
were used as an input, and the output was the solar intensity at the current moment. The
output results are represented by Ia. Similarly, train the GBDT model to learn the nonlinear
relationship, and the output results are represented by Ib. After that, data clustering was
performed on the training set T = {X, Y}T using the K-means algorithm. Since the scale of
meteorological features is different, if we use the original meteorological data for clustering,
the data features with larger scales will have a greater impact on the clustering results.
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To make the impact of various meteorological features more balanced, the data was first
normalized using Equation (5).

xscaled =
x− xmin

xmax − xmin
(5)
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Input the normalized data set Tscaled = {Xscaled, Y}T into the K-means model, and
K center points are the output, corresponding to K data clusters. Each sample belongs to
one of the data clusters, and the prediction results in the LSTM and GBDT models can
also be expressed as Ia =

{
Ia,1, . . . , Ia,i, . . . , Ia,k

}
and Ib =

{
Ib,1, . . . , Ib,i, . . . , Ib,k

}
. Finally,

calculate the weighted prediction results as follows:

Î = αIa + (1− α)Ib (6)

where, Î =
{

Î1, . . . , Îi, . . . , Îk
}

indicates the final prediction result, α = {α1, . . . ,αi, . . . ,αK}
and (1− α ) represent the weight coefficients of the two models. Figure 7 shows the
structure diagram of the LGHPA. We use the traversal method to determine the optimal αi.
The specific implementation is as follows:



Agriculture 2023, 13, 1790 10 of 19

1. Initialize αi = 0;
2. Increase the value of αi gradually until αi = 1, and calculate the root mean square

error (RMSE) for each αi as follows:

RMSEi =

√
1
m∑m

j=1

( ˆIi,j − Ii,j
)2, (7)

Find the optimal αi by
αi = argmin{RMSEi}. (8)

In this way, we obtain αi for each data cluster, and we can have all the predicted values
by using Equation (6). In the verification process, we first calculated the prediction results
of each sample in the verification set using the LSTM and GBDT models, respectively.
Then, we classified each data sample into one of the K data clusters. Finally, we found the
corresponding weight coefficient to obtain the final predicted value.
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2.3. Seedbeds Scheduling Model and Algorithm

Plants are grown by photosynthesis to produce organic matter. Therefore, the sunshine
and illumination time, which directly affect the strength of photosynthesis, have a great
influence on the growth and development of plants. In this section, we first analyze the
quantity of light model (QoLM) of seedbeds in the multi-layer stereoscopic cultivation and
further obtain the optimal seedbed rotation scheduling model. Finally, the scheduling time
of the seedbed is determined by the prediction result of the illumination.

2.3.1. Seedbeds Scheduling Model

1. We utilized the quantity of light to measure the sunshine received by seedbeds. The
total number of seedbed layers in the multi-layer stereoscopic cultivation was defined
as N, and the total number of rotations was P. All the seedbeds were sequentially
moved to the top layer to receive the illumination as one rotation. The purpose of the
optimal scheduling of seedbed rotation was to determine the time to move to the top

layer in the jth rotation of ith seedbed
→
T = Ti−1,j−1, i ∈ (1, . . . , N), j ∈ (1, . . . , P), so

that the daily quantity of light in seedbeds of each layer were as equal as possible.
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The quantity of light, expressed by Qv, represents the sum of the solar intensity I over
a certain period of time, that is

Qv =
∫ Tend

Tstart
I(t)dt, (9)

where Tstart indicates the moment when I(t) 6= 0 in the day, and Tend indicates the moment
when there is no more light in the day. I(t) represents the solar intensity in time t.

2. Define the proportion of the quantity of light received by the seedbed in the total quantity

of light in the jth rotation as
→
c =

(
c0, . . . , cj−1, . . . , cP−1

)
, (0 < cj−1 ≤ 1, ∑P

j=1 cj−1 = 1).
Then, after the jth rotation, the quantity of light that each layer of the seedbed needs to
receive is

→
X =

1
N
×→c ×Q, (10)

→
X =

(
X0, . . . , X j−1, . . . , XP−1

)
represents the quantity of light required for each layer

of seedbed in the jth rotation.
3. At time t, assuming that the scheduling plan is during the period of the ith rotation.

The jth layer seedbed is at the top, then calculating the quantity of light that the ith
layer seedbed has received in the jth rotation is calculated as

→
Q(t) =

∫ t

Tlast

I(t)dt, (11)

Tlast indicates the latest scheduling time less than time t, indicating the last seedbed

scheduling time.
→
Q(t) = Qi−1,j−1(t) represent the quantity of light that the ith layer

seedbed has received in the jth rotation. I(t) represents the real-time illumination at
time t.

4. Calculate the time of seedbed rotation according to Equations (10) and (11),

→
X =

→
Q(t) +

∫ Tnext

t
I(t)dt, Tnext ==

{
Ti,0, j = P− 1

Ti−1,j, j < P− 1
, (12)

where Tnext represents the next seedbed rotation time.

5. In time t, the day sunshine I(t) in Equations (9) and (12) is unknown. To calculate
→
T ,

it is necessary to know all the values of I(t) in the day in advance, so it is necessary
to predict the solar intensity. Assuming that the predicted sunshine value is Ipred(t),
then Equations (9) and (12) can be rewritten as

Qv =
∫ t

Tstart
I(t)dt +

∫ Tend

t
Ipred(t)dt, (13)

→
X =

→
Q(t) +

∫ Tnext

t
Ipred(t)dt =

∫ t

Tlast

I(t)dt +
∫ Tnext

t
Ipred(t)dt. (14)

2.3.2. Optimal Seedbed Rotation Scheduling Algorithm (SROSA)

According to the seedbed sunshine analysis and the optimal seedbeds rotation scheduling
model in Section A, we propose an optimal seedbed rotation scheduling algorithm (SROSA).

Step 1. Initialize the number of seedbed layers N and the number of rotations P;
Step 2. Initialization start time Tstart and end time Tend, t = Tstart, i = 0, j = 0;
Step 3. Calculate the quantity of light Qi−1,j−1(t) that has been received in the jth

rotation of the ith layer seedbed according to Equation (11);
Step 4. Calculate the required quantity of light Xi−1,j−1 in the jth rotation of the ith

layer seedbed according to Equation (10) and the predicted sunshine results;
Step 5. Calculate the next scheduling time Tnext according to Equation (14);
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Step 6. t = t + ∆t, then

1. Determine t ≥ Tend. If yes, then end; else, go to step 6.2;
2. Determine t ≥ Tnext. If yes, go to step 6.3; else, return to step 3;
3. Determine i ≥ N − 1. If yes, go to step 6.4; else,. i = i + 1, return to step 3;
4. Determine j ≥ P− 1. If yes, then end; else, i = 0, j = j + 1, return to step 3.

3. Results
3.1. Data Description

The datasets are separated into the training datasets and evaluation datasets. Data are
stratified by month to ensure the average distribution of data. During the training of GBDT,
we found the optimal model parameters for this data set. Table 1 shows the parameters
and their optimal values.

Table 1. Parameters of GBDT and their optimal values.

Parameters Description Best Value

η learning rate 0.02
M number of CART 4617
J number of leaf nodes in a single CART 30
fb bagging fraction 0.4
fr feature fraction 0.9

Cross-validation was used in the model test. For each forecast day from July 2018 to
March 2019, we used the daily weather forecast and historical data for the previous day to
predict the hourly sun radiation value for the day. Then, the sunshine prediction results
were input into SROSA. In Section 3.2, we present and analyze the sunshine predictions. In
Section 3.3, we present and analyze the seedbed scheduling results.

3.2. Analysis of Sunshine Prediction Results

We tested the performance of the LSTM, the GBDT and LGHPA separately. Then,
three performance evaluation criteria, mean absolute error (MAE), normalized mean abso-
lute error (NMAE), and root mean square error (RMSE) were used to test the prediction
performance of the proposed forecasting methods.

MAE =
1
m

m

∑
i=1
|ŷi − yi| (15)

NMAE =
∑m

i=1|ŷi − yi|
∑m

i=1 yi
× 100% (16)

RMSE =

√
1
m

m

∑
i=1

(ŷi − yi)
2 (17)

We need to determine the value of K in the K-means algorithm when using LGHPA.
If K is too big, the complexity of LGHPA will increase and the predictive performance of
the model will be sensitive to anomalous data. If the value of K is too small, the prediction
accuracy of LGHPA cannot be effectively improved. We tried several values of K. Table 2
shows the comparison of RMSE and MAE, and NMAE of LGHPA when the value of K was
at 6–10. According to the table, we can obtain the optimal value for each indicator value of
LGHPA when K = 8.

So far, we have all the required parameters. The evaluation datasets were input into
the LSTM, GBDT, and LGHPA, respectively. The comparison of predicted and observed
values is shown in Figure 8. The solid red line indicates that the predicted value is equal
to the observed value. Each blue point shows the observed value and the corresponding
predicted values at one forecast time. The more intensive the blue point concentrated
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around the solid red line, the less error between the observed value and predicted value. To
be more intuitive, we drew two red dashed lines to represent the two boundaries, within
which the absolute error between the predicted value and the observed value is less than
10. Compared to LGHPA, the predicted values of LSTM and GBDT are more scattered
outside the boundaries of the two dotted lines. Moreover, some of the predicted values of
the LSTM are located on the zero-line. The monthly sunshine average error of the three
different algorithms is shown in Figure 9. We can see that the error of LGHPA is mostly
smaller than the other two algorithms. The prediction results indicate that the LGHPA is
better than the single model.

Table 2. The RMSE and MAE, NMAE of LGHPA (when the value of K is at 6–10).

K MAE NAME RMSE

6 1.641 18.44% 3.710
7 1.634 18.36% 3.701
8 1.633 18.35% 3.695
9 1.635 18.37% 3.713
10 1.638 18.41% 3.711
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Table 3 shows the results of MAE, NMAE, and RMSE for the three models. It can be
concluded from the table that the prediction accuracy of the GBDT model for sunshine is
satisfactory; however, the performance of LSTM is not as good as tha of GBDT. However, by
combining LSTM and GBDT according to LGNPA, the prediction accuracy was significantly
improved. The MAE, NMAE, and RMSE of LGHPA, compared to the LSTM and GBDT,
were reduced by 12.3% and 7.9%, 12.4% and 8.04%, 12.7%, and 9.1%, respectively.

Table 3. Results of MAE, NMAE, and RMSE for LSTM, GBDT, and LGHPA.

Algorithm MAE NAME RMSE

LSTM 1.86 20.9% 4.24
GBDT 1.77 19.9% 4.07
Hybrid 1.63 18.3% 3.70

Table 4 shows the results of MAE, NMAE, RMSE, and nRMSE for the six models, five
of which are from the latest research papers. However, the training data set of different
models were very different and the performance parameters provided by the paper were
different, so it was impossible to achieve qualitative analysis under the same standard, and
we could only choose an optimal algorithm to display among the methods compared in
the respective paper. At the same time, the time-scale and spatial scale resolution of the
LGHPA model proposed in this paper were relatively good, which meets the actual needs
of the project.

Table 4. Results of MAE, NMAE, and RMSE for the latest algorithm.

Algorithm MAE NAME RMSE nRMSE

LGPHA 1.63 18.30% 3.7 -
LSTM-A [25] NA NA 84.62 0.253

GBT [27] 5.8212 NA 12.008 NA
GBDT [19] NA NA NA 0.0772

KPCA-XGBoot [22] NA NA 14.563 NA
LTSM [6] NA NA 76.245 NA

3.3. Analysis of Seedbed Scheduling Results

The schematic diagram of seedbed movement is shown in Figure 10. The shuttle lifts
the seedbed and makes a lateral movement on the stereoscopic culture frame. The hoist
supports the seedbed for longitudinal movement.
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We input the sunshine prediction results into the SROSA to obtain the scheduling

time of the seedbed
→
T = Ti−1,j−1, and further calculated the quantity of light received by

the seedbed on the day according to the scheduling time and observation data. The
quantity of light received by the N-layer seedbeds during the day is represented by
QD = {Q1, Q2, . . . , QN}.

Qi =


P
∑

j=1

∫ Ti−1,j−1
Ti−2,j−1

I(t)dt i = (2, . . . , N)∫ T0,0
Tstart

I(t)dt +
P
∑

j=2

∫ Ti−1,j−1
Ti−1,j−2

I(t)dt i = 1
(18)

We used the daily standard deviation σD to test the dispersion of QD.

µD =
1
N

N

∑
i=1

Qi (19)

σD =

√√√√ 1
N

N

∑
i=1

(Q i − µQ
)2 (20)

Most multi-layered t stereoscopic cultivation will choose a four-layer structure. There-
fore, we set the total number of layers in the seedbed to four and performed a scheduling
simulation of 178 forecast days. Figure 11 shows the average daily standard deviation of
each algorithm for the number of rotations 1–4. In this figure, the x-axis represents the
number of rotations, and the three different color histograms represent the average daily
standard deviation of the quantity of light falling on the seedbed after the SROSA driven by
the three models’ prediction results. It can be seen that as the number of rotations increases,
the daily standard deviation of the quantity of light received by each layer’s seedbed is
smaller. In the three prediction models, the LGHPA prediction results can better reduce
the difference in the daily average quality of light for the seedbed compared to the other
two models. Figure 12 shows the 100-day daily standard deviation of the SROSA results
driven by the three models, respectively. The predictions of LSTM and GBDT will make
the daily average standard deviation peak more, which is more obvious on the 0th and
48th days. LGHPA eased this situation very well. In practical applications, it is necessary
to consider the energy consumption and time cost due to the rotation of the seedbed, so an
appropriate number of rotations should be selected.
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To prove the effectiveness of SROSA, we gave a lazy seedbed rotation method and
made a comparative experiment. The lazy method does not predict sunshine, but only uses
historical statistical data to drive the seedbed rotation. Suppose that the historical sunshine
data is used to represent the sunshine I(t) of a certain day. Given the known sunshine and
assuming that its value does not change over time, we can only perform one rotation. Then,
determine the scheduling time TS = {T0, . . . , Ti, . . . , TN} by

QS =
1
N

∫ Tend

Tstart
I(t)dt (21)

∫ T0

Tstart
I(t)dt =

∫ Ti−1

Ti−2

I(t)dt = QS (22)

In the lazy method, the coefficient of variation CV is used to represent the dispersion
of the quantity of light received by seedbeds in a day, that is

CV =
σD
µD
∗ 100% (23)

Figure 13 shows the 175-day coefficient of variation of the quantity of light received
by the seedbeds for the lazy method and the SROSA, the dispersion of the amount of light
received by the seedbed is much smaller than that of the lazy method. We calculated the
average coefficient of variation for all predicted days. The average coefficient of variation
by the SROSA method was reduced by about five times compared to the lazy method,
which were 7.1% and 35.1%.
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In general, the proposed sunshine prediction approach using LGHPA outperforms
the conventional weather prediction counterpart in terms of its spatial resolution, which
estimates the seedbed-sized sunshine with over 85% accuracy. Accordingly, the derived
seed rotation efficiency is improved by over 30 percent.

4. Discussion

In this paper, we presented a seedbed rotation scheduling system applied to stereo-
scopic cultivation in plant factories.

Aiming to solve the uneven distribution of sunshine in plant factory-based stereoscopic
cultivation, we proposed a novel method that provides uniform sunshine reception for
each seedbed layer by sequential seedbed rotation and establishes an optimal seedbed
rotation scheduling algorithm (SROSA) based on high-precision sunshine prediction.

To solve the delay-sensitive and computationally intensive coupling problems faced
by seedbed scheduling tasks, a cloud-edge-end-based optimal seedbed rotation scheduling
architecture was proposed.

For the problem of low spatial resolution in weather forecasting and the lack of
sunshine prediction data, the weather forecast data and regional meteorological data
were combined to establish the long short-term memory (LSTM) and gradient boosting
decision tree (GBDT) hybrid prediction algorithm (LGHPA), to realize high precision
regional prediction.

For each forecast day from July 2018 to March 2019, we used the daily weather forecast
and historical data for the previous day to predict the hourly sun radiation value for the day.
Then, the sunshine prediction results were input into SROSA. We tested the performance
of the LSTM, the GBDT, and LGHPA separately. Results show that the error of LGHPA
is mostly smaller than the other two algorithms. The prediction results indicate that the
LGHPA is better than the single model. The MAE, NMAE, and RMSE of LGHPA, compared
to the LSTM and GBDT, were reduced by 12.3% and 7.9%, 12.4% and 8.04%, 12.7%, and
9.1%, respectively, which means that the combination of GBDT and LSTM is feasible and
effective. Then, we input the sunshine prediction results into the SROSA to obtain the
scheduling time for the seedbed and further calculated the quantity of light. Results show
that the LGHPA prediction results can better reduce the daily average difference for the
quantity of light falling on the seedbed compared with the other two models.

At present, due to the high procurement costs for historical weather data and limita-
tions of time and equipment, the data collected in this subject for the prediction of optical
radiation intensity is only one year old. And the types of data collected are relatively
small. And sunshine prediction at each geographic location point requires the model to
be retrained. Therefore, it is necessary to study incremental learning and model updating
in online data. Additionally, we plan to expand the dataset to optimize the prediction
model, collecting more real-time weather data to further improve prediction accuracy, and
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add local lighting sensors, compare prediction data with measured data, and continuously
improve the accuracy of prediction models incrementally.

5. Conclusions

This paper has presented a seedbed rotation scheduling system applied to stereoscopic
cultivation in plant factories. According to its latency-sensitive, data-hungry and computa-
tionally intensive characteristics, we proposed cloud-edge-end-coordinated computing of
the seedbed scheduling system deployment architecture to meet its delay-sensitive and
context-aware service requirements. Firstly, we established a comprehensive model that
takes into account the linear, nonlinear and temporal relationships in meteorological data
and sunshine intensity. We utilized the LSTM algorithm to detect long-term dependencies.
and applied GBDT to mine implicit relationships in meteorological data. The K-means
algorithm was employed to cluster similar weather features, the weighted average inte-
gration was applied to the prediction results of each data cluster, and the optimal weight
was obtained. The LGHPA was used to integrate LSTM and GBDT without loss of data
information, which significantly improves the prediction accuracy. Then, we established
SROSA based on predicted sunshine intensity, according to the multi-layered cultivation
characteristics. Finally, we implemented the simulation evaluation of the proposed LGHPA
and SROSA. The results show that the MAE, NMAE, and RMSE, of LGHPA, compared to
the LSTM and GBDT, were reduced by 12.3% and 7.9%, 12.4% and 8.04%, 12.7%, and 9.1%,
respectively. The average coefficient of variation by the SROSA method was reduced by
about five times compared to the lazy method, which were 7.1% and 35.1%. The LGHPA
can be improved to predict sunshine at different time scales and is also applicable in other
scenarios rather than being limited to plant factories.
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